
1

The Cyclone Server Architecture:
Streamlining Delivery of Popular Content

Stanislav Rost
prgrssor@cs.bu.edu

John Byers
byers@cs.bu.edu

Azer Bestavros
best@cs.bu.edu

Dept. of Computer Science
Boston University

Boston, Massachusetts

Abstract—
We propose a new webserver architecture optimized for delivery of large,

popular files. Delivery of such files currently pose a scalability problem for con-
ventional content providers, which must devote server-side resources in direct
proportion to the high multiprogramming level induced by a set of these con-
nections. While use of scalable multicast may remedy this problem some day,
multicast is rarely supported in today’s wide-area infrastructure.

Our approach alleviates many of the most serious scalability problems by
developing new server-side mechanisms capable of managing a large set of TCP
connections transporting the same content. The strategy we employ relies on
the use of fast forward error correcting (FEC) codes to generate encodings of
popular content, of which only a small sliding window is cached in memory at
any time instant. The concurrent TCP connections then access content only from
this shared window, which is globally useful to all clients. Our method hinges
on eliminating unscalable TCP retransmission buffers, as we can “retransmit”
fresh encoding packets in lieu of the originals with no performance degradation
and with no modifications to client TCP stacks. Ultimately, our Cyclone server
capitalizes on concurrency to maximize sharing of state across different request
threads while minimizing context switching, thrashing under high load and the
cache memory footprint. In this paper, we describe the design and prototype
implementation of our approach as a Linux kernel subsystem.
Keywords: TCP, FEC, webserver, popularity, concurrency, digital fountain, Tornado
codes

I. I NTRODUCTION

Burgeoning demand for content on the world-wide web has led
to radical changes in the manner in which popular content is deliv-
ered over the Internet. Today, through the use of various proactive
replication and redirection schemes, requests for popular content
are often routed to, and served from, dedicated servers. Whether
such replication and redirection schemes are deployed over a LAN,
such as within a local web server cluster, or in the wide-area, such
as across a global Content Distribution Network (CDN), the impli-
cations are similar—namely, a server must be able to respond to
a very large number of requests for a relatively small amount of
disproportionately popular data.

While various technologies and protocols that enable replica-
tion and redirection have been implemented and deployed (reverse
proxies, content surrogates, etc.), the architectures of web servers
have not undergone radical changes to accommodate the delivery
of very popular content. In this paper, we argue for such a radical
departure—namely, in-kernel support for buffer and network stack
management that enables a server to efficiently service a massive
number of concurrent requests for files which are bothlarge and
frequently requested. It is well known that such files exist on many
popular web sites. Studies on Web traffic characterization indicate
that the frequency of web requests follows a Zipf-like distribution,
or in other words, the distribution of total requests for a given file
increases according to a power-law relationship with respect to its

popularity ranking [10], [4]. Similarly, file sizes served by web
servers have also been shown to follow a similar heavy-tailed dis-
tribution [15], [4]. Taken together, when we have files which reside
at the “tails” of both of these distributions, such as in the case of
movies in a video jukebox or zipped files at a software distribution
site, we must address the challenge of serving files which are both
very large and very popular. Moreover, serving the large, popular
files at the tails of these heavy-tailed distributions is often where
scalable content delivery services have the most difficulty [32].

Our solution meets this challenge head-on, by dedicating servers
to be responsible for delivery of the largest, most popular files,
freeing up the other servers in a server farm for smaller, or less
intensely popular files. We expect that our approach would natu-
rally be coupled with traffic engineering solutions that concentrate
requests for large, popular files to our specially optimized servers.

The premise of the server architecture we propose in this paper
is to reduce the storage complexity of serving a massive number of
requests for the same content to almost a constant. To achieve this
requires (1) a near-optimal sharing of memory between concurrent
requests, and (2) a near-stateless network stack. We achieve both
of these goals through the conceptual use of an idealized digital
fountain [12], which encodesn blocks of original content intok �n
encoding blocks fork >> 1; receivingany n distinct encoding
blocks allows the complete, efficient reconstruction of the source
data. For large files, close approximations to an ideal digital foun-
tain can be achieved with fast forward error correcting codes, such
as Tornado codes [22], which we employ. Traditionally, encoded
content has been most widely used in multicast applications, where
transmission of a redundant symbol enables different receivers to
recover from different packet losses. In our setting, encoding the
content realizes a a new benefit, namely while it still enables each
piece of encoded content to be useful to all clients simultaneously,
in so doing, it facilitates the sharing of information and reduces
per-client state at the server.

Compared to traditional architectures, the Cyclone Server Ar-
chitecture (CSA) allows a significant reduction in resource require-
ments for delivery of content in situations in which a group of
clients is concurrently downloading a particular file, without re-
quiring similarity of transfer rates or synchronization of request
arrivals among the clients. In CSA, files are encoded into circu-
lar arrays of Tornado blocks that are stored on disk prior to their
delivery. The benefits result from the ability of CSA to service an
arbitrarily large group of clients interested in the same file using a
single, fixed-length sliding cache buffer. Such a buffer is replen-
ished with data from the circular encoding on disk at the speed of
the fastest client of the group of clients interested in the same con-



2

tent. Connections servicing the group’s slower clients draw data
from the same buffer at their respective speeds and thus may miss
a number of contiguous encoding blocks. However, the slower
clients are able to reconstruct the missed content from redundancy
contained in other blocks that they receive successfully.

