The Cyclone Server Architecture:
Streamlining Delivery of Popular Content

Stanislav Rost John Byers Azer Bestavros
prgrssor@cs.bu.edu byers@cs.bu.edu best@cs.bu.edu

Dept. of Computer Science
Boston University
Boston, Massachusetts

Abstract— popularity ranking [10], [4]. Similarly, file sizes served by web

We propose a new webserver architecture optimized for delivery of large, servers have also been shown to follow a similar heavy-tailed dis-
popL'JIar files. Delivery gf such filles currently pose a scalapility problem fpr cpn- tribution [15]’ [4] Taken together, when we have files which reside
ventlon_al content prowders_, which mgst devote; server-side resources in direct at the “tails” of both of these distributions, such as in the case of
proportion to the high multiprogramming level induced by a set of these con- L . . L) - K
nections. While use of scalable multicast may remedy this problem some day, n'_]OVIeS in a video JUKebOX or leped files at a SOf_tware (.1IStrIbutI0r‘|
multicast is rarely supported in today’s wide-area infrastructure. site, we must address the challenge of serving files which are both

Our approach alleviates many of the most serious scalability problems by Vvery large and very popular. Moreover, serving the large, popular
developing new server-side mechanisms capable of managing a large set of TCPfiles at the tails of these heavy-tailed distributions is often where

connections transporting the same content. The strategy we employ relies on gcalable content de”\,ery services have the most difficulty [32].
the use of fast forward error correcting (FEC) codes to generate encodings of . . L
popular content, of which only a small sliding window is cached in memory at Our solution meets this challenge head-on, by dedicating servers

any time instant. The concurrent TCP connections then access contentonly from t0 be responsible for delivery of the largest, most popular files,
this shared window, which is globally useful to all clients. Our method hinges freeing up the other servers in a server farm for smaller, or less
on eliminating unscalable TCP retransmission buffers, as we can “retransmit” imense|y popular files. We expect that our approach would natu-
fresh encoding packets in lieu of the originals with no performance degradation ra”y be coupled with traffic engineering solutions that concentrate

and with no modifications to client TCP stacks. Ultimately, our Cyclone server ' ts for lar lar files t r iall timized server
capitalizes on concurrency to maximize sharing of state across different request equests Tor large, popular files to our specially op ed servers.

threads while minimizing context switching, thrashing under high load and the The premise of the server architecture we propose in this paper
cache memory footprint. In this paper, we describe the design and prototype s to reduce the storage Comp|exity of Serving a massive number of
implementation of our approach as a Linux kemel subsystem. requests for the same content to almost a constant. To achieve this
Keywords: TCP, FEC, webserver, popularity, concurrency, digital fountain, Tornado requires (1) a near-optimal sharing of memory between concurrent
codes requests, and (2) a near-stateless network stack. We achieve both
of these goals through the conceptual use of an idealized digital
I. INTRODUCTION fountain [12], which encodes blocks of original content inté - n

Burgeoning demand for content on the world-wide web has l&@hcoding blocks fok >> 1; receivingany r distinct encoding
to radical changes in the manner in which popular content is deliglocks allows the complete, efficient reconstruction of the source
ered over the Internet. Today, through the use of various proactfiata. For large files, close approximations to an ideal digital foun-
replication and redirection schemes, requests for popular contéif can be achieved with fast forward error correcting codes, such
are often routed to, and served from, dedicated servers. WhetfgrTornado codes [22], which we employ. Traditionally, encoded
such replication and redirection schemes are deployed over a LANntent has been most widely used in multicast applications, where
such as within a local web server cluster, or in the wide-area, suéansmission of a redundant symbol enables different receivers to
as across a global Content Distribution Network (CDN), the impliecover from different packet losses. In our setting, encoding the
cations are Sim”ar_namely, a server must be able to respon(ﬁﬁj’]tent realizes a a new beneﬁt, namely while it still enables each
a very large number of requests for a relatively small amount giece of encoded content to be useful to all clients simultaneously,
disproportionately popular data. in so doing, it facilitates the sharing of information and reduces
While various technologies and protocols that enable replicBer-client state at the server.

tion and redirection have been implemented and deployed (revers€ompared to traditional architectures, the Cyclone Server Ar-
proxies, content surrogates, etc.), the architectures of web senahrdgecture (CSA) allows a significant reduction in resource require-
have not undergone radical changes to accommodate the deliveignts for delivery of content in situations in which a group of
of very popular content. In this paper, we argue for such a radiadients is concurrently downloading a particular file, without re-
departure—namely, in-kernel support for buffer and network stackiiring similarity of transfer rates or synchronization of request
management that enables a server to efficiently service a massimivals among the clients. In CSA, files are encoded into circu-
number of concurrent requests for files which are Hatlge and lar arrays of Tornado blocks that are stored on disk prior to their
frequently requested. It is well known that such files exist on manydelivery. The benefits result from the ability of CSA to service an
popular web sites. Studies on Web traffic characterization indicaebitrarily large group of clients interested in the same file using a
that the frequency of web requests follows a Zipf-like distributiorsingle, fixed-length sliding cache buffer. Such a buffer is replen-
or in other words, the distribution of total requests for a given filsshed with data from the circular encoding on disk at the speed of
increases according to a power-law relationship with respect to fte fastest client of the group of clients interested in the same con-

tent. Connections servicing the group’s slower clients draw daflacused on operating system optimizations (e.g. memory subsys-
from the same buffer at their respective speeds and thus may m&s, file system, network stack, etc.) [29], [28], [25], [19], [18].

a number of contiguous encoding blocks. However, the slow&enerally, these optimizations fall under two categories: (1) opti-

clients are able to reconstruct the missed content from redundamnaizations that improve resource allocation decisions, and (2) opti-
contained in other blocks that they receive successfully. mizations that boost resource utilization.

