
Safe Composition of Web Communication Protocols
for Extensible Edge Services �

Adam D. Bradley Azer Bestavros Assaf J. Kfoury

Computer Science Department
Boston University
Boston, MA 02215

fartdodge,best,kfouryg@cs.bu.edu

Abstract
As new and complex multi-party edge services are de-
ployed on the Internet, application-layer protocols with
complex communication models and event dependencies
are increasingly being specified and adopted. To ensure
that such protocols (and compositions thereof with exist-
ing protocols) do not result in undesirable behaviors (e.g.,
deadlocks), a methodology is desirable for the automated
checking of the “safety” of these protocols. In this pa-
per, we present ingredients of such a methodology. Specif-
ically, we show how SPIN, a tool from the formal sys-
tems verification community, can be used to quickly iden-
tify problematic behaviors of application-layer protocols
with non-trivial communication models—such as HTTP
with the addition of the “100 Continue” mechanism. As
a case study, we examine several versions of the specifica-
tion for the Continue mechanism; our experiments mechan-
ically uncover multi-version interoperability problems, in-
cluding some which motivated revisions of HTTP/1.1 and
some which persist even in the current version of the proto-
col. We develop relations for describing arbitrarily large
compositions of HTTP proxies using finite models, and
also discuss the broader applicability of these techniques
to open internet protocol development.

Keywords: Formal verification, HTTP, Interoperability,
Model checking, Protocol composition.

1 Introduction

Stateful multi-party protocols can be notoriously difficult to
get right, and their design and implementation is a process
demanding careful thought. The evolution of the HTTP
protocol is a case in point. While the original formulations
of the HTTP protocol were truly stateless and thus rela-
tively easy to implement, the addition of the multi-stage

�This research was supported in part by NSF (awards ANI-9986397,
ANI-0095988, CCR-9988529, and ITR-0113193) and U.S. Department
of Education (GAANN Fellowship)

100 Continue mechanism to HTTP/1.1 [14] implic-
itly introduced several “states” to the behavior of clients,
servers, and intermediaries. Not surprisingly, an ambigu-
ity was discovered in the handling of these states with re-
spect to intermediaries which could, under some “correct”
interpretations, lead to a deadlock state among conforming
implementations of HTTP/1.1 (RFC2068) and HTTP/1.0
(RFC1945) [17].

For years, analogous problems have been commonplace
in the design of lower-level distributed protocols; master-
ing all the nuances of handshaking, rendezvous, mutual
exclusion, leader election, and flow control in such a way
as to guarantee correct, deadlock-free, work-accomplishing
behavior requires very careful thought, and hardening the
specifications and implementations of these protocols to
deal with misbehaving or potentially hostile peers remains
a difficult problem for engineers at all layers of the stack.
These problems arise in such settings even without the
complex multi-version interoperability goals placed upon
HTTP/1.1 and its revisions; while this may be comfort-
ing to those who have incorrectly designed or implemented
protocols in the past, it is discouraging to those of us who
would like to see HTTP reach a fully-correct “stable” state.

The formal methods and protocol verification commu-
nities have been mindful of these problems for some time,
and have developed quite usable tools which allow us to ex-
amine and address these problems in a rigorous, unambigu-
ous way [8]. The PROMELA language and the accompany-
ing SPIN verifier [9], for example, have proven particularly
well-suited to describing and analyzing non-deterministic
sets of acceptable behaviors for responsive (event-driven)
systems and protocols; such a view of the world is easily
applied to multi-state application layer protocols to facili-
tate analysis of their behaviors and assessment of their cor-
rectness in interacting both with friendly and malevolent
peers.

In this paper, we bring some of these tools and processes
to bear upon the 100 Continue feature of the HTTP
protocol. In so doing, we identified instances of failure
modes under client-proxy-server operating arrangements–
some well-known [17] and some apparently not. We

have also proceeded to deduce relations among the set of
such arrangements which identify equivalence classes of
deadlock-prone or non-deadlock-prone situations, and de-
duce two patterns of agents whose presence indicates a
deadlock-prone arrangement of HTTP agents. All of these
properties form important components of our long-term re-
search agenda, which deals with programming compos-
able distributed applications which may use protocols like
HTTP as part of their infrastructure.

Internet Flows as First-Class Values: Programming
new services in the Internet currently suffers from the
same lack of organizing principles as did programming of
stand-alone computers some thirty years ago. The Web
community’s experiences in relationship to the evolution
of HTTP–as well as findings we present in this paper–
underscore this state of affairs. Primeval programming lan-
guages were expressive but unwieldy; programming lan-
guage technology improved through better understanding
of useful abstraction mechanisms for controlling computa-
tional processes. We would like to see the same kinds of
improvements find their way into the programming of dis-
tributed Internet services. In so doing, we believe that one
property of this improvement is the promotion of network
flows to first-class values, that is, objects which can be cre-
ated, named, shared, assigned, and operated upon. This
requires new paradigms for those programming or creating
new services; it also demands more rigorous abstraction of
the services and infrastructures which will support those
distributed programs. We are currently working toward de-
veloping these and other mechanisms and integrating them
into a network programming workbench environment we
call NETBENCH.

The world we envision NETBENCH operating in is one
with vast multitudes of widely varied network applications
and services, each with unique needs in terms of resources,
input and output formats, reachability, and other commu-
nication parameters. The problem of actually composing
these services in a manner that preserves all of the impor-
tant properties is profoundly difficult: How do we ensure
that the properties of each layer of encapsulation preserve
the requirements of the encapsulated flows? How do we en-
sure that gateways can properly convolve wildly different
communication models represented by each of their pro-
tocols? How do we ensure that certain meta-data proper-
ties will be preserved across gateways and through caches?
How does one ensure that the required network resources
can be allocated, perhaps probabilistically, between herself
and the series of service points which are cooperating to
produce the output?

Type systems have proven to be a powerful mechanism
for verifying many desirable properties of programs for
stand-alone systems.1 We believe that they can also capture

1Type systems provide one methodology, one of several from the Pro-
gramming Languages research community, which can be used to formally

many essential correctness properties for the composition
of networked services. By forcing a strong typing system
onto agents and flows in the network, we can build up a li-
brary of strongly typed operations which can be performed
upon those flows (composition: [A] + [B] ! [A + B]),
legal “casting” operations (an HTTP/1.0 client can safely
speak with an HTTP/1.1 server), polymorphic operations
(tunneling any TCP flow via SSL), and even build type in-
ference systems which could mechanically deduce the need
for additional agents in a path.

Of course, such a type system depends upon a rigorously
correct knowledge of the underlying systems and technolo-
gies which are being typed, which leads us to the specific
contributions of this paper.

Paper Contributions and Outline: The methodology
we employ in this paper to analyze the HTTP protocol
provides us with important ingredients of NETBENCH–
specifically: (1) it shows us how certain instantiations of
HTTP arrangements can be unsafe, and must be rendered
unsafe by a type system or type inference engine, for ex-
ample; (2) it provides us with a set of bidirectional equiva-
lences between topologies of agents can be applied to “re-
duce” a system to make its analysis more tractable, or to
“stretch” a system to include more agents without altering a
desired property; (3) it discusses a generalizable method for
testing the safety and correctness of other properties which
affect the behavior of protocol agents; and (4) it provides
us with a hands-on example of how to rigorously approach
the establishment of such properties for use in a strong type
system.