An almost stateless network stack is achieved by elimination of
bulky TCP retransmission queues, made possible by high utility
of transmission of any block of the erasure encoding not previ-
ously sent. CSA employs a modified version of TCP retransmis-
sion semantics (no changes to standard client TCP network stacks
are needed) that retransmits the next unsent block of the encod-
ing from the shared sliding cache buffer as opposed to drawing the
data from a retransmission queue.

Finally, the need for in-kernel implementation is driven by the
necessity of precise synchronization of the speed of progression
of the shared buffer to that of the connection to the fastest client
of the group, and desire to capitalize on the benefits of elimina-
tion of the retransmission queues. Although OS kernel support
is required in the server, the decoding functionality of the client
can be implemented in a straightforward manner at the application
level, for instance as a browser plug-in. Based on the above ar-
chitectural features, we have implemented a web server subsystem
(under Linux), named Cyclone, for use by server applications.

The rest of the paper is organized as follows. Section 2 out-
lines related work. In Section 3, we describe the design objectives
for our method of content delivery. In Section 4, we present an
overview of the design of the Cyclone architecture. Section 5 de-
scribes our implementation of the Cyclone subsystem in the Linux
kernel. Section 7 contains analytical models ans results of simula-
tions. And finally, in Sections 7 and 8 we elaborate on future work
and provide acknowledgments.

II. RELATED WORK

Considerable work has focused on optimizing the delivery of
popular content from asingle server. A common theme of this
related work is to address issues of scale by minimizing resource
consumption, often by reducing the marginal cost of serving an
additional concurrent request.
Multicast-based Techniques:One widely researched method for
delivering popular files with a minimal footprint on a single server
leverages network mechanisms such as native multicast. Re-
searchers have built scalable solutions which use non-adaptive,
cyclic transmissions over multicast or broadcast channels to pro-
vide eventual reliability [2], [1], and more sophisticated solutions
which employ forward error correction to achieve scalable relia-
bility without a significant performance penalty [12], [26]. These
solutions scale to large audiences, as the marginal cost of adding
an additional client as perceived by the server is near zero.

The main disadvantage of multicast-based content delivery tech-
niques is their reliance on the existence of an end-to-end multicast-
enabled infrastructure. As a result, these techniques are bet-
ter suited for enterprise network environments, as opposed to
WAN environments. This is clearly evident in the slow deploy-
ment/adoption of such techniques on the Internet, and the emer-
gence of alternative distribution protocols that “emulate” multicast
using unicast-based overlay networks [20], [14].
Unicast-based Techniques:To improve the scalability of Inter-
net servers1 in a unicast environment, recent research efforts have

1In this paper, we use the term Internet servers to refer to web servers, caches, proxies, reverse
proxies, surrogates, etc.

focused on operating system optimizations (e.g. memory subsys-
tem, file system, network stack, etc.) [29], [28], [25], [19], [18].
Generally, these optimizations fall under two categories: (1) opti-
mizations that improve resource allocation decisions, and (2) opti-
mizations that boost resource utilization.

Examples of approaches that aim to improve resource allocation
decisions include the use of better cache management [13], [10],
[9], [8], [24], [21] or the use of prefetching [16], [27]. Exam-
ples of approaches that aim to improve resource utilization include
the elimination of unnecessary memory transfers between the vari-
ous layers in the system (user space, kernel space, network buffers,
etc.) [29] and avoiding overloading through proper admission con-
trol [33].
Scalable Content Delivery Engines:To put our work in context,
we compare it to recent projects that parallelsome aspects of our
two-pronged approach to the construction of popular content de-
livery servers. Recall that our strategy relies on (1) an (almost)
perfect sharing of memory between concurrent requests to a server,
and (2) an (almost) stateless network stack implementation on the
server.

The IO-Lite system [29] is a good example of a recent effort
that aim to achieve the first of the above two goals in the context of
Internet servers [28]. In that work, Pai, Druschel and Zwaenepoel
demonstrate that repeated copying and multiple buffering of data is
a major detriment to system performance. Specifically, their work
exposed the unnecessary overhead of copying file blocks from the
file system in the kernel layer to the application process’ memory
space, and then duplicating the very same data buffers in the net-
work layers, as done in conventional operating systems. In [29],
they propose a unified cache architecture to remedy this problem
in which buffers containing file data are shared across the layers
of the operating system. This work differs from ours in that it
focuses on eliminating redundant data copying among a single ser-
vice thread and various OS subsystems; whereas our approach en-
ables sharingacross threads as well.

The Digital Fountain approach described in the introduction is
an example of a recent effort that aims to achieve the second of the
above two goals in the context of Internet servers. In one instanti-
ation of that approach, Byers, Luby, Mitzenmacher, and Rege pro-
pose the use of fast error correcting codes [22] to alleviate the need
for per-client state information at the source of a reliable multicast
transmission [12]. Another instantiation of this approach uses en-
coded content to facilitate stateless downloads from multiple mir-
ror sites in parallel [11]. Our work also employs this paradigm.
However, while previous work primarily attempts to improve the
utilization of network resources; our approach targets servers in
a unicast environment and aims to improve utilization of a single
server’s resources.

III. D ESIGN OBJECTIVES: AN IDEAL COMPACT CACHE

In the scenario described in the introduction, our objective is
to efficiently satisfy a massive number of concurrent requests to a
small number of popular files. In this scenario, we expect cache
space to be a scarce resource whose usage is at a premium, i.e. it is
infeasible to cache the entire working set. Nevertheless, popular-
ity of content and I/O operations, which are orders of magnitude
slower than operations to the cache, make optimizing cache utiliza-
tion essential to delivering the highest performance. Our objective
is to eliminate cache misses in the constrained service environment
in which a setS of popular files of variable length is fixed in ad-



3

..