An almost stateless network stack is achieved by elimination of Examples of approaches that aim to improve resource allocation
bulky TCP retransmission queues, made possible by high utiliecisions include the use of better cache management [13], [10],
of transmission of any block of the erasure encoding not prevB], [8], [24], [21] or the use of prefetching [16], [27]. Exam-
ously sent. CSA employs a modified version of TCP retransmigles of approaches that aim to improve resource utilization include
sion semantics (no changes to standard client TCP network stattks elimination of unnecessary memory transfers between the vari-
are needed) that retransmits the next unsent block of the encods layers in the system (user space, kernel space, network buffers,
ing from the shared sliding cache buffer as opposed to drawing tég.) [29] and avoiding overloading through proper admission con-
data from a retransmission queue. trol [33].

Finally, the need for in-kernel implementation is driven by th&calable Content Delivery Engines:To put our work in context,
necessity of precise synchronization of the speed of progressigs compare it to recent projects that para#ae aspects of our
of the shared buffer to that of the connection to the fastest cliefo-pronged approach to the construction of popular content de-
of the group, and desire to capitalize on the benefits of eliminivery servers. Recall that our strategy relies on (1) an (almost)
tion of the retransmission queues. Although OS kernel supp@érfect sharing of memory between concurrent requests to a server,
is required in the server, the decoding functionality of the clierind (2) an (almost) stateless network stack implementation on the
can be implemented in a straightforward manner at the applicatigarver.
level, for instance as a browser plug-in. Based on the above arThe |O-Lite system [29] is a good example of a recent effort
chitectural features, we have implemented a web server subsystfgt aim to achieve the first of the above two goals in the context of
(under Linux), named Cyclone, for use by server applications. |nternet servers [28]. In that work, Pai, Druschel and Zwaenepoel

The rest of the paper is organized as follows. Section 2 oemonstrate that repeated copying and multiple buffering of data is
lines related work. In Section 3, we describe the design objectivgsnajor detriment to system performance. Specifically, their work
for our method of content delivery. In Section 4, we present akposed the unnecessary overhead of copying file blocks from the
overview of the design of the CyC'One architecture. Section 5 dﬁl-e System in the kernel |ayer to the app”cation process’ memory
scribes our implementation of the Cyclone subsystem in the Lin%ace, and then duplicating the very same data buffers in the net-
kernel. Section 7 contains analytical models ans results of simul@ork layers, as done in conventional operating systems. In [29],
tions. And finally, in Sections 7 and 8 we elaborate on future wottkey propose a unified cache architecture to remedy this problem
and provide acknowledgments. in which buffers containing file data are shared across the layers
of the operating system. This work differs from ours in that it
focuses on eliminating redundant data copying among a single ser-

Considerable work has focused on optimizing the delivery ofice thread and various OS subsystems; whereas our approach en-
popular content from aingle server. A common theme of this ables sharingcrossthreads as well.
related work is to address issues of scale by minimizing resourceThe Digital Fountain approach described in the introduction is
consumption, often by reducing the marginal cost of serving am example of a recent effort that aims to achieve the second of the
additional concurrent request. above two goals in the context of Internet servers. In one instanti-
Multicast-based Technigues:One widely researched method foration of that approach, Byers, Luby, Mitzenmacher, and Rege pro-
delivering popular files with a minimal footprint on a single servepose the use of fast error correcting codes [22] to alleviate the need
leverages network mechanisms such as native multicast. Ra-per-client state information at the source of a reliable multicast
searchers have built scalable solutions which use non-adaptitransmission [12]. Another instantiation of this approach uses en-
cyclic transmissions over multicast or broadcast channels to papded content to facilitate stateless downloads from multiple mir-
vide eventual reliability [2], [1], and more sophisticated solutionsor sites in parallel [11]. Our work also employs this paradigm.
which employ forward error correction to achieve scalable reliddowever, while previous work primarily attempts to improve the
bility without a significant performance penalty [12], [26]. Thesautilization of network resources; our approach targets servers in
solutions scale to large audiences, as the marginal cost of addingnicast environment and aims to improve utilization of a single

Il. RELATED WORK

an additional client as perceived by the server is near zero. server’s resources.
The main disadvantage of multicast-based content delivery tech-
niques is their reliance on the existence of an end-to-end multicast- 11l. D ESIGNOBJECTIVES AN IDEAL COMPACT CACHE

enabled infrastructure. As a result, these techniques are bet: L
. - . In the scenario described in the introduction, our objective is
ter suited for enterprise network environments, as opposed,to

WAN environments. This is clearly evident in the slow deplo to efficiently satisfy a massive number of concurrent requests to a
. ' . y PIOYS mall number of popular files. In this scenario, we expect cache
ment/adoption of such techniques on the Internet, and the emer.