The primary focus of this paper is on the applicability
of formal methods to the verification of the correctness and
interoperability of the HTTP protocol’s revisions in all per-
mutations of roles (client, proxy, server) and compositions
thereof with respect to the 100 Continue feature. We
do not focus at great length upon the nuances of disam-
biguating the RFCs;2 where we have made simplifying as-
sumptions or omissions, we briefly discuss why.

While much of the work in this paper was done man-
ually, it is evident that many of the tasks and inferences
made are plausible candidates for mechanical analysis and
deduction; our hope is that the lessons learned will lead us
to algorithms and results toward that end, and some such
results will soon be forthcoming [3].

The remainder of this paper is organized as follows. We
begin with an overview of the capabilities that a formal
methods toolset (like SPIN) offers to the application-layer
protocol design and implementation communities. We then
present, as a case study, some results of our examination
of the interoperability of multiple revisions of the HTTP

show that certain safety properties are met. Finite-model checking is an-
other such methodology.

2Neither do we address, at any length, the issue of validating actual
implementations of RFCs against the RFCs themselves or against models
thereof.

protocol [1, 5, 6]. We follow that with a set of rules that we
developed for curtailing the state space of HTTP protocol
compositions. We conclude the paper with a summary of
our findings.

2 Benefits of Formal Verification

Since formalization and the application of formal methods
is sometimes shunned by members of the hacking and soft-
ware engineering communities, it is worth re-stating some
of the benefits which they have to offer.

Disambiguation: While RFCs and related standards
documents tend to be fairly unambiguous when it comes
to syntax and grammar, the specification of semantics in
prose lends itself to incompleteness in its coverage of all
possible scenarios or inputs. While in some regards this
is desirable as it allows great freedom to implementors, it
can at the same time leave the door open to unintended in-
terpretations which may aversely affect the behavior of the
system.

Formalizing the communication behavior of each agent’s
role under a protocol using some rigorous technical repre-
sentation forces the protocol designers to think concretely
about the sequences of events each agent may encounter
and what the permissible set of responses to each should
be; said another way, disambiguation causes classes of am-
biguities in the protocol’s specification to be weeded out or
allowed to remain by design.

Correctness: We would like to prove that correct im-
plementations of a protocol acting in all combinations of
roles are well behaved, by which we mean that the rules
of the protocol prevent the system from entering undesir-
able states such as deadlock (all agents blocked waiting for
others to act) or livelock (agents interacting in a way that
produces no “progress”).

Interoperability: Incremental improvements and en-
hancements to protocols are the rule of thumb for the In-
ternet at the application layer. As such, an important de-
sign goal for each incremental version of a protocol is
backward-compatibility with implementations of previous
versions of the protocol, in all roles for which they may ap-
pear. By interoperable we mean both that the system is able
to accomplish useful work (i.e., any bootstrap problems are
handled gracefully) and that the system is well behaved in
the sense described above. Ideally, an implementation of
a new version of a protocol should be able to replace an
older one in any single role under any given arrangement
of agents and the usefulness and correctness of the system
should not be disturbed.

Hardening: A pressing concern in the wild is the issue
of what happens when our well-crafted and theoretically
correct and interoperable protocol has to interact with the
great unknown of poorly written, misbehaving, or even ma-
licious peers. We may wish to ensure that we interoper-
ate with certain particular deviant implementations, which
we can capture by modeling their aberrations and applying
the same interoperability testing regimen discussed above.
However, this is a more general problem: do the require-
ments of our protocol prevent some sequence of inputs
from causing an agent to behave poorly, or to have its re-
sources in some way monopolized? Asked another way,
does the specification of the protocol require that imple-
mentations be sufficiently hardened against an arbitrary
and potentially hostile world?

A formal verification system allows us to attach mod-
els of agents to what is called a “maximal automaton”, an
agent which feeds all possible sequences of input to our
model. The verification system then examines the product
of the agent’s model with the maximal automaton and tests
all possible execution paths for progress or graceful termi-
nation. This notion is not unique to the protocol verification
area; for example, an I/O automata [16] is said to be “input
enabled” if it is able, in all input-accepting states, to tran-
sition (possibly to the same state or to a failure/termination
state) in response to any input value, thus “hardening” it
against all possible inputs.

Implementation Conformity: While not yet a perfected
art, there has been much work toward low-overhead inte-
gration of model building and model checking with soft-
ware engineering processes. Given a relatively stable soft-
ware architecture and not-too-rapidly moving set of inter-
faces, it is proposed that by applying “slicing” rules to
source code a verification system can extract only that in-
formation relevant to the properties and behaviors being
modeled, then regularly build and re-validate models from
source and check them for the desired correctness, interop-
erability, and hardening properties discussed above.

The prospect of very-low-overhead tools of this kind
finding their way into the development process, particularly
for system software, is certainly alluring. That the research
community is generating such tools in conjunction not only
with academic and experimental languages, but with such
favorites as C [11, 12, 10] and Java [4, 7], is cause for hope;
this could constitute a much-needed improvement the the
state of the art if [13] is any indication.

3 Verifying HTTP: A Case Study

In this section we present our methodology for evaluating
the safety of composition of Web communication proto-
cols in NETBENCH, by working through a case study that
assesses the correctness and interoperability of the vari-
ous revisions of the HTTP specification with respect to the
100 Continue feature. The exploration and analyses

we present for this case study will serve as a template for
more such work in the future with other application-layer
protocols.

3.1 A Propos

In HTTP/1.0, all transactions had a very simple and state-
less communication model: A client would send a whole
request, i.e., a request line, a set of headers, and an op-
tional request entity; The server, after receiving the whole
request, would respond with a status line, a set of headers,
and an optional response header.

One of the desired features for the 1.1 revision of the
protocol was the ability for clients to avoid transmitting
very large entities with their requests if the end result of
the transaction was to be some simple failure indepen-
dent of the content of the document (such as an authen-
tication failure or temporary server condition) [14]. Con-
ceptually, this mirrors conditional operations (such as the
If-Modified-Since header) which allow a response
entity to be suppressed if its transmission is deemed unnec-
essary.

This is was done in RFC2068 by allowing clients to
pause before sending the optional request entity; the server
could then send a response with an error code in the sta-
tus line, informing the client that the request would fail and
the request entity should not be sent; alternately, the server
could send a 100 Continue response, which tells the
client to proceed with sending the request entity (although
it does not guarantee that the final response might not still
be some error condition).