.

..

.

..

.

TCP1

RAM RAM

...

...

...

TCP

TCP

2

3

Data Taps Data Pump

To Network PCBs

Switcher

Replenisher

FEC Encoding
DISK

Fig. 1. Delivery of a file in the Cyclone server architecture

vance, but where the cache memory of sizeM is of sufficient size
to store only a fraction ofS. Thus the challenge is to partition the
cache across files and efficiently utilize thecompact cache space
apportioned to fileF in a manner which isglobally useful to all
request threads forF even as the multiprogramming level grows
large. Issues of scale are central to our design, so apportionment
should not necessarily be based on the size or popularity of a file.
Expressed in another way, the challenge is to design a scalable
system in which the marginal cost of serving an additional client
requesting a file from the setS is as close to zero as possible.

From the perspective of managing cache resources in the con-
text of delivering a particular large file, an ideal solution would
therefore:
� Consume a fixed amount of cache memory regardless of the
number of clients interested in the file.
� Allow the amount of cache memory to be considerably smaller
than the size of the entire file.
� Provide performance benefits comparable to that which can be
achieved by conventionally caching the entire file.
� Admit clients which arrive asynchronously.
� Accommodate heterogeneous client transfer rates without a per-
formance penalty.

To recap, the properties of the ideal solution can be achieved
by a delivery method utilizing a sliding buffer that is globally use-
ful. Global usefulness of the buffer implies that its contents al-
ways contribute to the transfer progress of all clients downloading
the file whose data is in the buffer. We describe our technique for
achieving global usefulness and other components of our design in
the subsequent section.

IV. D ESIGN OVERVIEW

A. Compact Caching via Fast Erasure Codes

Our strategy for achieving global usefulness of the sliding buffer
employs a powerful procedure originally described by Rabin [30].
His Information Dispersal Algorithm (IDA), disperses a fileF of
length` inton piecesFi, 1 � i � n, each of length̀=m such that
the original fileF can be reconstructed fromany m pieces, where
n > m. This technique, which can be realized in practice with
forward error correcting codes, has been widely used to enable a
dispersed encoding of a file to be transmitted over a lossy channel
to one or many receivers. For this application, even if up ton �
m pieces of the encoding are lost in transit to a given receiver,

that receiver may recover from the remaining pieces which arrive
intact.

In our application, use of a dispersed encoding gives our server
considerable freedom, and enables it to maintain cache contents
which are globally useful with very high probability, as we shall
now describe. First, for a given fileF , the server choosesm so
that `=m is equivalent in size to maximum packet payload and
generates an information dispersed encoding of the file of length
n = cm, where we refer toc as thestretch factor of the encoding,
as in [12]. Note that this encoding procedure need only be done
once for each file as its output, the encoded content, could be stored
on disk for future use. Also note that, since dispersed encoding
contains redundancy, strict ordering of its blocks is unnecessary
and the encoding can be consideredcircular.

Secondly, the server allocates asliding cache buffer able to hold
a fixed quantity (k) of contiguous pieces of the encoding and fills it
with initial k blocks of encoding ofF from disk. All connections
transferringF draw data from that cache buffer. In the steady state,
the server continually furnishes the nextk blocks of the encoding
from disk into the cache buffer whenever the fastest connection
deliveringF exhausts all of the blocks in the buffer. When the
server reaches the end of the file storing the dispersed encoding of
F , it may wrap around to draw data from the beginning of the file,
thus rotating the cache buffer in the circular encoding.

Using this procedure with high concurrency levels, a typical
client would arrive asynchronously, access pieces of encoded con-
tent from the cache as the sliding window rotates, and ideally re-
ceive sufficiently many pieces of the encoding to recover the file
before a full rotation through the encoding completes. Note that
the replenishment of pieces of the encoding will occur far faster
than their retrieval by the slower clients, thus slow clients will typ-
ically “miss” many pieces of the encoding, tolerance to which is
one of the key points of our design. Another important design con-
sideration is the use of a sufficiently large stretch factor to ensure
that most clients do not experience a full rotation, which can induce
redundant transmissions and commensurate performance degrada-
tion. Details of the fast error correcting codes we use for encoding
are discussed in the implementation section.

B. The Cyclone Subsystem

We now provide an overview of the design decisions we have
made in building our Cyclone content delivery architecture which
achieves the design objectives specified in the previous section. A



4

high-level depiction of the mechanisms this architecture uses to
deliver a single source file is provided in Figure 1.

The functionality of the Cyclone server architecture is made
available to server applications by the Cyclone subsystem. The
subsystem houses centralized collections of state uniquely perti-
nent to delivery of a particular file, thedata pumps. Data pumps are
responsible for maintenance of the file-specific cache buffer. Con-
ceptually, a data pump ensures that fresh content from the FEC en-
coding is serviced to outbound transport connections, or data taps.
As depicted in Figure 1, the data pump employs a sliding window
strategy to ensure that fresh content is replenished into the cache.
To avoid costs of memory locking while replenishment is occur-
ring, we divide the cache buffer used by a data pump into twohalf-
spaces. Each half-space contains pieces of the encoding which are
atomically furnished to the data taps (for simplicity, recall that we
set the encoding granularity equal to the size of a packet payload).
The active half-space is the source of encoding packets to be sent
out to the clients. The loading half-space (shaded in Figure 1) is in-
accessible to service threads and can only be accessed by the data
pump’sreplenisher thread, whose task is to load encoding packets
from disk while packets are being concurrently furnished from the
active half-space.

