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Camera Transformation Problems
1. Interior Orientation = Camera Calibration = Intrinsic Calibration:

What kind of camera?  
Simple version: Find focal length f and principal point p (= point where optical axis 
intersects image plane) 
Better: Correct for lens distortion, check if angle between x & y axes is 900

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in 
Robotics:

Where is the camera?  Find center of projection of camera, and orientation of 
camera coordinate system in world coordinate system

3. Absolute Orientation  =   Alignment of 2 Cameras or 2 Medical Scans
Find relationship between cameras.  3D coordinates of points are known 

4. Relative Orientation  =   Alignment of 2 Cameras
Find relationship between cameras. 3D coordinates not known, only rays known

CS 585:  Image and Video Computing 
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Camera Transformation Problems: Unknown rotation R & translation r0

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in 
Robotics:
       Where is the camera?  Find center of projection of camera and orientation of 

camera coordinate system in world coordinate system

3. Absolute Orientation  =   Alignment of 2 Cameras or 2 Medical Scans
 Find relationship between cameras.  3D coordinates of points are known 

4. Relative Orientation  =   Alignment of 2 Cameras
 Find relationship between cameras. 3D coordinates not known, only rays known

CS 585:  Image and Video Computing 

Transformation equation:   R rleft + r0  = rright 

Transformation equation:   R rcamera + t  = rworld 
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How can we represent rotation?

• Euler angles:  roll, yaw, pitch  (3 degrees of freedom)
• Quaternions   (more later, to prepare, review imaginary numbers)
• Axis and angle:  Axis is a unit vector  ω (2 degrees of freedom)
                   Angle: θ

Rodriguez’ Formula:
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Most popular representation: Rotation Matrix
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Derivation of Rotation Matrix:

Rotation in the image plane by angle θ :

Original
Position:

Rotated
Position:

θ α1

α2

α2  = α1 + θ 
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R  is an orthonormal matrix = columns (or rows) add up to 1 and are perpendicular to each other (dot product = 0)

RTR =  RRT = I
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Camera Transformation Problems: Unknown rotation R & translation r0

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in 
Robotics:
       Where is the camera?  Find center of projection of camera and orientation of 

camera coordinate system in world coordinate system

3. Absolute Orientation  =   Alignment of 2 Cameras or 2 Medical Scans
 Find relationship between cameras.  3D coordinates of points are known 

4. Relative Orientation  =   Alignment of 2 Cameras
 Find relationship between cameras.  3D coordinates not known, only rays known
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Transformation equation:   R rleft + r0  = rright 

Transformation equation:   R rcamera + t  = rworld 
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Relative Orientation for Binocular Stereo

Goal:  Recovery of position and orientation of one imaging system 
relative to another from correspondences between rays 

Given: 2D coordinates of image points of same world point
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Special Case 
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left image                                                                                                                   right image
    plane                                                                                                                       plane

depth
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Relative Orientation = General Binocular Stereo

Use perspective projection equations:
xleft/fleft  = Xleft /Zleft                               yleft/fleft  = Yleft /Zleft                      

xright/fright  = Xright /Zright              yright/fright  = Yright /Zright

                                                                                                                     
Transformation equation:   R rleft + r0  = rright       R = rotation matrix, r0  = translation
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(xleft ,yleft) 
(xright ,yright)

rleft = (Xleft ,Yleft ,Zleft) rright = (Xright ,Yright ,Zright) 
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Relative Orientation for Binocular Stereo

Transformation equation:   R rleft + r0  = rright       

Unknown:  Rotation matrix R, translation r0 ,  Z coordinates of rleft , rright 
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Relative Orientation for Binocular Stereo

R rleft + r0  = rright       
is equivalent to:

r11 Xleft + r12 Yleft + r13 Zleft+ r14  =  Xright

r21 Xleft + r22 Yleft + r23 Zleft+ r24  =  Yright

r31 Xleft + r32 Yleft + r33 Zleft+ r34  =  Zright

                             
r11 xleft  Zleft /f + r12 yleft Zleft /f + r13 Zleft+ r14  =  xright Zright /f
r21 xleft Zleft /f + r22 yleft Zleft /f + r23 Zleft+ r24  =  yright Zright /f
r31 xleft Zleft /f + r32 yleft Zleft /f + r33 Zleft+ r34  =  Zright Multiply by f/ Zleft 

CS 585:  Image and Video Computing 

r0
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Zleft
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Insert Perspective Projection Equations:
xleft/f  = Xleft /Zleft                     yleft/f = Yleft /Zleft                      
xright/f  = Xright /Zright        yright/f = Yright /Zright
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Relative Orientation for Binocular Stereo

R rleft + r0  = rright       
is equivalent to:

r11 xleft  + r12 yleft + r13 f + r14 f/ Zleft =  xright Zright/Zleft 

r21 xleft + r22 yleft + r23 f + r24  f/Zleft =  yright Zright/Zleft 

r31 xleft + r32 yleft + r33 f + r34  f/Zleft =   f Zright/Zleft 

One measurement pair (xleft,yleft)  and (xright,yright)     =>  3 equations
   with 14 unknowns r11, r12 , …, r34 , and Zright, Zleft  
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Relative Orientation