While the original specification of the continuation
mechanism (the 100 Continue response header, as gov-
erned by [5, x8.2 and x10.1.1]) was clearly sound with re-
spect to the simple client-server cases, there was ambiguity
as to the correct behaviors of intermediary proxies; com-
pelling arguments could be made that the RFC’s language
recommended, required, or suggested that the mechanism
be applied either hop-by-hop or end-to-end with respect
to a chain of proxies. Under at least one of these inter-
pretations, certain combinations of correctly implemented
components in the client-proxy-server chain were prone to
deadlock [17]. This problem was addressed in the next pub-
lic revision of the spec (RFC2616) by the introduction of
the Expect mechanism [6, x8.2.3] and the clarification
of the semantics of 100 Continue [6, x10.1.1] with re-
spect to proxies. Given that many existing 1.1 implemen-
tations conformed to various interpretations of the earlier
version of the spec, it was decided that RFC2616 should
also include a number of heuristics to try to ensure correct
interoperation with those implementations.3 This quagmire

3This naturally raises several fair administrative and technical ques-
tions. For example: Was RFC2068 really ready to be released as
a Standards-Track RFC? Given the numerous issues raised in post-
RFC2068 drafts and the number of heuristics needed to interoperate with
“old” HTTP/1.1 agents, would it not have made more technical sense to

of protocol versions, specification versions, special-case in-
teroperability rules, and the set of possible combinations of
revisions in the different roles, makes it very difficult to
say anything with certainty about the correctness and in-
teroperability of the specification; we can say that it seems
empirically to be correct, or perhaps that it is even arguably
correct, but not that it is provably so.

As a case study in the application of formal methods to
the problems of a protocol’s correctness, interoperability,
and hardening, we used the SPIN tool [9] from Bell Labs to
construct and verify models of the expect/continue behav-
ior of clients, proxies, and servers conforming to RFC1945
(HTTP/1.0), multiple interpretations of RFC2068 (obsolete
HTTP/1.1), and RFC2616 (HTTP/1.1).4

3.2 PROMELA and SPIN

PROMELA, the PROcess (or PROtocol) MEta LAnguage,
is the input language to the SPIN verifier [9]. PROMELA

is a non-deterministic guarded command language, which
means (informally) that it can represent sets of simultane-
ously valid reactions to the state of and inputs to a process,
and that a process can “sleep” on boolean expressions or
external events. Mastering PROMELA’s syntax and gram-
mar is a straightforward exercise for anyone familiar with
imperative programming and the syntax of C; mastering
its semantics simply requires a familiarity with the event-
driven or state-machine-driven programming techniques.

PROMELA provides a set of abstractions convenient to
modeling local and distributed protocols and systems, in-
cluding dynamically creatable processes with access to
both local and global variables, “dummy” variables which
do not effect the analyzed state space of the model, finite-
length message queues, and a set of send, receive, and poll-
type operators which can operate on those queues.

When SPIN is run on a PROMELA program, it begins by
transforming each process description into a finite state ma-
chine. After performing some analysis and state reductions,
it performs a depth-first search of execution paths of the
whole program, searching for cases which violate a set of
constraints. The easiest property to test for is deadlock; if
the system can reach a state in which one or more processes
have not terminated and no process has a runnable instruc-
tion (i.e., all processes are “asleep” waiting for predicates
to change or events to occur), then the system is deadlock-
prone, and the execution path leading to that instance of
deadlock is output to the user.5 Since depth-first search can
easily lead to extremely long exemplars, the system can
then continue the search while bounding the depth, looking

name the RFC2616 revision HTTP/1.2?
4None of the current errata for RFC2616 listed at

http://purl.org/NET/http-errata pertain to the ex-
pect/continue mechanism, so they are not addressed

5Another trivially testable property is progress, the property that any
infinite execution of a process includes infinitely many executions of par-
ticular progress markers. Absence of this property is indicative of livelock.

for shorter constraint-violating exemplars until a shortest
one is found. If no error cases are found, the system re-
ports success to the user.

3.3 PROMELA Model of HTTP Expectation
and Continuation

The key to building useful and analyzable models is to ab-
stract away enough details to make the models a manage-
able size while retaining enough detail to be meaningful
and reflective of the underlying processes and behaviors.

To represent the basic units of communication among
HTTP agents, our models transmit and receive six types of
messages (PROMELA “mtype”s):

request - corresponds to the “Request” grammar in [6,
x5] up to and including the CRLF, but excluding
the [message-body]. This message carries a
parameter structure with the following fields:

version - Version of the agent sending this message.
HTTP 09, HTTP 10, HTTP 11, or some higher
value.

hasentity - Boolean indicator of whether a
message-body will follow the request.
This is an abstraction of the rules for inclusion
found in [6, x4.3 {5] etc.

expect100 - Boolean indicator of the presence or ab-
sence of the 100-continue in the Expect
header. Only set explicitly by RFC2616 client
implementations, although it may be “passed
on” by RFC1945 proxies.

close - Boolean flag that the client is requesting the
connection be closed after this request is com-
pleted.

response - corresponds to the “Response” grammar in [6,
x6] up to and including the CRLF, but excluding the [
message-body]. This message carries a parame-
ter structure with the following fields:

version - As above.

hasentity - As above; abstraction for the rules in [6,
x4.3 {6] etc.

close - Boolean flag indicating that the server will
close the connection when its response has been
completely sent.

continue - corresponds to a “Response” with a status code
of 100 (“Continue”) and subject to the other restric-
tions of [6, x10.1, x10.1.1].6

6To correctly implement [6, x8.2.3 {5], we would also add a parameter
indicating from which node this message originated. Unfortunately, it is
unclear that a client could actually unambiguously deduce whether a mes-
sage comes from an origin server or not, as discussed below in footnote10;
hence, we omit this from our model.

entitypiece - a block of bytes constituting part of a
message-body.

entityend - a block of bytes marking the end of a
message-body. This message is only sent im-
mediately after one or more entitypieces, and is
an abstraction for the various mechanisms which
can be used to delineate a message-body
(Content-Length, the chunked Transfer-
Encoding, the multipart/byterangesContent-
Type, etc).

eof - a “close” event, in which a party to the connection
explicitly shuts down the transport.

This data is sufficient to control all of the behaviors
surrounding Continuation described in [5, x8.2, x10.1,
x10.1.1] and [6, x8.2.3, x10.1, x10.1.1, x14.20]. We do
not currently model the backoff-and-retry mechanism dis-
cussed in [6, x8.2.4].

3.4 Implementations of Agents

For each role defined by HTTP (client, proxy, server) and
for each revision of the spec (RFC 1945, 2068, and 2616),
a PROMELA process model (or proctype) was created
for agents acting as that role/revision. The naming con-
vention is role-rfc#[-variant]; for example, an RFC2616
(HTTP/1.1) server is called server-2616, and the hop-by-
hop interpretation of an RFC2068 proxy is proxy-2068-
hbh.

All agents (including RFC1945 agents) are assumed to
use persistent connections; this simplification allows us to
exhaust the space of transaction sequences without having
to spawn multiple agents, and also naturally emulates the
“upstream version cache” feature appearing in HTTP/1.1.
Pipelining is not implemented because it has no effect
(causally) upon any agent’s behavior (apart from a more
general issue with clients using blocking write operations
in the presence of finite buffer space).

Table 1 lists all of the models, the spec they conform
to, the role they act in, their approximate size in lines of
PROMELA code (LOC), and comments concerning their in-
terpretation of the specifications (as discussed below). The
PROMELA code is quite readable, and is available from the
author’s web site7.

The HTTP/1.0 proxy is modeled as a HTTP/1.0 client
attached to a HTTP/1.0 server; it waits for an entire request
(entity included) to arrive, then forwards the whole request
to the next upstream agent, and similarly for the response.
In the more general case, an HTTP/1.0 proxy could choose
to pass through request and response entities progressively
as it receives them, but that behavior would be causally in-
distinguishable to its peers from the whole-entity method
we employ.