. L . N _~""space to be a scarce resource whose usage is at a premium, i.e. itis
gence of alternative distribution protocols that “emulate” multicas 9 P

using unicast-based overlay networks [20], [14]. infeasible to cache the entire working set. Nevertheless, popular-

Unicast-based TechniquesTo improve the scalability of Inter ity of content and 1/O operations, which are orders of magnitude
net serversin a unicas? env.ironmgnt recent researcril efforts haslowerthan operations to the cache, make optimizing cache utiliza-
' ¥i5n essential to delivering the highest performance. Our objective
Lin this paper, we use the term Internet servers to refer to web servers, caches, proxies, re\!és]p e'“mlnate cache mISSES. inthe constramed Ser.VIC.e en\{lronment
proxies, surrogates, etc. in which a setS of popular files of variable length is fixed in ad-

Data Taps m Data Pump m

ENEN

Switcher

. . Replenisher

To Network PCBs

Fig. 1. Delivery of a file in the Cyclone server architecture

vance, but where the cache memory of slZes of sufficient size that receiver may recover from the remaining pieces which arrive
to store only a fraction of. Thus the challenge is to partition theintact.
cache across files and efficiently utilize tb@mpact cache space In our application, use of a dispersed encoding gives our server
apportioned to fileF' in a manner which iglobally useful to all ~ considerable freedom, and enables it to maintain cache contents
request threads faF even as the multiprogramming level growswhich are globally useful with very high probability, as we shall
large. Issues of scale are central to our design, so apportionmeoiv describe. First, for a given filg, the server chooses so
should not necessarily be based on the size or popularity of a filleat £/m is equivalent in size to maximum packet payload and
Expressed in another way, the challenge is to design a scalatpmerates an information dispersed encoding of the file of length
system in which the marginal cost of serving an additional cliemt = ¢m, where we refer te as thestretch factor of the encoding,
requesting a file from the sétis as close to zero as possible. as in [12]. Note that this encoding procedure need only be done
From the perspective of managing cache resources in the conce for each file as its output, the encoded content, could be stored
text of delivering a particular large file, an ideal solution wouldn disk for future use. Also note that, since dispersed encoding

therefore: contains redundancy, strict ordering of its blocks is unnecessary
« Consume a fixed amount of cache memory regardless of #@d the encoding can be considecedular.

number of clients interested in the file. Secondly, the server allocateslaling cache buffer able to hold

« Allow the amount of cache memory to be considerably smalléfixed quantity £) of contiguous pieces of the encoding and fills it
than the size of the entire file. with initial & blocks of encoding of” from disk. All connections

« Provide performance benefits comparable to that which can #ansferringt” draw data from that cache buffer. In the steady state,
achieved by conventionally caching the entire file. the server continually furnishes the néxblocks of the encoding

« Admit clients which arrive asynchronously. from disk into the cache buffer whenever the fastest connection
« Accommodate heterogeneous client transfer rates without a péelivering ' exhausts all of the blocks in the buffer. When the
formance penalty. server reaches the end of the file storing the dispersed encoding of

To recap, the properties of the ideal solution can be achievéd it may wrap around to draw data from the beginning of the file,
by a delivery method utilizing a sliding buffer that is globally usefhus rotating the cache buffer in the circular encoding. .
ful. Global usefulness of the buffer implies that its contents al- USing this procedure with high concurrency levels, a typical
ways contribute to the transfer progress of all clients downloadirf€nt would arrive asynchronously, access pieces of encoded con-
the file whose data is in the buffer. We describe our technique 51t from the cache as the sliding window rotates, and ideally re-
achieving global usefulness and other components of our desigrPfive sufficiently many pieces of the encoding to recover the file

the subsequent section. before a full rotation through the encoding completes. Note that
the replenishment of pieces of the encoding will occur far faster
IV. DESIGN OVERVIEW than their retrieval by the slower clients, thus slow clients will typ-

ically “miss” many pieces of the encoding, tolerance to which is

one of the key points of our design. Another important design con-
Our strategy for achieving global usefulness of the sliding buffé&ideration is the use of a sufficiently large stretch factor to ensure

employs a powerful procedure originally described by Rabin [301]hat most clients do not experience a full rotation, which can induce

His Information Dispersal Algorithm (IDA), disperses a fifeof ~ redundant transmissions and commensurate performance degrada-

length? into n piecesF;, 1 < i < n, each of lengthf /m such that tion. Details of the fast error correcting codes we use for encoding

the original fileF" can be reconstructed froamy m pieces, where are discussed in the implementation section.

n > m. This technique, which can be realized in practice with

forward error correcting codes, has been widely used to enablg'a-rhe Cyclone Subsystem

dispersed encoding of a file to be transmitted over a lossy channeWWe now provide an overview of the design decisions we have

to one or many receivers. For this application, even if upte made in building our Cyclone content delivery architecture which

m pieces of the encoding are lost in transit to a given receivexchieves the design objectives specified in the previous section. A

A. Compact Caching via Fast Erasure Codes

high-level depiction of the mechanisms this architecture usesttee Congestion Manager (CM) architecture [3]. In this scenario,
deliver a single source file is provided in Figure 1. packet retransmissions would be unnecessary for providing relia-
The functionality of the Cyclone server architecture is madeility, as receipt of a sufficient number of packets from the cyclic
available to server applications by the Cyclone subsystem. Taecoding would ensure eventual reliability. However, in the con-
subsystem houses centralized collections of state uniquely pet@imporary Internet, use of UDP is undesirable, both because many
nent to delivery of a particular file, thiata pumps. Data pumps are firewalls are configured to block UDP traffic and because many
responsible for maintenance of the file-specific cache buffer. CddPP transfers are not congestion controlled and are therefore dis-
ceptually, a data pump ensures that fresh content from the FEC efiminated against.
coding is serviced to outbound transport connections, or data tapsTherefore, we rely on a second transport-level approach, in
As depicted in Figure 1, the data pump employs a sliding windowhich we make a server-side modification to the TCP packet re-
strategy to ensure that fresh content is replenished into the cadiignsmission algorithms which does not alter TCP timing seman-
To avoid costs of memory locking while replenishment is occufics, but does alter theontent of TCP retransmissions. In practice,
ring, we divide the cache buffer used by a data pump intoa¥b e issue retransmissions which contain a different piece of the
spaces. Each half-space contains pieces of the encoding which afgcoding than the original transmission. We emphasize that this
atomically furnished to the data taps (for simplicity, recall that wgteration of TCP, which we call TCP-ERC, or TCP for erasure-
set the encoding granularity equal to the size of a packet payloagsilient content, requires no client modifications, as TCP clients
The active half-space is the source of encoding packets to be sg&er examine discrepancies between content of an original trans-
outto the clients. The loading half-space (shaded in Figure 1) is ifission and a retransmission. Moreover, since our changes do not
accessible to service threads and can only be accessed by the i@g@#act the timing semantics nor the critical path [6] of a TCP trans-
pump’sreplenisher thread, whose task is to load encoding packetgr, there is no negative performance impact.
from disk while packets are being concurrently furnished from the Delving into the details of TCP-ERC, all of the flow control