Collections of state which allow connections to interface with
the data pump are referred to asdata taps. A data tap tracks how
much of the active half-space content has been transmitted by its
parent connection. Service threads, each progressing at the speed
driven by the congestion-controlled connection to the client, con-
sult the data taps to determine which encoding blocks to read next
and update them to reflect the progress. As soon as any thread
exhausts all of the blocks in the active half-space, it requests that
the half-spaces be switched. When the switch occurs, the load-
ing and active half-spaces reverse roles, the data pump directs the
replenisher thread to fill the new loading half-space, all data taps
attached to the pump reset to the first block, and the service threads
proceed to seamlessly serve encoding blocks from the new active
half-space.

One integrity constraint is imposed on the system to preserve
logical separation of the half-spaces. The half-space switch will
not be performed until the replenisher thread has finished loading
all of the encoding blocks into the non-active half-space. In prac-
tice, this constraint does not impose a significant performance cost
since there are typically orders-of-magnitude difference between
the time required to replenish a half-space and the time needed by
a client to exhaust a half-space.

C. Interfacing with Reliable Transport Protocols

Of central importance to the design of the Cyclone server is the
choice of, and interface to, the transport protocol we use to deliver
the content. TCP is the most natural choice, as it is a standard for
reliable unicast transfers and it is desirable to employ its conges-
tion control functionality. However, it is highly undesirable to use
TCP’s stateful retransmission semantics, first because explicit re-
transmission of data is unnecessary with the encoding framework
we use, but more significantly, because retransmission of packets
requires undesirable retention of state in the form of a retransmis-
sion buffer, which must necessarily be of size proportional to the
bandwidth-delay product of the TCP connection.

We propose two methods for circumventing this problem. The
conceptually simpler version relies on UDP coupled with TCP-
friendly congestion-control mechanisms, as could be provided by

the Congestion Manager (CM) architecture [3]. In this scenario,
packet retransmissions would be unnecessary for providing relia-
bility, as receipt of a sufficient number of packets from the cyclic
encoding would ensure eventual reliability. However, in the con-
temporary Internet, use of UDP is undesirable, both because many
firewalls are configured to block UDP traffic and because many
UDP transfers are not congestion controlled and are therefore dis-
criminated against.

Therefore, we rely on a second transport-level approach, in
which we make a server-side modification to the TCP packet re-
transmission algorithms which does not alter TCP timing seman-
tics, but does alter thecontent of TCP retransmissions. In practice,
we issue retransmissions which contain a different piece of the
encoding than the original transmission. We emphasize that this
alteration of TCP, which we call TCP-ERC, or TCP for erasure-
resilient content, requires no client modifications, as TCP clients
never examine discrepancies between content of an original trans-
mission and a retransmission. Moreover, since our changes do not
impact the timing semantics nor the critical path [6] of a TCP trans-
fer, there is no negative performance impact.

Delving into the details of TCP-ERC, all of the flow control
and congestion control mechanisms of TCP are retained in full.
Conceptually, TCP-ERC differs from regular TCP in only one re-
spect. In a situation in which TCP would retransmit a packet due
to loss, TCP-ERC proceeds to transmit a fresh encoding packet (in
the Cyclone server, that means simply transmitting the next Tor-
nado block from the active half-space). On the packet level, the
sequence number of the retransmitted packet is the same as that of
the original lost packet, but a different portion of the encoding is
inserted as the retransmitted packet’s payload. This approach has
the primary advantage that cumbersome (and superfluous) retrans-
mission buffers do not have to be maintained in memory, substan-
tially streamlining the management of TCP connections. At the
client side, a client could conceivably observe the fact that TCP-
ERC is being used at the sender, i.e. when it receives an original
transmission and a retransmission with identical sequence num-
bers which contain different payloads. However, the TCP specifi-
cation indicates that duplicate packets (i.e. packets with identical
sequence numbers to packets which have already arrived) should
be dropped. Thus clients can retain and use their existing TCP
stack implementations to receive TCP-ERC transmissions.

D. Client Support for FEC-encoded Content

Transmission of encoded content implies that clients must have
the capability to reconstruct the file from the encoded transmis-
sion. A client may advertise such a capability in the header of
its HTTP request. The ability to reconstruct files from FEC en-
codings is entrusted to a library of subroutines positioned between
the application and the communications protocol. The reconstruc-
tion procedure takes over the processing of incoming blocks of the
encoding for the application, and supplies the application with a
fully reconstructed file. A potential cost of this procedure is that
this layer must be able to buffer the entire file prior to decoding.
It is also the responsibility of the client to notify the server that
it has received enough data to reconstruct the file by closing the
connection or transmitting a stop message. The functionality of
the reconstruction library can be made available to existing web
browsers as a plug-in for processing of a MIME data type desig-
nating erasure-resilient encoding.



5

E. Design Summary

At the core of the Cyclone server architecture are files stored as
erasure-resilient encodings. The advantage given by such an en-
coding is the ability to serve pre-encoded file blocks in any order,
yet still contribute to the transfer progress of each of its clients with
high probability. It is then possible to advance the sliding cache
buffer at the speed of thefastest client in the group of clients inter-
ested in the same file, without waiting for slower clients. Slower
clients who receive encoding blocks out of sequence due to an
advancing sliding buffer can nevertheless reconstruct the file ef-
ficiently. In the event that a client witnesses the sliding buffer tra-
verse the entire encoding, it is likely that this client will receive
some redundant transmissions before recovering the file. However,
large stretch factors can mitigate the effects caused by this contin-
gency at the expense of increased secondary storage requirements
at the server and increased decoding times (for detailed treatment,
please see the Section VI-C).