7Code and other information can be found at
http://cs-people.bu.edu/artdodge/research/httpverify/

Name Models Role LOC Comments

client-1945 RFC1945 (1.0) Client 60 supports keepalive; trivial
client-2068 RFC2068 (1.1) Client 110
client-2616 RFC2616 (1.1) Client 110
server-1945 RFC1945 (1.0) Server 60 supports keepalive; trivial
server-2068 RFC2068 (1.1) Server 90
server-2616 RFC2616 (1.1) Server 150 MAY in [6, x8.2.3 {8]

is “MUST after timeout”
server-2616-may RFC2616 (1.1) Server 150 implements [6, x8.2.3 {8] as MAY
proxy-1945 RFC1945 (1.0) Proxy 115 buffers whole requests/responses;

supports keepalive;
MAY pass thru “expect-100”

proxy-2068-e2e RFC2068 (1.1) Proxy 160 end-to-end continue mechanism
proxy-2068-hbh RFC2068 (1.1) Proxy 170 hop-by-hop continue mechanism
proxy-2068-hybrid RFC2068 (1.1) Proxy 280 selects HBH or E2E randomly per request
proxy-2616 RFC2616 (1.1) Proxy 150
proxy-2616-fixed RFC2616 (1.1) Proxy 155 Fixes a potential deadlock case (see Section 3.7)

Table 1: HTTP Agent Models

With regard to the behavior of proxies, RFC2068 allows
several conflicting interpretations; to deal with this, we cre-
ated several variations on the proxy-2068 model, differen-
tiated by a suffix added to the name. The three RFC2068
proxy models are:

proxy-2068-e2e - Interprets continuation as an end-to-end
mechanism, whereby the proxy will not ask the client
to “Continue” until its upstream agent has asked it to
“Continue”

proxy-2068-hbh - Interprets continuation as a hop-by-hop
mechanism; the proxy tells the client to continue,
reads its message-body, then forwards the request
upstream and waits for a “Continue” message before
forwarding the message-body.

proxy-2068-hybrid - As each request arrives, chooses ran-
domly between the -e2e and -hbh interpretations. This
is the general case of a 2068 proxy, meaning a success-
ful validation against it provides us with the strongest
result; unfortunately, it is also (by far) the most com-
putationally expensive agent to model. Unless oth-
erwise noted, this model is always used when an
RFC2068 proxy is called for, as it completely sub-
sumes the behavior of the other two.

We have made server-2616 always employ the interop-
erability clause in [6, x8.2.3 {8] when the system encoun-
ters a timeout. While the specification makes this behavior
a MAY, allowing the model to omit it introduces obvious
potential deadlock cases when interacting with RFC2068
downstream peers. While not expounded further in this
paper, we convinced ourselves of this property by replac-
ing server-2616 agents in several cleanly validated arrange-
ments with a model we call server-2616-may which can

choose arbitrarily to omit this behavior, and found the
same deadlocks arising as in arrangements with server-
1945 agents. This is an intuitively obvious result, since
the non-MAY server behavior when interacting with an
RFC2068 client (not sending a Continue and waiting ar-
bitrarily long for the request message-body) is indis-
tinguishable from server-1945’s behavior with the excep-
tion that downstream nodes may have previously convinced
themselves that a Continuemessage will be produced by
this server.

3.5 Validation Cases

To prove the correctness of HTTP/1.1 (RFC2616), we need
to verify that all client-server and client-proxy-server com-
binations of RFC2616 agents can be validated by the SPIN

system. We begin by verifying that the simple client-
server case and the client-proxy-server case are both correct
(deadlock-free). From there we need to somehow convince
ourselves that longer (and perhaps arbitrarily so) series of
intervening proxies are also correct by the same criteria,
as explicitly modeling an arbitrarily long proxy chain is
clearly not possible.

Gaining confidence in the interoperability property is a
much more involved process; for a client-proxy-server ar-
chitecture like HTTP, a trivial approach requires us to ver-
ify as many as C�S� (

PN

i=0
P i) arrangements of agents,

where C is the number of client models (three), P is the
number of proxy models (three), S is the number of server
models (three), andN is a heuristic bound on the length of
the proxy chain. Once again, the number of arrangements
to be checked quickly becomes unwieldy as N grows, and
verifying all arrangements when N = 1 is not possible
with finite computation, so other means are required to rea-
son about longer chains.

Client Proxy Server Result Comments

2.1 1945 all all clean
2.2 all 1945 all clean
2.3 all all 2068,2616 clean
2.4 all all 1945 deadlock
2.5 2068 2068-hybrid 1945 deadlock
2.6 2068 2068-e2e 1945 deadlock guilty for 2.5
2.7 2068 2068-hbh 1945 clean innocent of 2.5
2.8 2068 2616 1945 deadlock
2.9 2616 2068-hybrid 1945 deadlock

2.10 2616 2068-e2e 1945 clean innocent of 2.9?
2.11 2616 2068-hbh 1945 clean innocent of 2.9?
2.12 2616 2616 1945 clean

Table 2: Experiments to Localize Interoperability Problems for P = 1

client_rfc2616:1

12

141!entitypiece,0,0,0,0

161!entitypiece,0,0,0,0

181!entitypiece,0,0,0,0

201!entitypiece,0,0,0,0

221!entitypiece,0,0,0,0 server_rfc2616:2

24

1!request,2,1,0,1

312!response,2,1,1

322!entitypiece,0,0,0

342!entitypiece,0,0,0

362!entitypiece,0,0,0

382!entitypiece,0,0,0

402!entitypiece,0,0,0421!entitypiece,0,0,0,0

4343

Figure 1: MSC for Buffer Write Deadlock

3.6 Correctness Results

To our surprise, when testing the client-2616!server-2616
arrangement SPIN promptly returned a very short dead-
lock case in which both the client and server end up sleep-
ing in write operations, mutually waiting for buffer space
to become available. This case arises as follows: The
client then sends a request, but does not set the Expect:
100-continue header. The server receives the request
and decides to reject it, and thus immediately begins send-
ing its response and the entity that follows. Meanwhile,
the client has begun to send the request message-body

without waiting to hear from the server.8 This situation is
illustrated by the message sequence chart (MSC) in Figure
1; step 24 is the only “receive” that is executed; conse-
quently, the message queues (each with a capacity of 5)
both fill, causing both processes to block in their write
operations in steps 40 and 42. In practice, this would
commonly require the request message-body to exceed
128KB (64KB of send buffer at the client and 64KB of re-
ceive buffer at the server), and the response headers and
message-body to likewise exceed 128KB. It is not sur-
prising that this error would rarely if ever occur in practice;
while it is becoming common practice to submit images in
requests (which can easily exceed 128KB), error responses
still tend to be fairly small in most cases.

In an ideal world, this deadlock would be purely a defen-
sive engineering (i.e. security) concern; however, the more
involved communication model of HTTP/1.1 allows it to
arise in totally benevolent environments between conform-
ing implementations. If an implementation of HTTP/1.1 is
susceptible to this deadlock under benevolent conditions,
then it is also possible for a malevolent peer to capitalize
upon it to produce a degradation-of-service attack upon
a server by causing it to unproductively consume large
amounts of outbound buffer space. Thus, in this case, good
closed-system engineering and hardening of the system to
interact with the open-system world are coincidental and
agreeing goals.