active half-space. _ _ _ _and congestion control mechanisms of TCP are retained in full.
Collections of state which allow connections to interface W'tli‘:onceptually, TCP-ERC differs from regular TCP in only one re-
the data pump are referred todaia taps. A data tap tracks how gnect i a situation in which TCP would retransmit a packet due
much of the active half-space content has been transmitted by{i§oss TCP-ERC proceeds to transmit a fresh encoding packet (in
parent connection. Service threads, each progressing at the SRREC-yclone server, that means simply transmitting the next Tor-
driven by the congestlon-cqntrolleq connectllon to the client, COl54o block from the active half-space). On the packet level, the
sult the data taps to determine which encoding blocks to read n%gguence number of the retransmitted packet is the same as that of
and update them to reflect the progress. As soon as any thread o riginal lost packet, but a different portion of the encoding is
exhausts all of the bloqks in the active haIf-s_pace, it requests “ﬂ%erted as the retransmitted packet's payload. This approach has
the half-spaces be switched. When the switch occurs, the 103 primary advantage that cumbersome (and superfluous) retrans-
ing and active half-spaces reverse roles, the data pump directs fljesion huffers do not have to be maintained in memory, substan-
replenisher thread to fill the new loading half-space, all data taﬁélly streamlining the management of TCP connections. At the
attached to the pump reset to the first block, and the service threggis,; side, a client could conceivably observe the fact that TCP-
proceed to seamlessly serve encoding blocks from the new aci8c s being used at the sender, i.e. when it receives an original
half-quce. _ S transmission and a retransmission with identical sequence num-
One integrity constraint is imposed on the system to preserggrs which contain different payloads. However, the TCP specifi-
logical separation of the half-spaces. The half-space switch Wilhtion indicates that duplicate packets (i.e. packets with identical
not be performed until the replenisher thread has finished |°adi§9quence numbers to packets which have already arrived) should
all of the encoding blocks into the non-active half-space. In pragg dropped. Thus clients can retain and use their existing TCP

tice, this constraint does not impose a significant performance cgg{ck implementations to receive TCP-ERC transmissions.
since there are typically orders-of-magnitude difference between

the time required to replenish a half-space and the time needed by
a client to exhaust a half-space. D. Client Support for FEC-encoded Content

Transmission of encoded content implies that clients must have
the capability to reconstruct the file from the encoded transmis-

Of central importance to the design of the Cyclone server is thton. A client may advertise such a capability in the header of
choice of, and interface to, the transport protocol we use to delivigs HTTP request. The ability to reconstruct files from FEC en-
the content. TCP is the most natural choice, as it is a standard éeings is entrusted to a library of subroutines positioned between
reliable unicast transfers and it is desirable to employ its congake application and the communications protocol. The reconstruc-
tion control functionality. However, it is highly undesirable to useion procedure takes over the processing of incoming blocks of the
TCP’s stateful retransmission semantics, first because explicit egrcoding for the application, and supplies the application with a
transmission of data is unnecessary with the encoding framewdiky reconstructed file. A potential cost of this procedure is that
we use, but more significantly, because retransmission of packgiis layer must be able to buffer the entire file prior to decoding.
requires undesirable retention of state in the form of a retransmigis also the responsibility of the client to notify the server that
sion buffer, which must necessarily be of size proportional to thehas received enough data to reconstruct the file by closing the
bandwidth-delay product of the TCP connection. connection or transmitting a stop message. The functionality of

We propose two methods for circumventing this problem. Thiae reconstruction library can be made available to existing web
conceptually simpler version relies on UDP coupled with TCFarowsers as a plug-in for processing of a MIME data type desig-
friendly congestion-control mechanisms, as could be provided bgting erasure-resilient encoding.

C. Interfacing with Reliable Transport Protocols

E. Design Summary files of tens of megabytes or more. We employ these codes for

At the core of the Cyclone server architecture are files stored Qr application, specifically, the family of Tornado Z codes, de-

erasure-resilient encodings. The advantage given by such an %‘H—ibed in [12], which have an average overhead of roughly 5%,

coding is the ability to serve pre-encoded file blocks in any ordép,v‘(’j m;erk;_?ad v?nance% I{i‘/lng (fIAecodlr_wgl times of at _mostl a f_ew sec-
yet still contribute to the transfer progress of each of its clients wiffds for |e_sr0 tedns Od - He(;ur?fa paramehter n SE ecting an
high probability. It is then possible to advance the sliding cac propriate Tornado code Is titeetch factor, or the ratio between