The description of the design is now complete. The architecture
discussed above achieves both maximization of sharing and cache
compactness. However, more details are necessary to provide a full
understanding of the Cyclone server architecture implementation.

V. I MPLEMENTATION OVERVIEW

This section of the paper presents the overview of a prototype
implementation of the Cyclone server architecture as an in-kernel
subsystem.

A. Codes

While the general IDA approach proposed by Rabin is very pow-
erful, a substantial practical limitation is imposed by the compu-
tational complexity of encoding and decoding operations. Most
authors applying IDA approaches to networking applications have
used variants of Reed-Solomon codes (as described in [23]) as their
forward error correcting primitive [7], [31], [26]. These codes rely
on cumbersome finite field operations and have O(n2) encoding
and decoding times (wheren is the number of source blocks).
Thus, while IDA with Reed-Solomon codes works well for re-
constructing a file stored asn pieces distributed overn remote
sites whenn is 14 andm (the number of pieces needed to recover
the file) is 10, its decoding inefficiency is prohibitive when trans-
mitting a file spanning 5000 packets encoded with a stretch factor
of 10. A partial remedy to this problem, which improves decod-
ing time, is to divide a large file into blocks and to apply Reed-
Solomon forward error correction over those smaller blocks [26].
In order to reconstruct the file, this approach necessitates recov-
ery of a set of encoded pieces which together enable the decoding
of all blocks. While this approach improves decoding, it limits
scalability, as the reconstructor typically must wait a considerable
amount of time before receiving the last codeword needed to re-
construct the final incomplete block, especially as the number of
blocks grows large, as detailed in [12].

A newly available alternative to Reed-Solomon codes are sparse
codes such as Tornado codes [22], which are closely related to low-
density parity-check codes. By relaxing the decoding guarantee,
i.e. by requiring slightly more thann encoding packets to recover
an original file ofn packets, and by using randomized encoding
and decoding algorithms with fast XOR operations, these codes
achieve linear encoding and decoding times. In practice, Tornado
codes require reception of(1 + �)n distinct encoding packets to
reconstruct the source data, where� is on the order of0:05 for

files of tens of megabytes or more. We employ these codes for
our application, specifically, the family of Tornado Z codes, de-
scribed in [12], which have an average overhead of roughly 5%,
low overhead variance, and decoding times of at most a few sec-
onds for files of tens of MB. A crucial parameter in selecting an
appropriate Tornado code is thestretch factor, or the ratio between
the length of the encoding and the length of the file. Employing
a large stretch factor is highly desirable as it enables us to ideally
accomodate a wider range of heterogeneous client transfer rates,
as we describe momentarily. On the other hand, for our applica-
tion, increasing the stretch factor causes a commensurate (linear)
increase in (a) the disk space needed to store the encoding at the
server, (b) the space needed to reconstruct the file at the client, and
(c) the decoding time at the client. Unlike blocked Reed-Solomon
codes, Tornado codes admit large stretch factors with only a linear
degradation in encoding and decoding times and no degradation in
overhead, measured as useless packets.

As an example of the tradeoffs, if clients are downloading a
10MB file at rates varying from 50Kbps to 1Mbps, the refresh rate
of the cache will occur at a rate fast enough to accomodate the
fastest client, while a slow client will transfer only about1

20
of the

packets in a given cache block. In this scenario, a stretch factor
of 20 would be needed to ensure that a slow client did not observe
a full rotation of the encoding. If a full rotation does occur, this
causes performance degradation, as it implies that clients may re-
ceive duplicate transmissions. However, the incidence of duplicate
transmission will remain low – even with a stretch factor of 10, and
assuming pure random transmission of encoding packets (with re-
placement), the incidence of duplicate packets will remain below
6% using Tornado Z codes. In practice, a stretch factor of 10 is the
parameter setting we employ. For further discussion on duplicate
transmissions, refer to Section VI-C.

B. Overview: Delegation of Processing

The Cyclone server subsystem performs the majority of the pro-
cessing associated with content delivery. The task of the server
application is reduced to processing a client’s request and then in-
voking the Cyclone subsystem to deliver the requested content via
the existing connection to the client. In the course of content de-
livery by the Cyclone subsystem, a replenisher thread loads data
into the data pump corresponding to the file, and the in-kernel net-
work layer event-driven routines transmit the content and invoke
the switching of half-spaces. The process of satisfying a request
for content using the Cyclone architecture is depicted in Figure 2,
which we describe now.

The functionality of the Cyclone subsystem is provided to server
applications through a system call. After transmitting a response
header to the client (Figure 2(a)), the server application invokes
the Cyclone system call (Figure 2(b)), passing the descriptor to
the open socket as well as the name of the file to be delivered as
parameters. The system call resolves the file name to the corre-
sponding data pump (creating one if it does not exist yet), create
a data tap, integrate it into the socket state, and connect it to the
data pump. Once the system call returns, the thread of the server
application that invoked it may entirely disregard the remainder of
the delivery process and process the next request. Furthermore, it
is recommended that the server application should close its socket
to conserve per-process resources.