To remove this deadlock from all of our models, we
changed a macro which produced arbitrarily long entities
(both for requests and responses) to produce short fixed-
length ones (one entitypiece messages followed by an en-
tityend), and we enlarged the buffers in each direction so
that the entire modeled sequence of messages constituting
any client’s or server’s part in the most involved of transac-
tions could fit comfortably in the buffers.

8This situation can also arise if the client sets the
Expect:100-continue header but elects not to wait for a response
to begin sending; this is allowable behaviors under most conditions in
RFC2616.

!server models
client!proxy 1945 2068 2616

1945-1945
1945-2068 clean [2.1]
1945-2616
2068-1945 clean [2.2]
2068-2068 deadlock [2.5]
2068-2616 deadlock [2.8]

clean [2.3]

2616-1945 clean [2.2]
2616-2068 deadlock [2.9]
2616-2616 clean [2.12]

clean [2.3]

Table 3: Safety of all client!proxy!server Permutations

Having removed the buffering deadlock from our mod-
els, we found that reasonably short RFC2616-only arrange-
ments were all verifiably correct. The verification of the
first three arrangements (N = 0; 1; 2) required less than 30
seconds of CPU time.9

3.7 Interoperability Results

SPIN required only a few seconds to test all nine client-
server cases, As none of these cases gives rise to any dead-
lock conditions, we are confident that all three revisions
of HTTP interoperate gracefully in simple client-server ar-
rangements.

Searching through the client-proxy-server cases is a
more involved process; the series of experiments is listed
in Table 2, and the resulting interoperability matrix given
in Table 3. Wherever the word “all” appears in Table 2,
it reflects a run of the verifier in which all three princi-
pal revisions of that agent are tested in that role; similarly,
where multiple models are listed, they are both tested ex-
plicitly by that experiment’s model. The result is either
“clean” (indicating a successful validation of all members
of the described set of arrangements) or “deadlock” (mean-
ing at least one of the arrangements described is prone to
a deadlock condition). Each result in Table 3 includes a
reference to one experiment in the former which proves it
(several cells are actually proven by multiple experiments).
The experiments used to produce the table required roughly
15 minutes of CPU time; the process of choosing a test-
ing strategy and setting up the experiments was by far the
clock-time bottleneck on the verification process.

Classic 1.1/1.1/1.0 Deadlock: The first class of deadlock
detected in experiments 2.5, 2.6 and 2.7 are reflected by
the example MSC shown in Figure 2. These cases were
identified in 1997 on the HTTP-WG mailing list [17], and
we refer to them as the “classic” continuation deadlock, in

9Timing results for experiments discussed in this paper were acquired
using a Quad Pentium II 450MHz system with 2GB of RAM; initially, the
models were developed and the N 2 f0; 1g arrangements all tested on a
modest 400MHz Mobile Pentium II laptop with 128MB of RAM.

client_rfc2068:1

12

proxy_rfc2068_endtoendcontinue:2

15

1!request,2,0,0,0

16 server_rfc1945:3

18

2!request,2,0,0,0

23

24

2629

4!response,1,1,0

32

35

4!entitypiece,0,0,0

38

39

4!entityend,0,0,0

4249

3!response,2,1,0

51

3!entitypiece,0,0,0

53

3!entityend,0,0,0

60 62
1!request,2,1,0,1

63 65
2!request,2,1,0,1

66

66

66

Figure 2: Example MSC for Deadlock of 1.1 Client, 2068
Proxy, 1.0 Server

which an end-to-end interpretation at the proxy has no rule
to cause it to balk when it cannot expect its upstream agent
to provide a 100 Continuemessage and has no compul-
sion to initiate its own (or alternatively, an error message).
Note that an RFC2068 client will only wait for a 100
Continue if it believes it is interacting with an HTTP/1.1
upstream agent; we model the recommended version cache
by simply having each agent remember the version num-
bers of its peers for the life of a persistent connection. This
is why a simple and successful request is completed in the
MSC before the actual deadlocking request is made; in the
wild, the deadlock could just as easily arise in the first re-
quest of a persistent connection if the version cache values
are in place.

Deadlock Involving an RFC2616 Proxy: Experiment
2.8 took us by surprise, as it is virtually identical to the
“classic” deadlock mentioned above, except that it includes
an RFC2616 proxy (the revision that was supposed to in-
teroperate gracefully with older revisions)! The shortest
example MSC is virtually identical to Figure 2. Following
the warming of the version caches, the client, believing it
is communicating with an HTTP/1.1 server which will pro-
vide it with a 100 Continue signal, sends request head-

ers indicating a message-body will follow. Because it
implements RFC2068 it does not know about the Expect
header, so it does not send it.

The proxy is simply unable to resolve this situation
correctly using the rules of RFC2616; it knows that
the upstream server is HTTP/1.0 and neither understands
Expect nor will it provide 100 Continue. However,
while RFC2616 requires that in such a case a request to
a proxy including a 100-continue expectation be an-
swered with an error response status of 417 (Expectation
Failed) [6, x8.2.3 {13,14], this requirement does not apply
to requests which have no Expect header, as the request
from the client-2068 agent does not.

While RFC2068 does not say that clients in general
MUST wait for a 100 from an upstream server, it is required
under the “retry” rules if the upstream agent is known to be
HTTP/1.1, and nowhere in that spec are clients required to
bound the time they will wait for a Continue message.

This deadlock can be resolved by altering the spec and
borrowing an idea from a compatibility rule for origin
servers in [6, x8.2.3 {8] and allowing (requiring?) prox-
ies to initiate their own 100 Continue messages when
they receive an HTTP/1.1 PUT or POST request without
a 100-continue expectation token and know that the
next server upstream is HTTP/1.0 or has never sent a 100
Continuemessage. We model this behavior using proxy-
2616-fixed; if it replaces proxy-2616 in experiment 2.8, that
experiment successfully validates without deadlocking.