buffer at the speed of tHastest client in the group of clients inter- t ? length of rt]hfe enchwgh"’;n%th? Igrgth 9f the gille. Empl_c()jyinﬁ
ested in the same file, without waiting for slower clients. Slowe? '219¢ stretch factor Is highly desirable as it enables us to ideally

clients who receive encoding blocks out of sequence due to adﬁcomodate a wider range of heterogeneous client transfer rates,

advancing sliding buffer can nevertheless reconstruct the file &t we descr!be mhomentaLlI}/. On the other hand, for our ap?hca-
ficiently. In the event that a client witnesses the sliding buffer trdlon. Increasing the stretch factor causes a commensurate (linear)

verse the entire encoding, it is likely that this client will receivdNCréase in (a) the disk space needed to store the encoding at the

some redundant transmissions before recovering the file. Howe ’ver, (b) thg SF’?CG needed t,o recongtruct the file at the client, and
large stretch factors can mitigate the effects caused by this contﬁ) the decoding time at the_ client. Unlike blocked Reed-SoIo_mon
gency at the expense of increased secondary storage requirem %gs, T‘?m?do code_s admit large s_tret(_:h factors with only a I|_nea_1r
at the server and increased decoding times (for detailed treatment: radation in encoding and decoding times and no degradation in
please see the Section VI-C). overhead, measured as useless pac_kets.. .

The description of the design is now complete. The architecture”S @ €xample of the tradeoffs, if clients are downloading a
discussed above achieves both maximization of sharing and cadfi¥B file at rates varying from S0Kbps to 1Mbps, the refresh rate
compactness. However, more details are necessary to provide a9fif1® cache will occur at a rate fast enough to accomodate the
understanding of the Cyclone server architecture implementatiof@Stest client, while a slow client will transfer only abafit of the

packets in a given cache block. In this scenario, a stretch factor
V. IMPLEMENTATION OVERVIEW of 20 would be needed to ensure that a slow client did not observe

a full rotation of the encoding. If a full rotation does occur, this

This section of the paper presents the overview of a prototy@%uses performance degradation, as it implies that clients may re-

;rEE!;/rzg;;atlon of the Cyclone server architecture as an In'ke”keelve duplicate transmissions. However, the incidence of duplicate

transmission will remain low — even with a stretch factor of 10, and
A Codes assuming pure random transmission of encoding packets (with re-
] o placement), the incidence of duplicate packets will remain below
While the general IDA approach proposed by Rabin is very povige, using Tornado Z codes. In practice, a stretch factor of 10 is the

erful, a substantial practical limitation is imposed by the compysarameter setting we employ. For further discussion on duplicate
tational complexity of encoding and decoding operations. Moglansmissions, refer to Section VI-C.

authors applying IDA approaches to networking applications have
used variants of Reed-Solomon codes (as described in [23]) as theiroyerview: Delegation of Processing
forward error correcting primitive [7], [31], [26]. These codes rely
on cumbersome finite field operations and haveXencoding ~ The Cyclone server subsystem performs the majority of the pro-
and decoding times (where is the number of source blocks).cessing associated with content delivery. The task of the server
Thus, while IDA with Reed-Solomon codes works well for re@pplication is reduced to processing a client’s request and then in-
constructing a file stored as pieces distributed oven remote Voking the Cyclone subsystem to deliver the requested content via
sites whem is 14 andm (the number of pieces needed to recovein€ existing connection to the client. In the course of content de-
the file) is 10, its decoding inefficiency is prohibitive when translivery by the Cyclone subsystem, a replenisher thread loads data
mitting a file spanning 5000 packets encoded with a stretch faciffo the data pump corresponding to the file, and the in-kernel net-
of 10. A partial remedy to this problem, which improves decodork layer event-driven routines transmit the content and invoke
ing time, is to divide a large file into blocks and to apply Reedthe switching of half-spaces. The process of satisfying a request
Solomon forward error correction over those smaller blocks [26]r content using the Cyclone architecture is depicted in Figure 2,
In order to reconstruct the file, this approach necessitates rec#{pich we describe now.
ery of a set of encoded pieces which together enable the decoding he functionality of the Cyclone subsystem is provided to server
of all blocks. While this approach improves decoding, it limit@pplications through a system call. After transmitting a response
scalability, as the reconstructor typically must wait a consideradheader to the client (Figure 2(a)), the server application invokes
amount of time before receiving the last codeword needed to te Cyclone system call (Figure 2(b)), passing the descriptor to
construct the final incomplete block, especially as the number e open socket as well as the name of the file to be delivered as
blocks grows large, as detailed in [12]. parameters. The system call resolves the file name to the corre-
A newly available alternative to Reed-Solomon codes are spagfg@nding data pump (creating one if it does not exist yet), create
codes such as Tornado codes [22], which are closely related to Igwdata tap, integrate it into the socket state, and connect it to the
density parity-check codes. By relaxing the decoding guarantg&ta pump. Once the system call returns, the thread of the server
i.e. by requiring slightly more than encoding packets to recoverapplication that invoked it may entirely disregard the remainder of
an original file ofn packets, and by using randomized encodintpe delivery process and process the next request. Furthermore, it
and decoding algorithms with fast XOR operations, these codiégecommended that the server application should close its socket
achieve linear encoding and decoding times. In practice, Tornalfoconserve per-process resources.
codes require reception ¢f + ¢)n distinct encoding packets to The Cyclone subsystem begins the delivery of encoded content
reconstruct the source data, wheré on the order 00.05 for after the system call returns control to the application and the re-

3

TCP Connection

read() request
write() response header

Cyclone API

Server
Application

stat() the file

Filesystem

TCP routines:

data_snd_check() /* on ack */
tcp_fast_retrans()