The Cyclone subsystem begins the delivery of encoded content
after the system call returns control to the application and the re-



6

Application
Server

TCP Connection

Filesystem

Cyclone API Cyclone Subsystem

read() request
write() response header

Network

stat() the file

Application
Server

TCP Connection

Filesystem

Cyclone API Cyclone Subsystem

Network

closeCycloneSocket()

deliverCycloneFile() Application
Server

TCP Connection

Filesystem

Cyclone API Cyclone Subsystem

Network

tcp_retransmit_timer()

. . .

TCP routines:

tcp_fast_retrans()
data_snd_check() /* on ack */

(a) (b) (c)

Fig. 2. Satisfying a request for content using Cyclone/Linux

sponse header has been successfully transmitted. The event-driven
kernel routines (Figure 2(c)) responsible for the transmission of
data in conventional delivery schemes also handle the special-case
processing for Cyclone connections, discerning them from regular
connections by presence of data taps. Such special-case process-
ing involves procuring data from the pump as opposed to network
buffers whenever the kernel routines can transmit or must retrans-
mit.

C. Data Pump Management

As described in the Section IV-B, data pumps contain central-
ized cache buffers, for simultaneous access by multiple threads of
service. They must then exist outside of the scope and lifetime
of any particular service thread. Additionally, data in half-spaces
will be accessed by time-critical kernel routines, and thus must be
situated in memory which will not be swapped out to disk. These
constraints compelled us to allocate data pumps as well as the hash
table for resolving data pumps from file names within kernel-space
memory.

Destruction of a data pump is invoked by the server application,
and may either be immediate or delayed. In either case, the actual
destruction only happens after all of the data taps detach from the
pump, but in the case of delayed destruction the existing clients
tapped into the data pump are first allowed to finish receiving the
file. Note that the costs of creating and destroying data pumps are
significant and often it is more beneficial to allow a data pump to
idle than to destroy it.

The role of a replenisher thread is to furnish data to a data
pump’s loading half-space. In our implementation, one replen-
isher thread is created for every data pump, however, it is possible
to improve upon that scheme. Once a replenisher thread fills the
loading half-space, it will block until connections exhaust the ac-
tive half-space and switch the half-spaces to resume loading the
data. In practice, due to the difference between the throughput of
secondary storage and that of network, the replenisher will often
wait for ample periods of time. Instead of blocking, a single thread
may be able to assume the role of multiple replenishers for a num-
ber of data pumps.

VI. A NALYTICAL MODELS

The primary benefits of our design result from unified cache and
network stack management. Centralized, globally useful cache
buffers prevent the amount of cache memory consumed by concur-
rent service threads from growing with the number of threads. Ad-
ditionally, using such buffers reduces the cost of operations such
as data copying and disk I/O which would otherwise be performed
by each service thread individually. Aggregation of the network
stack with the globally useful cache alleviates the need for bulky
send buffers and retransmission queues.

To analyze the resource savings of the Cyclone architecture over
a conventional architecture, we will apply the following model. We
assume that at an instant in time, a server (either conventional or
Cyclone) is servingn asynchronous connections,C1:::Cn, which
concurrently deliver a fileF of length l bytes to their respective
clients. Each connection transmits data at a heterogeneous rate
Ri, over a path whose one-way latency isLi.

A. Cache Buffer Scalability

A conventional server architecture delivers a fileF by repeat-
edly loading a block of sizeB into a buffer and transmitting
its contents.2 Subdivision of a file into blocks of sizeB yields
NB = l

B
blocks.

At any instant of time, a connectionCi demands data from one
of those blocks, and since connections are asynchronous and in-
dependent, we model the mapping of requests to blocks as being
mapped independently and uniformly at random. In the event that
multiple connections access a common block, we assume that a
single instance of the block can be stored in memory and can be
shared, as in case of memory-mapped disk access.

Then, for a file ofNB blocks and a multiprogramming level
n, total memory consumption in this model is the following oc-
cupancy problem: How many blocks are covered by the set of
n requests? The probability of a blocknot being covered is�
1� 1

NB

�n
. Therefore the expected number of blocks whichare

covered isNB

�
1�

�
1� 1

NB

�n�
. Whenn is small relative to

NB , the expected fraction of blocks covered is closely approxi-
mated by n

NB
, or, coverage grows linearly with the multiprogram-

2Such an assumption is valid regardless of whether the conventional server relies onwrite() or
mmap() system calls for file access.



7

ming level. As the multiprogramming level becomes large relative
to the number of blocks, the limiting behavior is that the entire
file is covered. On many modern operating systems, server archi-
tectures which do not take advantage of memory mapping cannot
share file blocks beyond the boundaries of the file system cache. In
such cases, the memory requirements are more simply expressed
by n � B. On the other hand, in the Cyclone server architecture,
total memory consumption is only2 �H, whereH is the size of a
half-space, independent of the number of clientsn.

We next analyze the rate of I/O traffic in the two systems. Be-
cause of the regulation of TCP send queue sizes by the operating
system, a service thread servicing a connectionCi will access the
file at a rate ultimately determined byRi. Thus, in a conventional
system, the total rate of disk access forn service threads can be
modeled by

P
i

Ri

B
. Then, assuming transmission ratesRi are

independent and identically distributed from some distributionD,
where� = E [Ri], the average rate of disk access in the conven-
tional server can be represented as

n � �

B
:

In contrast, the Cyclone server’s disk access to a file is driven by
the rate of transmission of thefastest connection servicingF . The
rate of disk access in the Cyclone server architecture can then be
expressed as

maxiRi

H
:

B. Network Stack Scalability

While our arguments apply to any transmission protocol that
buffers content in the server, we also discuss the issues of network
stack scalability within the framework of TCP.