Hybrid Proxy Deadlock: One interesting deadlock con-
dition arises purely because we use the -hybrid model in
our experiments; an example of this deadlock is illustrated
in Figure 3. Notice how experiment 2.9 reports a potential
deadlock, while experiments 2.10 and 2.11 show that re-
placing the -hybrid node with either -e2e or -hbh leads to
a clean validation; this is simply explained by one of the
client rules in RFC2616 [6, x8.2.3 {5] which (interestingly
enough) was added to try to work around such problems.
This rule allows the client to wait indefinitely for a server
to provide it with a 100 Continue message if it has re-
ceived one from that server before; the proxy switching
from its -hbh persona (which provides 100 Continue
messages autonomously) to its -e2e persona (which cannot
produce one, nor does it know how to balk at its knowledge
that the upstream server is HTTP/1.0).10

10While the spec is particular about only regarding 100 Continue
messages which actually come from the origin server, it is not clear that
a client can correctly disambiguate whether such a message came from
the origin server. The only way a client could do so is by comparing
the Via headers from a 100 Continue and the following final re-
sponse. It is not clear that correct proxies will append Via headers to 100
Continue messages, since [6, x10.1] which describes proxy forwarding
behavior for 1xx messages says that “There are no required headers for
this class of status code”; while it would be a good interpretive step to al-
ways add Via, making that requirement explicit would help further clar-
ify the spec. Regardless, given this ambiguity, a client must either never
wait indefinitely (which violates the spirit of the rule, but is one behavior

client_rfc2616:1

16

18

20 proxy_rfc2068_hybrid:2

21

1!request,2,1,0,0

26

27

1!entitypiece,0,0,0,0

29

1!entityend,0,0,0,0

31

36

38 server_rfc1945:3

39

2!request,2,1,0,0

41

2!entitypiece,0,0,0,0

43

2!entityend,0,0,0,0

46

47

4952

4!response,1,1,0

56

59

4!entitypiece,0,0,0

62

63

4!entityend,0,0,0

6669

3!continue,0,0,0

71

3!response,2,1,0

73

3!entitypiece,0,0,0

75

3!entityend,0,0,0

83 84
1!request,2,1,1,1

87 90
2!request,2,1,0,1

91

91

91

Figure 3: Example MSC for Hybrid Proxy Deadlock

Longer Chains A summary of experiments for client-
proxy-proxy-server (i.e. N = 2) arrangements is presented
in Table 4, with the safety matrix of the 81 primary arrange-
ments presented in Table 5 using the same format as above.
Table 5 also refers to experiments from Table 2 where the
the deadlocks from the two experiments arise for the same
causes.

For example, we notice immediately that many N = 2
deadlocks are analogous with experiment 2.8, that is, be-
cause proxy-2616 is unable to correctly reconcile the client
(client-2068)’s lack of a Expect: 100-continue
header with the proxy’s knowledge that the upstream server
is HTTP/1.0 and will therefore not provide a Continue
message. This is a problem which we addressed above with

captured by our models) or wait indefinitely under uncertain conditions
(which is also a behavior captured in our model, the selection of which
leads to this deadlock).

Client Proxy Proxy Server Result

4.1 all 1945 all all clean

4.2 1945 all 1945 all clean
4.3 all of 2068,2616 2068-hybrid 1945 all deadlock
4.4 2068 2068-e2e 1945 all deadlock
4.5 2068,2616 2068-hbh 1945 all clean
4.6 2068 2616 1945 all deadlock
4.7 2616 2068-e2e, -hbh 1945 all clean
4.8 2616 2616 1945 all clean

4.9 all all 2068, 2616 2616 clean

4.10 all 2068 2616 1945 deadlock
4.11 1945,2616 2616 2616 1945 clean
4.12 2068 2616 2616 1945 deadlock
4.13 2068,2616 2068,2616 2068 1945 deadlock
4.14 1945 2068 2068 1945 deadlock
4.15 1945 2616 2068 1945 clean

Table 4: Localizing Interoperability Problems for P = 2

the proxy-2616-fixed model.
Identifying such relationships helped in discovering the

set of reduction rules and failure classes discussed below.

4 State Space Reduction

In the previous section, we demonstrated how NETBENCH

would be able to leverage the SPIN formal verification tool
to discover various unsafe behaviors of finitely long pro-
tocol (e.g., HTTP) compositions. One of the hurdles that
face many tools such as SPIN is the state space explosion
problem, which raises concerns as to their scalability for
non-toy problems; the extreme instance of this problem is
the inability of such tools to validate the (infinite) set of
all arbitrarily large systems directly using a finite model.
In this section, we show that the application of domain-
specific knowledge can mitigate this problem.

Since every deadlock case which appears in the two-
proxy experiments is reflective of a deadlock condition
already discovered in the single-proxy experiments, and
since HTTP’s behaviors are all either end-to-end or hop-
by-hop, it would seem reasonable to guess that (for these
models at least) there are deadlock-prone patterns which
longer chains could be checked for to determine whether
they will be deadlock-prone or not. This leads us to pos-
tulate a set of reduction rules, according to which we can
organize and partition the infinitely large search space of ar-
rangements into classes which are equivalent with respect
to being deadlock-prone or deadlock-safe.

Reductions: Since the set of arrangements needing ex-
plicit validation grows exponentially with N , it makes far
more sense to talk about the properties of subsequences of
agents and build up a description of the set of deadlock-
ing arrangements (or its inversion, the set of safe arrange-
ments). Essentially, we would like to describe a language

(in the formal sense) of arrangements which fall into ei-
ther category. Toward that end, we here describe two sets
of findings: First are a set of relations called “reductions”
which map large sets of arrangements onto smaller sets;
Second are failure patterns, that is, sequences of agents
which describe a deadlock-prone condition in any arrange-
ment (or arrangement reducible to one) which they match.

Through careful study of our interoperability results and
our models of the protocol agents, we have been able manu-
ally to deduce a set of reductions, some examples of which
are given below. These reductions preserve the property of
safety with respect to expectation; if a given arrangement
of agents is deadlock-prone, then any arrangement which is
reducible to that one will also be deadlock-prone, and like-
wise any arrangement it reduces to will be deadlock-prone;
the same holds for arrangements which are deadlock-free.
Note that most of these reduction can be iteratively and re-
cursively applied; for example, when one reduction allows
a chain of agents to reduce to a single agent, that single
agent is truly single and qualifies for reduction via other
rules which call for single agents.

While we are exploring techniques for deducing these
equivalence relationships mechanically rather than manu-
ally, that work is beyond the scope of this paper.

1. Our model of a proxy-1945 is, thanks to restric-
tions placed upon HTTP/1.1 agents, indistinguish-
able from a server-1945 to downstream (toward the
client) agents in indistinguishable from a client-1945
to upstream agents; consequently, the arrangement
x!proxy-1945!y verifies if and only if x!server-
1945 and client-1945!y both verify.

2. As a corollary to 1, a series of proxy-1945 agents is
equivalent to a single such agent because each hop
is modeled by the client-1945!server-1945 arrange-
ment which is deadlock-free. That single agent can
itself then be removed using 1.