Cyclone Subsystem

TCP Connection

closeCycloneSocket()

Server
‘ deliverCycloneFile()

Cyclone API Cyclone Subsystem

TCP Connection

Cyclone API

Server

Application

Filesystem

]

Filesystem

tcp_retransmit_timer()

Cyclone Subsystem

@)

(b)

(©

Fig. 2. Satisfying a request for content using Cyclone/Linux

sponse header has been successfully transmitted. The event-driven VI. ANALYTICAL MODELS

kernel routines (Figure 2(c)) responsible for the transmission OfThe primary benefits of our design result from unified cache and

data in c_onventional delivery schemes _also h_andle the special-c gfvork stack management. Centralized, globally useful cache
processing for Cyclone connections, discerning them from regu Lters prevent the amount of cache memory consumed by concur-

connections by presence of data taps. Such special-case ProCe$¥ service threads from growing with the number of threads. Ad-

ing involves procuring data from the pump as opposed to netwoal ionally, using such buffers reduces the cost of operations such

me:tffers whenever the kernel routines can transmit or must retralg1 " data copying and disk /O which would otherwise be performed

' by each service thread individually. Aggregation of the network
stack with the globally useful cache alleviates the need for bulky
send buffers and retransmission queues.

To analyze the resource savings of the Cyclone architecture over
a conventional architecture, we will apply the following model. We

As described in the Section IV-B, data pumps contain centr@dSsume that at an instant in time, a server (either conventional or
ized cache buffers, for simultaneous access by multiple threadsCofclone) is serving: asynchronous connectiorts; ...Cy, which
service. They must then exist outside of the scope and lifeting@ncurrently deliver a file?" of lengthl bytes to their respective
of any particular service thread. Additionally, data in half-spacédients. Each connection transmits data at a heterogeneous rate
will be accessed by time-critical kernel routines, and thus must B&. over a path whose one-way latencyLis
situated in memory which will not be swapped out to disk. These -
constraints compelled us to allocate data pumps as well as the hAsf-ache Buffer Scalability
table for resolving data pumps from file names within kernel-spaceA conventional server architecture delivers a fileby repeat-
memory. edly loading a block of sizeB into a buffer and transmitting
o'ﬁs content. Subdivision of a file into blocks of siz& yields

C. Data Pump Management

Destruction of a data pump is invoked by the server applicati .
and may either be immediate or delayed. In either case, the actN& - B _bIOCkS' . .
destruction only happens after all of the data taps detach from thef\t @nY instant of time, a connectiafi; demands data from one
pump, but in the case of delayed destruction the existing C”erﬂgthose blocks, and since conn_ectlons are asynchronous and_ln-
tapped into the data pump are first allowed to finish receiving tf¢Pendent, we model the mapping of requests to blocks as being
file. Note that the costs of creating and destroying data pumps &f@Pped independently and uniformly at random. In the event that

significant and often it is more beneficial to allow a data pump {&ultiPle connections access a common block, we assume that a
idle than to destroy it. single instance of the block can be stored in memory and can be

shared, as in case of memory-mapped disk access.

The role of a replenisher thread is to furnish data to a dataThen, for a file of Nz blocks and a multiprogramming level
pump’s loading half-space. In our implementation, one replef;, total memory consumption in this model is the following oc-
isher thread is created for every data pump, however, it is possielgpancy problem: How many blocks are covered by the set of
to improve upon that scheme. Once a replenisher thread fills therequests? The probability of a blogiot being covered is
loading half-space, it will block until connections exhaust the aEQ: NL)” Therefore the expected number of blocks which
. . . B
EV? helllf-spactt_e ang svz'tct?] th;ﬁhalf-spagest;Nto ref#mti Ioadr|1ngt) ered iSNp (1 —(1-— Nl—B) . Whenn is small relative to

ata. dn pract ice, due doth et ; erilccek ?h eenl € h roug” pojt B, the expected fraction of blocks covered is closely approxi-
secondary storage and that of network, the replenisner will oltgtl, o 4 byz*, or, coverage grows linearly with the multiprogram-
wait for ample periods of time. Instead of blocking, a single threa B
may be able to assume the role of multlple replenlshers fora nurrk'Such an assumption is valid regardless of whether the conventional server reliegefnor
ber of data pumps.

n

mmap() system calls for file access.

ming level. As the multiprogramming level becomes large relative A TCP-ERC stack coupled with the Cyclone server does not
to the number of blocks, the limiting behavior is that the entiréeature a send buffer, but instead draws data from the shared cache
file is covered. On many modern operating systems, server ardhiffer. Unlike in the case of TCP retransmission queues, the im-
tectures which do not take advantage of memory mapping canipaict of connection properties on memory requirements of a TCP-
share file blocks beyond the boundaries of the file system cache ERC stack is negligible. Connection-influenced memory con-
such cases, the memory requirements are more simply express@mption in a TCP-ERC stack occurs primarily due to the need to
by n - B. On the other hand, in the Cyclone server architecturstore per-packet timestamps and selective acknowledgment flags
total memory consumption is on/- H, whereH is the size of a in a lightweight retransmission queue, to ensure proper function-
half-space, independent of the number of clients ing of TCP. Under Linux, TCP-ERC's lightweight retransmission
We next analyze the rate of 1/O traffic in the two systems. Bdsuffers require 16 bytes per packet as opposed to regular TCP'’s re-
cause of the regulation of TCP send queue sizes by the operatipgrements ok 1600 per socket buffer. By removing timestamps
system, a service thread servicing a conneofignvill access the from the TCP-ERC stack and performing timeouts using a con-
file at a rate ultimately determined @¥;. Thus, in a conventional stant amount of state, it may be possible to eliminate the need for
system, the total rate of disk access foservice threads can be per-packet state, providing even better memory scalability.
modeled by} . %. Then, assuming transmission rat@s are
independent and identically distributed from some distributign

wherep = E [R;], the average rate of disk access in the conven- One of the factors affecting the performance of the Cyclone