The scalability of a server’s TCP layer is limited by potentially
large quantities of data temporarily residing in send buffers and re-
transmission queues of TCP stacks of concurrent connections. A
TCP buffer can conceptually be subdivided into a send queue and
retransmission queue. Content supplied by the application, but not
yet transmitted onto the network, resides in the send queue. Con-
tent already transmitted, but not yet acknowledged, resides in the
retransmission queue. The difference between the application’s fill
rate and the network connection’s transmission rate dictates the
size and behavior of the send queue. Many operating systems im-
pose a limit on the send queue size and decelerate the fill rates
of applications which exceed such a limit. TCP’s sliding window
algorithm and retransmission policy limits the size of the retrans-
mission queue of a connectionCi to be at most2 � Ri � Li, with
the steady-state limit on the lower bound of the queue size being
Ri � Li.

Typical memory demands imposed on a server by a TCP stack
can be illustrated with a back-of-the-envelope example. In our
tests, we observed typical send queue sizes of a few dozens of
kilobytes, with the default Linux limit of 64 KBytes. An optimistic
estimate of cross-country round trip time (70 ms), combined with
a bandwidth of 30 Mbps yields retransmission queue sizes in the
range between 270 and 540 KBytes per connection. In a scenario
of 200 such connections concurrently downloading large files, the
TCP stack’s total memory demands on the server will range be-
tween 52 and 105 MBytes. Slower connections also consume con-
siderable amounts of TCP buffer memory as such connections typ-
ically feature high latencies and greater loss rates.

A TCP-ERC stack coupled with the Cyclone server does not
feature a send buffer, but instead draws data from the shared cache
buffer. Unlike in the case of TCP retransmission queues, the im-
pact of connection properties on memory requirements of a TCP-
ERC stack is negligible. Connection-influenced memory con-
sumption in a TCP-ERC stack occurs primarily due to the need to
store per-packet timestamps and selective acknowledgment flags
in a lightweight retransmission queue, to ensure proper function-
ing of TCP. Under Linux, TCP-ERC’s lightweight retransmission
buffers require 16 bytes per packet as opposed to regular TCP’s re-
quirements of� 1600 per socket buffer. By removing timestamps
from the TCP-ERC stack and performing timeouts using a con-
stant amount of state, it may be possible to eliminate the need for
per-packet state, providing even better memory scalability.

C. Duplicate Transmissions

One of the factors affecting the performance of the Cyclone
server architecture is the potential transmission of duplicate en-
coding packets. The cyclical manner in which the replenisher re-
trieves encoding from disk provides for the possibility of slower
connections transmitting such packets. Connections may transmit
redundant encoding blocks after persisting for more than one rota-
tion of the sliding buffer over the entire length of the encoding.

The performance issues associated with the finite length of the
encoding can be mitigated by selecting a large enough value of
the stretch factor prior to encoding the content. The choice of the
stretch factor’s value is crucial for eliminating redundant transmis-
sions, but also impacts storage costs and decoding time.

It is straightforward to calculate the conditions under which a
client can reconstruct the source content before a full rotation com-
pletes, namely if it has a hit rate of at least1+�

c
(where1+ � is the

reception inefficiency of the Tornado code, andc is the stretch fac-
tor) in the first rotation. In the Cyclone server, situations occur in
which slower clients miss blocks due to a faster connection’s faster
advancement of the shared sliding buffer. In the course of deliv-
ery of the content in a given half-space, the slower connectionCi

will only be able to transmit an Ri

maxj Rj
fraction of the half-space

content before the fastest connection will switch the half-space. In
fact, on average,Ci will miss a 1 � Ri

maxj Rj
fraction of the en-

tire encoding during every revolution of the sliding buffer. Thus it
is possible to guarantee thatCi will transmit a sufficient fraction
of the encoding to reconstruct the source file before the rotation
completes if the following condition holds:

Ri

maxj Rj

>
1 + �

c
:

The stretch factors needed to realize this guarantee for a wide
range of transmission rates are impractically large. In practice,
considerably smaller stretch factors can be employed in combina-
tion with scalable heuristics aimed to reduce redundant transmis-
sions. One such heuristic ensures that slow clients do not always
deterministically send from the front of half-spaces, but rather
choose the

r =
Ri

maxj Rj

�Nh

blocks that they send during every “round” of transmission (with
such rounds beginning and ending in a half-space switch) at ran-
dom. Alternatively, clients might choose a random initial offset
from within each half-space. Other, more complicated heuristics



8

may provide better protection against repeated transmissions of
identical blocks at the expense of additional memory.

VII. C ONCLUSIONS ANDFUTURE WORK

We have described an architecture for a scalable content delivery
engine dedicated to transmission of large, popular files to a broad
audience using TCP transport. The novelty in our design stems
from erasure-resilient encoding of the content, which facilitates
maximal sharing of transmitted packet payloads across concurrent
request threads and keeps per-connection state to a minimum.

We have implemented this Cyclone subsystem in the Linux ker-
nel and have validated the correctness of our version of TCP-ERC
implemented in the Linux TCP stack. We have developed server
and client APIs suitable for testing the performance of Cyclone
transfers. These APIs are integrated into Apache web server [17]
and SURGE, a representative web workload generator [5].

Currently, we are conducting a series of experiments to demon-
strate the performance advantages of Cyclone over traditional
server architectures. The initial experiments involve the scenario
of a single relatively large, popular file being requested by multi-
ple clients. Such tests allow us to debug, profile and optimize our
implementation.

