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Image Segmentation  -- Definition and Tasks
Definition 1:  
Segmentation = finding outline of object (“thing”) or region (“stuff”) in image

Definition 2:
Segmentation = grouping of pixels into regions such that:
• Pixels in each region have a common property
• Pixels in adjacent regions do not share this property
• Exclusive Partitioning:  Pi intersect Pj = empty set {},  for all i not equal to j
• Exhaustive Partitioning:  Union of Pi‘s = entire image

Tasks:
Semantic Segmentation:   Common property:   Same “stuff class”
Instance Segmentation:    Common property:   Same “thing class”
Panoptic Segmentation:    Common property:  Either same thing or stuff class 
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“Semantic” Segmentation =  Segmentation

Here: Exclusive & exhaustive 
partitioning involving  3 
object classes:
• All regions with pixels that 

collectively show bikes are 
labeled green.

• All regions with pixels of 
bikers are shown in antique 
pink.

• All regions background 
pixels are black.
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Model:

Image Credit: Long et al., 2015

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf


“Semantic” Segmentation =  Region Segmentation

Here: Exclusive & exhaustive 
partitioning involving  3 
object classes:
• All regions with pixels that 

collectively show bikes are 
labeled green.

• All regions with pixels of 
bikers are shown in antique 
pink.

• All regions background 
pixels are black.
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Model:

Image Credit: Long et al., 2015

Your Assignment 4

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf


SegNet: Encoder-Decoder Architecture for Semantic Segmentation
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Badrinayayanan et al., 2016

https://arxiv.org/pdf/1511.00561.pdf


Instance Segmentation =  Segmentation of Individual Objects

Phase-contrast microscopy image          Ground truth segmentation                   Model segmentation
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https://www.sciencedirect.com/science/article/abs/pii/S1361841518308442?via%3Dihub


Panoptic 
Segmentation
= 
Segmentation 
of regions and 
objects

Term coined by
Kirillov et al., 2018

https://arxiv.org/pdf/1801.00868.pdf
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How can we measure the success of a segmentation model?
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Intersection over Union (IoU) or Jaccard Index
Given an object region A, drawn by an expert, and 
an object region B, determined by the computer, 
the Jaccard index computes the ratio of the 
number of pixels common to A and B over the 
number of pixels that are in at least one of the 
regions: |A∩B| / |A∪B|.
Resulting scores range from 0 to 1 with larger 
values indicating greater similarity between the 
two regions.
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Using a Threshold on the IoU for Classification

CS 585:  Image and Video Computing 

Image credit: Learnopencv.com
Ground truth bounding box: red. Model bounding box: light blue

https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/
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Beware of Annotation Noise
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Image credit:
Theriault et al., MV, 2012

Ground truth                   Adaboost                              Ground truth                 Adaboost

https://www.cs.bu.edu/fac/betke/papers/Theriault-et-al-MVC-2012.pdf
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Beware of Annotation Noise
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Image credit:
Theriault et al., MV, 2012

Ground truth                   Adaboost                              Ground truth                 Adaboost

https://www.cs.bu.edu/fac/betke/papers/Theriault-et-al-MVC-2012.pdf
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ICORD: Intelligent Collection of 
Redundant Data
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Sameki et al., CVPRW 2016

https://www.cs.bu.edu/fac/betke/papers/SamekiGurariBetke-CVMI-CVPR-2016.pdf
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ICORD: Intelligent Collection of 
Redundant Data
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Sameki et al., CVPRW 2016

https://www.cs.bu.edu/fac/betke/papers/SamekiGurariBetke-CVMI-CVPR-2016.pdf
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1. road · sidewalk · parking · rail track
2. person · rider
3. car · truck· bus · on-rails · motorcycle · bicycle ·     

caravan · trailer
4. building · wall · fence · guard rail · bridge · tunnel
5. pole · pole group · traffic sign · traffic light
6. vegetation · terrain
7. sky
8. ground · dynamic · static

Cityscapes Dataset

https://www.cityscapes-dataset.com/
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UPSNet: Panoptic Segmentation
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Xiong et al., 2019Runtime speedup 3x over previous work
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UPSNet: Panoptic Segmentation
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Xiong et al., 2019Ground truth                              Xiong et al.’s evaluation
                                                      of Kirillov et al.’s model
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Mask R-CNN

Extends Faster R-CNN by adding a branch for predicting an object mask 
in parallel with the existing branch for bounding box recognition
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He et al., ICCV 2017

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237584
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Backbone Detection Networks used for Segmentation

Faster R-CNN uses a Region Proposal Network (RPN) that shares 
convolutional features with the Fast R-CNN:  Ren et al., NIPS 2015

Fast R-CNN: Girschik, 2015

R-CNN  (for “Regions with CNN 
Features”):  Girschik et al., 2014
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https://papers.nips.cc/paper_files/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://arxiv.orghttps/arxiv.org/pdf/1504.08083.pdf/pdf/1504.08083.pdf
https://arxiv.org/pdf/1311.2524.pdf
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Domain Adaptive Semantic Segmentation

Wang et al., ICCV 2023
Deep models often generalize poorly to new domains such as different 
cities or weather in driving scenes.   Solution:  Domain Transfer
Unsupervised domain adaptation (UDA) allows knowledge transfer 
from synthetic data (source domain), where pixel-level annotations are 
more cheaply available, to real-world data (unlabeled target domain).
Extends DAFormer,  a Transformer-based model for UDA
Our contribution:  A cross-domain attention consistency loss function.
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https://openaccess.thecvf.com/content/ICCV2023/papers/Wang_CDAC_Cross-domain_Attention_Consistency_in_Transformer_for_Domain_Adaptive_Semantic_ICCV_2023_paper.pdf
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Wang et al., ICCV 2023’s Results
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Cityscape                            Synthetic

https://openaccess.thecvf.com/content/ICCV2023/papers/Wang_CDAC_Cross-domain_Attention_Consistency_in_Transformer_for_Domain_Adaptive_Semantic_ICCV_2023_paper.pdf
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