C. Duplicate Transmissions

tional server can be represented as server architecture is the potential transmission of duplicate en-
coding packets. The cyclical manner in which the replenisher re-
%, trieves encoding from disk provides for the possibility of slower

connections transmitting such packets. Connections may transmit

In contrast, the Cyclone server's disk access to a file is driven Fdundant encoding blocks after persisting for more than one rota-
the rate of transmission of thastest connection servicing’. The tion of the sliding buffer over the entire length of the encoding.

rate of disk access in the Cyclone server architecture can then bdN€ Performance issues associated with the finite length of the
expressed as encoding can be mitigated by selecting a large enough value of

max; R; the stretch factor prior to encoding the content. The choice of the
7 stretch factor’s value is crucial for eliminating redundant transmis-
sions, but also impacts storage costs and decoding time.
B. Network Stack Scalability It is straightforward to calculate the conditions under which a
client can reconstruct the source content before a full rotation com-

While our arguments apply to any transmission protocol th ‘i%tes, namely if it has a hit rate of at ledt® (wherel + ¢ is the

buffers content in the server, we also discuss the issues of netw: eption inefficiency of the Tornado code, arid the stretch fac-

stack scalability within the fr?mework of TCP. _tor) in the first rotation. In the Cyclone server, situations occur in
The scalability of a server's TCP layer is limited by potentially,icp, siower clients miss blocks due to a faster connection’s faster

large quantities of data temporarily residing in send buffers and rg\ ancement of the shared sliding buffer. In the course of deliv-

transmission queues of TCP stacks of concurrent connections., of the content in a given half-space, the slower connetion

TCP buffer can conceptually be subdivided into a send queue gj) only be able to transmit an—— fraction of the half-space
max]- j

retransmission queue. Content supplied by the application, but r(‘:%tntent before the fastest connection will switch the half-space. In

yet transmitted onto the network, resides in the send queue. C%I{lét on average(; will miss a1 - —Ei__ fraction of the en-
tent already transmitted, but not yet acknowledged, resides in the ™’ 9 max; R;

retransmission queue. The difference between the application’s #if €ncoding during every revolution of the sliding buffer. Thus it
rate and the network connection’s transmission rate dictates {R?0Ssible to guarantee th@t will transmit a sufficient fraction
size and behavior of the send queue. Many operating systems the encoding to reconstruct the source file before the rotation
pose a limit on the send queue size and decelerate the fill raf@&nPletes if the following condition holds:

of applications which exceed such a limit. TCP’s sliding window

algorithm and retransmission policy limits the size of the retrans- R; 1+e

mission queue of a connecti@} to be at mose - R; - L;, with max; R, c

the steady-state limit on the lower bound of the queue size being

R;-L;. The stretch factors needed to realize this guarantee for a wide

Typical memory demands imposed on a server by a TCP sta@age of transmission rates are impractically large. In practice,
can be illustrated with a back-of-the-envelope example. In ogensiderably smaller stretch factors can be employed in combina-
tests, we observed typical send queue sizes of a few dozendi®n with scalable heuristics aimed to reduce redundant transmis-
kilobytes, with the default Linux limit of 64 KBytes. An optimistic Sions. One such heuristic ensures that slow clients do not always
estimate of cross-country round trip time (70 ms), combined witheterministically send from the front of half-spaces, but rather
a bandwidth of 30 Mbps yields retransmission queue sizes in tBoose the R
range between 270 and 540 KBytes per connection. In a scenario r=——"_".N,
of 200 such connections concurrently downloading large files, the max; R;

TCP stack’s total memory demands on the server will range bislocks that they send during every “round” of transmission (with
tween 52 and 105 MBytes. Slower connections also consume csneh rounds beginning and ending in a half-space switch) at ran-
siderable amounts of TCP buffer memory as such connections tyfmm. Alternatively, clients might choose a random initial offset
ically feature high latencies and greater loss rates. from within each half-space. Other, more complicated heuristics

may provide better protection against repeated transmissionsjef
identical blocks at the expense of additional memory. -

VII. CONCLUSIONS ANDFUTURE WORK (18]

We have described an architecture for a scalable content delivery
engine dedicated to transmission of large, popular files to a broad
audience using TCP transport. The novelty in our design stems
from erasure-resilient encoding of the content, which facilitatq§,]

L. Fan, Q. Jacobson, and P. Cao. Potential and limits of web prefetching between low-
bandwidth clients and proxies. AKCM Sigmetrics, 1999.

Apache Foundation. Apache web server.

URL = http://www.apache.org

J. Hu, S. Mungee, and D. C. Schmidt. Techniques for developing and measuring high-
performance web servers over ATM networks. Rroceedings of IEEE INFOCOM, San
Francisco, CA, March 1998.

Y. Hu, A. Nanda, and Q. Yang. Measurement, analysis and performance improvement of the
Apache web server. IRroceedings of the 18th |IEEE International Performance, Computing

and Communications Conference (IPCCC' 99), Phoenix/Scottsdale, Arizona, February 1999.