In the future, we would like to test our architecture in multi-
file scenarios, in the settings of both local and wide-area networks.
We are also exploring various avenues for application of globally
useful shared buffers, lightweight network stacks and other com-
ponents of the Cyclone server architecture.

VIII. A CKNOWLEDGMENTS

Many thanks to Mark Crovella, Paul Barford, and Bob Fran-
gioso for helpful conversations, useful advice and technical sug-
gestions.

REFERENCES

[1] S. Acharya, M. Franklin, and S. Zdonik. Dissemination based data delivery using broadcast
disks. InIEEE Personal Communications, pages 50–60, December 1995.

[2] K. C. Almeroth, M. H. Ammar, and Z. Fei. Scalable delivery of web pages using cyclic
best-effort (UDP) multicast. InProceedings of IEEE INFOCOM, March 1998.

[3] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated congestion management architecture
for Internet hosts. InProceedings of ACM SIGCOMM ’99, September 1999.

[4] P. Barford, A. Bestavros, A. Bradley, and M. Crovella. Changes in web client access patterns:
Characteristics and caching implications.World Wide Web, Special Issue on Characterization
and Performance Evaluation, 2:15–28, 1999.

[5] P. Barford and M. Crovella. Generating representative web workloads for network and server
performance evaluation. InACM Sigmetrics, 1998.

[6] P. Barford and M. Crovella. Critical path analysis of TCP transactions. InACM SIGCOMM,
Stockholm, Sweden, August 2000.

[7] A. Bestavros. AIDA-based Real-Time Fault-Tolerant Broadcast Disks. InProceedings of the
16th Real Time System Symposium, June 1996.

[8] A. Bestavros, R. Carter, M. Crovella, C. Cunha, A. Heddaya, and S. Mirdad. Application
level document caching in the internet. InIEEE SDNE’96, June 1996.

[9] J-C. Bolot, S. Lamblot, and A. Simonian. Design of efficient caching schemes for the world
wide web. InITC 15, Washington, DC, June 1997.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distribu-
tions: Evidence and implications. InProceedings of IEEE INFOCOM, New York, NY, March
1999.

[11] J. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel: Using
tornado codes to speed up downloads. InProceedings of IEEE INFOCOM, New York, March
1999.

[12] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable
distribution of bulk data. InACM SIGCOMM, Vancouver, Canada, 1998.

[13] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. InProceedings of the
USENIX Annual Technical Conference, December 1997.

[14] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. InProceedings of ACM
Sigmetrics ’2000, pages 1–12, Santa Clara, CA, June 2000.

[15] M. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and possi-
ble causes.IEEE/ACM Transactions on Networking, 5(6):835–846, December 1997.

[16] L. Fan, Q. Jacobson, and P. Cao. Potential and limits of web prefetching between low-
bandwidth clients and proxies. InACM Sigmetrics, 1999.

[17] Apache Foundation. Apache web server.
URL = http://www.apache.org.

[18] J. Hu, S. Mungee, and D. C. Schmidt. Techniques for developing and measuring high-
performance web servers over ATM networks. InProceedings of IEEE INFOCOM, San
Francisco, CA, March 1998.

[19] Y. Hu, A. Nanda, and Q. Yang. Measurement, analysis and performance improvement of the
Apache web server. InProceedings of the 18th IEEE International Performance, Computing
and Communications Conference (IPCCC’99), Phoenix/Scottsdale, Arizona, February 1999.

[20] J. Jannotti, D. Gifford, K. Johnson, M. F. Kaashoek, and J. O’Toole. Reliable multicasting
with an overlay network. InProceedings of OSDI, San Diego, CA, October 2000.

[21] S. Jin and A. Bestavros. Greedydual* web caching algorithm: Exploiting the two sources of
temporal locality in web request stream. InProceedings of the 5th International Web Caching
and Content Delivery Workshop, Lisbon, Portugal, May 2000.

[22] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-
resilient codes. In29th STOC, May 1997.

[23] F. J. Macwilliams and N. Sloane.The Theory of Error-Correcting Codes. North Holland,
Amsterdam, 1977.

[24] E. P. Markatos. Main memory caching of web documents. InProc. of the 5th World-Wide
Web Conference, May 1996.

[25] E. N. Nahum, Tsipora Barzilai, and Dilip Kandlur. Performance issues in WWW servers. In
ACM Sigmetrics, 1999.

[26] J. Nonnenmacher, E. Biersack, and D. Towsley. Parity-based loss recovery for reliable multi-
cast transmission. InProceedings of ACM SIGCOMM ’97, September 1997.

[27] V. Padmanabhan and J. Mogul. Using predictive prefetching to improve world wide web
latency.ACM SIGCOMM Computer Communication Review, July 1996.

[28] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable web server. In
Proceedings of the USENIX Annual Technical Conference, Monterey, CA, June 1999.

[29] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A unified I/O buffering and caching
system. InProceedings of OSDI, 1999.

[30] M. Rabin. Efficient dispersal of information for security, load balancing and fault tolerance.
Journal of the ACM, 38:335–348, 1989.

[31] L. Rizzo. Effective erasure codes for reliable computer communication protocols.Computer
Communication Review, 2(27):24–36, April 1997.

[32] E. Schooler and J. Gemmell. Using multicast FEC to solve the midnight madness problem.
Technical report, Microsoft Research, September 1997.

[33] H. Zhu, H. Tang, and T. Yang. Demand-driven service differentiation for cluster-based net-
work servers. InProceedings of IEEE INFOCOM, 2001.