!server models
client!proxy!proxy 1945 2068 2616

1945-1945-1945 clean [4.1] clean [4.1] clean [4.1]
1945-1945-2068 clean [4.1] clean [4.1] clean [4.1]
1945-1945-2616 clean [4.1] clean [4.1] clean [4.1]
1945-2068-1945 clean [4.2] clean [4.2] clean [4.2]
1945-2068-2068 deadlock [4.14, 2.5] clean [4.9] clean [4.9]
1945-2068-2616 deadlock [4.10, 2.8] clean [4.9] clean [4.9]
1945-2616-1945 clean [4.2] clean [4.2] clean [4.2]
1945-2616-2068 clean [4.15] clean [4.9] clean [4.9]
1945-2616-2616 clean [4.11] clean [4.9] clean [4.9]
2068-1945-1945 clean [4.1] clean [4.1] clean [4.1]
2068-1945-2068 clean [4.1] clean [4.1] clean [4.1]
2068-1945-2616 clean [4.1] clean [4.1] clean [4.1]
2068-2068-1945 deadlock [4.3, 2.5] deadlock [4.3, 2.5] deadlock [4.3, 2.5]
2068-2068-2068 deadlock [4.13, 2.5] clean [4.9] clean [4.9]
2068-2068-2616 deadlock [4.10, 2.8] clean [4.9] clean [4.9]
2068-2616-1945 deadlock [4.6, 2.8] deadlock [4.6, 2.8] deadlock [4.6, 2.8]
2068-2616-2068 deadlock [4.13, 2.8] clean [4.9] clean [4.9]
2068-2616-2616 deadlock [4.12, 2.8] clean [4.9] clean [4.9]
2616-1945-1945 clean [4.1] clean [4.1] clean [4.1]
2616-1945-2068 clean [4.1] clean [4.1] clean [4.1]
2616-1945-2616 clean [4.1] clean [4.1] clean [4.1]
2616-2068-1945 deadlock [4.3, 2.9] deadlock [4.3, 2.9] deadlock [4.3, 2.9]
2616-2068-2068 deadlock [4.13, 2.5] clean [4.9] clean [4.9]
2616-2068-2616 deadlock [4.10, 2.8] clean [4.9] clean [4.9]
2616-2616-1945 clean [4.8] clean [4.8] clean [4.8]
2616-2616-2068 deadlock [4.13, 2.9] clean [4.9] clean [4.9]
2616-2616-2616 clean [4.11] clean [4.9] clean [4.9]

Table 5: Safety of all client!proxy!proxy!server Permutations

3. When a proxy-2616 immediately follows a client-
2616, it is equivalent to an arrangement in which the
proxy-2616 is absent.

4. The same can be said of proxy-2616 when it immedi-
ately precedes server-2616.

5. A series of proxy-2616 agents anywhere in the ar-
rangement reduces to a single proxy-2616.

6. Unfortunately, arguments like 2 and 5 do not apply
directly to proxy-2068-hybrid. However, any series of
-hybrid agents of length greater than 2 is equivalent to
one of length 2.

7. Taking a more careful look at the interactions between
client-1945 and an immediately upstream proxy-2068-
hybrid we find that, to upstream nodes, that particular
pair is indistinguishable from a client-2068.

Given that all client-server pairs are clean, this set of re-
duction is already sufficient to explain all but five of the
24 clean validations for the N = 1 experiments in Tables 2
and 3 because they are reducible to clean client-server cases

(N = 0). Those five cases all involve the peculiarities of
interactions between RFC2068 and RFC2616-conforming
HTTP/1.1 agents.

The above reductions are discussed and justified in some
greater depth in [2], which also presents some additional re-
duction relations; most of the omitted reductions deal only
with the -e2e and -hbh variants of proxy-2068.

Failure Patterns: From our interoperability experi-
ments, we have deduced two patterns which can identify
which longer chains will and will not be deadlock-prone:
if a longer chain can be reduced to a chain containing ei-
ther of these patterns, it is a deadlock-prone arrangement.

Both of these cases involve interacting with an agent
with a behavior equivalent to server-1945; Recall that in the
wild, this could include RFC2616 servers which do not im-
plement the interoperability MAY (i.e., servers which cor-
respond to the server-2616-may model discussed in Section
3.4) and are interacting with an HTTP/1.1 proxy immedi-
ately downstream.

1. Any arrangement in which an HTTP/1.1 proxy (proxy-
2068-hybrid or proxy-2616) must interact with an

RFC2068 agent immediately downstream (client-
2068 or proxy-2068-hybrid) and a server-1945 (or
equivalent) agent immediately upstream will be
deadlock-prone. This was discussed above in connec-
tion with experiment 2.8, and also corresponds with
experiments 2.5, 4.3, 4.6, 4.10, 4.13, and 4.14.

2. Any arrangement in which a proxy-2068 must inter-
act with a stream of entirely HTTP/1.1 agents down-
stream (whether RFC2068 or 2616) and a server-1945
(or equivalent) agent immediately upstream will be
deadlock-prone. This rule corresponds with experi-
ments 2.5, 2.9, 4.3, and 4.13.

More particular failure patterns which distinguish among
the -hybrid, -e2e and -hbh variants of proxy-2068 are
straigtforward to derive, but are not presented in this paper
as they add little in the way of methodological or intuitive
insight; for now, we simply note that under some conditions
it is the -e2e persona of -hybrid which is responsible for the
deadlock (in which case substitution by an -hbh would al-
leviate the condition), while under other conditions it is the
fact that -hybrid agents of any flavor will wait indefinitely
without sending the Expect: 100-continue flag.

These failure classes, combined with the reduction rules
above, are sufficient to explain all of the deadlock cases for
the N � 2 arrangements; all N = 1 and N = 2 deadlock-
prone arrangements match one of the two patterns by way
of the application of one or fewer reductions (usually 1; 5
and 7 are also useful).

Indefinitely Long Arrangements In another forthcom-
ing paper [3], we show that these results are not sufficient
to characterize the infinite set of all possible arrangements
through finitely many model checks. We then show that by
adding a particular reduction which only applies to cases
of N � 3, every member of the infinite set of all possi-
ble arrangements is reducible to one of 53 models of length
N � 4. While the methodology behind this result is be-
yond the scope of this paper, we present the additional re-
duction here for completeness:

8. Consider arrangements containing the sequence
proxy-2068-hybrid!proxy-2616!proxy-2068-
hybrid. The passive behavior of proxy-2616 will
never initiate a Continue message of its own, neither
will it add any expectation to the upstream path which
was absent at the downstream proxy-2068-hybrid;
its behavior is end-to-end, and thus it will never
block an inbound message; furthermore, since both
proxy-2068-hybrid and proxy-2616 self-identify as
HTTP/1.1, it will have no effect upon the perceived
versions of messages received by either proxy-2068-
hybrid. Therefore, this arrangement is equivalent to
one in which the middle proxy-2616 is removed.

Based upon this result and modeling of the necessary
N > 2 cases, we found that our two failure patterns are suf-
ficient to identify all deadlock-prone arrangements among

the 53 irreducible arrangements; since all arrangements of
arbitrary length are reducible to members of this set, we
have therefore exhaustively partitioned the set of all pos-
sible arrangements, and can therefore trivially determine
whether any arrangement of arbitrary length is deadlock-
prone or deadlock-safe.

5 Model Checking, HTTP, and Web Services

It is natural to ask how generalizable the methods pre-
sented in this paper are to other attributes of HTTP, or
to other protocol features in general. As alluded to ear-
lier, finite-state model checking has been applied success-
fully to stateful protocols/protocol features, such as hand-
shaking and leader election. Some features of HTTP nat-
urally lend themselves to this kind of modeling; expec-
tation/continuation and backward-compatible handling of
persistent connections are two straightforward examples.