J. Jannotti, D. Gifford, K. Johnson, M. F. Kaashoek, and J. O'Toole. Reliable multicasting

maximal sharing of transmitted packet payloads across concurrent with an overlay network. IProceedings of OSDI, San Diego, CA, October 2000.

request threads and keeps per-connection state to a minimum. 24

We have implemented this Cyclone subsystem in the Linux ker-
nel and have validated the correctness of our version of TCP-ERG
implemented in the Linux TCP stack. We have developed server
and client APIs suitable for testing the performance of Cyclor{ze3
transfers. These APIs are integrated into Apache web server [14]
and SURGE, a representative web workload generator [5].

Currently, we are conducting a series of experiments to demdh.
strate the performance advantages of Cyclone over traditiona
server architectures. The initial experiments involve the scenario
of a single relatively large, popular file being requested by multi?’
ple clients. Such tests allow us to debug, profile and optimize ogs
implementation.

In the future, we would like to test our architecture in multi+*®
file scenarios, in the settings of both local and wide-area networls;
We are also exploring various avenues for application of globalr!!%/
useful shared buffers, lightweight network stacks and other co L

ponents of the Cyclone server architecture. 32]

VIIl. A CKNOWLEDGMENTS [33]

Many thanks to Mark Crovella, Paul Barford, and Bob Fran-
gioso for helpful conversations, useful advice and technical sug-
gestions.

REFERENCES
[1]

S. Acharya, M. Franklin, and S. Zdonik. Dissemination based data delivery using broadcast
disks. InlEEE Personal Communications, pages 50-60, December 1995.

K. C. Almeroth, M. H. Ammar, and Z. Fei. Scalable delivery of web pages using cyclic
best-effort (UDP) multicast. |Rroceedings of IEEE INFOCOM, March 1998.

H. Balakrishnan, H. Rahul, and S. Seshan. An integrated congestion management architecture
for Internet hosts. IProceedings of ACM SSIGCOMM ' 99, September 1999.

P. Barford, A. Bestavros, A. Bradley, and M. Crovella. Changes in web client access patterns:
Characteristics and caching implicatioigor|d Wide Web, Special Issue on Characterization

and Performance Evaluation, 2:15-28, 1999.

P. Barford and M. Crovella. Generating representative web workloads for network and server
performance evaluation. IKCM Sigmetrics, 1998.

P. Barford and M. Crovella. Critical path analysis of TCP transaction&Qk SISGCOMM,
Stockholm, Sweden, August 2000.

A. Bestavros. AIDA-based Real-Time Fault-Tolerant Broadcast DiskBrdoeedings of the

16th Real Time System Symposium, June 1996.

A. Bestavros, R. Carter, M. Crovella, C. Cunha, A. Heddaya, and S. Mirdad. Application
level document caching in the internet. IEEE SDNE' 96, June 1996.

J-C. Bolot, S. Lamblot, and A. Simonian. Design of efficient caching schemes for the world
wide web. InITC 15, Washington, DC, June 1997.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distribu-
tions: Evidence and implications. Rroceedings of IEEE INFOCOM, New York, NY, March

1999.

J. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel: Using
tornado codes to speed up downloadsPioceedings of IEEE INFOCOM, New York, March

1999.

J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable
distribution of bulk data. IIRCM SIGCOMM, Vancouver, Canada, 1998.

P. Cao and S. Irani. Cost-aware WWW proxy caching algorithmsPrbteedings of the
USENIX Annual Technical Conference, December 1997.

Y. Chu, S. Rao, and H. Zhang. A case for end system multicasPrdoeedings of ACM
Sgmetrics’ 2000, pages 1-12, Santa Clara, CA, June 2000.

M. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and possi-
ble causes|EEE/ACM Transactions on Networking, 5(6):835-846, December 1997.

[2]
[3]

[4]

[5]
[6]
71
(8]
[9]

[10]

[11]

[12]
[13]
[14]

[15]

S. Jin and A. Bestavros. Greedydual* web caching algorithm: Exploiting the two sources of
temporal locality in web request stream.Rroceedings of the 5th I nter national Web Caching

and Content Delivery Workshop, Lisbon, Portugal, May 2000.

M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-
resilient codes. 1129th STOC, May 1997.

] F. J. Macwilliams and N. SloaneThe Theory of Error-Correcting Codes. North Holland,

Amsterdam, 1977.

E. P. Markatos. Main memory caching of web documentsPrizc. of the 5th World-Wde

Web Conference, May 1996.

E. N. Nahum, Tsipora Barzilai, and Dilip Kandlur. Performance issues in WWW servers. In
ACM Sgmetrics, 1999.

J. Nonnenmacher, E. Biersack, and D. Towsley. Parity-based loss recovery for reliable multi-
cast transmission. IRroceedings of ACM SSGCOMM ' 97, September 1997.

1 V. Padmanabhan and J. Mogul. Using predictive prefetching to improve world wide web

latency. ACM SSGCOMM Computer Communication Review, July 1996.

V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable web server. In
Proceedings of the USENIX Annual Technical Conference, Monterey, CA, June 1999.

V. S. Pai, P. Druschel, and W. Zwaenepoel. 10-Lite: A unified I/O buffering and caching
system. InProceedings of OSDI, 1999.

M. Rabin. Efficient dispersal of information for security, load balancing and fault tolerance.
Journal of the ACM, 38:335-348, 1989.

] L. Rizzo. Effective erasure codes for reliable computer communication protd@arigputer

Communication Review, 2(27):24-36, April 1997.

E. Schooler and J. Gemmell. Using multicast FEC to solve the midnight madness problem.
Technical report, Microsoft Research, September 1997.

H. Zhu, H. Tang, and T. Yang. Demand-driven service differentiation for cluster-based net-
work servers. IrProceedings of IEEE INFOCOM, 2001.