However, much of HTTP/1.1’s feature set and parameter
space are not actually linked with the behavior of HTTP as
such; instead, those headers are used to convey meta-data
which governs how the applications which employ HTTP
are to handle the data it is used to transport. The “correct-
ness” of these features is not really representable in terms
of HTTP itself; rather, it requires some sort of model of the
HTTP-utilizing application which can be verified to main-
tain certain properties or avoid certain sequences of events.
(For example, HTTP/1.1 proxy-caching is simply a partic-
ular HTTP intermediary application which is largely con-
trolled by the appropriate portions of the spec; one would
have to model the internal logic of the cache management
code in order to verify that it conforms to the requirements
of the RFC.) This observation, that HTTP tries to specify
and accomplish several goals at several “layers” simulta-
neously [15, 18], was one argument which emerged from
the HTTP-NG initiative for for decomposing HTTP. In-
deed, HTTP/1.1 is difficult to compartmentalize even on a
header-by-header basis, as headers such as Warning and
operating modes such as the trailers transfer-encoding
affect and are affected by both HTTP-layer and application-
layer events. This can make it difficult to assess which
features are modelable and verifiable, and what amount of
knowledge of HTTP applications is needed in order to do
so.

Having said that, when a particular application is in view
it is certainly practical to find abstractions appropriate to
that application, build models, and devise lists of safety
properties one wishes to maintain (absence of deadlock and
livelock being only the most trivial of examples); we be-
lieve that as web services and other intermediary-driven
systems emerge and begin to not only employ more sophis-
ticated and involved features at the HTTP level, but interact
among one another in non-trivial and causally related ways,
that assessing the correctness of those behaviors in a rigor-
ous and well-understood manner will become increasingly
important. Languages like PROMELA and freely available

tools like SPIN make this process accessible to protocol
designers and engineers, while the inclusion of the ability
to enforce general LTL (Linear Temporal Logic) formulae
gives significant expressive power to those who may need
it. All of this taken together suggests that it may be prudent
to afford a larger place to formal verification of properties
in the development of open protocols and of composable
Internet services in the future.

6 Conclusion

While one may be tempted to read this paper as a heavy-
artillery assault upon the HTTP/1.1 protocol and the
HTTP-WG which developed it, that was neither our mo-
tivation nor our goal, nor even the emphasis of our result.
Our result is the beginning of a rigorous analysis and sys-
tematization of one set of properties of the HTTP proto-
col, namely safety, for encoding in a type system which
we intend to use to impose stronger disciplines (and there-
fore safety properties) upon the programming of distributed
compositional systems such as edge services.

In pursuing this end, we have shown a number of in-
teresting results. First, our attempts to build models from
the RFCs in question highlighted several textual ambigu-
ities (or, arguably, errors): 1. The two interpretations of
100 Continue in RFC2068 (proxy-2068-e2e, -hbh, and
-hybrid), 2. The absence of a backward-compatibility op-
tion for RFC2616 proxies (proxy-2616-fixed) to mirror the
option for RFC2616 servers, and 3. The natural presence
of potential deadlock cases for RFC2616 servers choos-
ing not to implement the backward-compatibility option
(server-2616-may). Second, we have verified that an en-
tirely HTTP/1.1 world (regardless of which revision) is
deadlock-free, except in the presence of RFC2616 servers
which choose not to implement the backward-compatibility
option. Third, our experiments uncovered several classes
of agent arrangements in which combinations of HTTP/1.1
agents leading up to an HTTP/1.0 server (or equivalent)
agent are prone to deadlock; while this was partially ad-
dressed in the RFC2616 revision to HTTP/1.1, certain
failure cases remain in environments of mixed RFC2068
and RFC2616 agents. Fourth, from our experiences with
these models we were able to construct a set of reduc-
tion rules which define classes of arrangements of agents
which are equivalent with respect to the safety of their ex-
pect/continue behavior. These results, taken together, al-
low us to exhaustively characterize the set of all possible
arrangements of HTTP agents.

In principle, we have illustrated the value of a mechani-
cal verification system to enforce clarification upon a stan-
dard document, shown its ability to quickly identifying
corner cases for a large number of component-wise and
system-wise interactions which may be difficult to discover
or argue about by hand, and illustrated how the results of
such experiments can be used as groundwork for arguing
about the behaviors of more general arrangements of com-

ponents of arbitrary size, results the likes of which will be
of great interest to the designers and implementors of com-
positional distributed services and applications, and to the
tools we expect will emerge to support their work.

Acknowledgements

The authors wish to thank the anonymous reviewers for
their thoughtful and helpful comments on this work.

SDG.

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. Hyper-
text transfer protocol – HTTP/1.0, 1996. RFC1945.

[2] Adam D. Bradley, Azer Bestavros, and Assaf J.
Kfoury. Safe composition of web communication
protocols for extensible edge services. Technical Re-
port BUCS-TR-2002-017, Boston University Com-
puter Science, 2002.

[3] Adam D. Bradley, Assaf J. Kfoury, and Azer
Bestavros. Validating indefinitely large communica-
tion networks with finite model checking. Technical
Report (work in progress), Boston University Com-
puter Science, 2002.

[4] James C. Corbett, Matthew B. Dwyer, John Hat-
cliff, Shawn Laubach, Corina S. Păsăreanu, Robby,
and Hongjun Zheng. Bandera: Extracting finite-state
models from Java source code. In Proceedings of the
22nd International Conference on Software Engineer-
ing, June 2000.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext transfer protocol –
HTTP/1.1 (obsolete), 1997. RFC2068.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Mas-
inter, P. Leach, and T. Berners-Lee. Hypertext transfer
protocol – HTTP/1.1, 1999. RFC2616.

[7] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. Int. Journal on Soft-
ware Tools for Technology Transfer, 2(4):366–381,
April 2000. Also appeared 4th SPIN workshop, Paris,
November, 1998.

[8] Gerard J. Holzmann. Designing bug-free protocols
with SPIN. Computer Communications Journal,
pages 97–105, March 1997.

[9] Gerard J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):1–17,
May 1997.

[10] Gerard J. Holzmann. From code to models. In
Proceedings of the Second International Conference
on Application of Concurrency to System Design
(ACSD’01), 2001.

[11] Gerard J. Holzmann and Margaret H. Smith. A prac-
tical method for verifying event-driven software. In
Proc. ICSE99, pages 597–607, Los Angeles, CA,
May 1999.

[12] Gerard J. Holzmann and Margaret H. Smith. Software
model checking: Extracting verification models from
source code. In Proc. PSTV/FORTE99 Publ. Kluwer,
pages 481–497, Beijing China, October 1999.

[13] Balachander Krishnamurthy and Martin Arlitt. PRO-
COW: Protocol compliance on the web. Techni-
cal Report HA1630000-990803-05TM, AT&T Labs-
Research, August 3 1999.

[14] Balachander Krishnamurthy, Jeffrey C. Mogul, and
David M. Kristol. Key differences between HTTP/1.0
and HTTP/1.1. In Proceedings of the WWW-8 Con-
ference, Toronto, May 1999.

[15] Balachander Krishnamurthy and Jennifer Rexford.
En passant: Predicting HTTP/1.1 traffic. In Proceed-
ings of Global Internet Symposium, December 1999.

[16] Nancy Lynch and Mark Tuttle. An introduction to
input/output automata. CWI-Quarterly, 2(3)(3):219–
246, September 1989.

[17] Jeffrey Mogul. Is 100-Continue hop-by-hop?, July 7,
1997. HTTP-WG Mailing List Archive, http://www-
old.ics.uci.edu/pub/ietf/http/hypermail/1997q3/.

[18] Jeffrey C. Mogul. Clarifying the fundamentals of
HTTP. In WWW-2002, Honolulu, HI, May 2002.