One measurement pair (xleft,yleft)  and (xright,yright)     =>  3 equations
   with 12 unknown r11, r12 , …, r34  and 2 unknown Zright, Zleft  

Trick:  To solve for 14 unknowns:  
            Use n measurements => 3n equations  
            Find additional equations 

CS 585:  Image and Video Computing 
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R rleft + r0  = rright       

r11 xleft  + r12 yleft + r13 f + r14 f/ Zleft =  xright Zright/Zleft 
r21 xleft + r22 yleft + r23 f + r24  f/Zleft =  yright Zright/Zleft 
r31 xleft + r32 yleft + r33 f + r34  f/Zleft =   f Zright/Zleft 
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Relative Orientation

One measurement pair (xleft,yleft)  and (xright,yright)     =>  3 equations
   with 12 unknown r11, r12 , …, r34 , and 2 unknown Zright, Zleft  

One extra equation:
Scale factor ambiguity  r0, Zright, Zleft 
   kr0, kZright, kZleft   
Force r0  to be unit vector  
 =>   |r0|=1
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Relative Orientation

One measurement pair (xleft,yleft)  and (xright,yright)     =>  3 equations
   with 14 unknowns r11, r12 , …, r34 , and Zright, Zleft  

# unknowns:                  12         for R, r0 
                                         2n         for Zright, Zleft for each of n pairs of measurements 

 12 + 2n  unknowns
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R rleft + r0  = rright       

r11 xleft  + r12 yleft + r13 f + r14 f/ Zleft =  xright Zright/Zleft 
r21 xleft + r22 yleft + r23 f + r24  f/Zleft =  yright Zright/Zleft 
r31 xleft + r32 yleft + r33 f + r34  f/Zleft =   f Zright/Zleft 
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Relative Orientation

One measurement pair (xleft,yleft)  and (xright,yright)     =>  3 equations
   with 14 unknowns r11, r12 , …, r34 , and Zright, Zleft  

Number of equations:  6           for orthonormal R  (columns sum to 1, dot products 0)
                                          1           for unit length translation:  |r0|=1
                                        3n          for 3 equations per measurement pair   

7+ 3n  equations
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r0
R

Zleft
Zright

R rleft + r0  = rright       

r11 xleft  + r12 yleft + r13 f + r14 f/ Zleft =  xright Zright/Zleft 
r21 xleft + r22 yleft + r23 f + r24  f/Zleft =  yright Zright/Zleft 
r31 xleft + r32 yleft + r33 f + r34  f/Zleft =   f Zright/Zleft 
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Relative Orientation

One measurement pair (xleft,yleft)  and (xright,yright)     =>  3 equations
   with 14 unknowns r11, r12 , …, r34 , and Zright, Zleft  

# unknowns:                  12         for R, r0 
                                         2n         for Zright, Zleft for each of n pairs of measurements
Number of equations:  6           for orthonormal R  (columns sum to 1, dot products 0)
                                          1           for unit length translation r0 

                                         3n          for 3 equations per measurement pair
Need at least n = ? measurement pairs:    12 + 2 * n  = 7 + 3*n 
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R rleft + r0  = rright       

r11 xleft  + r12 yleft + r13 f + r14 f/ Zleft =  xright Zright/Zleft 
r21 xleft + r22 yleft + r23 f + r24  f/Zleft =  yright Zright/Zleft 
r31 xleft + r32 yleft + r33 f + r34  f/Zleft =   f Zright/Zleft 
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Relative Orientation

One measurement pair (xleft,yleft)  and (xright,yright)     =>  3 equations
   with 14 unknowns r11, r12 , …, r34 , and Zright, Zleft  

# unknowns:                  12         for R, r0 
                                         2n         for Zright, Zleft for each of n pairs of measurements
Number of equations:  6           for orthonormal R  (columns sum to 1, dot products 0)
                                          1           for unit length translation |r0|=1
                                         3n          for 3 equations per measurement pair
Need at least 5 measurement pairs:    12 + 2 * 5 = 22 = 7 + 3*5 

CS 585:  Image and Video Computing 

r0
R

Zleft
Zright

R rleft + r0  = rright       

r11 xleft  + r12 yleft + r13 f + r14 f/ Zleft =  xright Zright/Zleft 
r21 xleft + r22 yleft + r23 f + r24  f/Zleft =  yright Zright/Zleft 
r31 xleft + r32 yleft + r33 f + r34  f/Zleft =   f Zright/Zleft 
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Relative Orientation

n measurement pairs (xleft,yleft)  and (xright,yright)     =>  3n equations  + 7
   with 14 unknowns r11, r12 , …, r34 , and Zright, Zleft  

Need at least 5 measurement pairs  -- 
Does that mean 5 pairs are enough?
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Relative Orientation

14 unknowns r11, r12 , …, r34 , and Zright, Zleft  
Need at least 5 measurement pairs   
Does that mean 5 pairs are enough?         No – the equations are not linear
                         No – there is likely noise involved  

Nonetheless:  Computer Vision courses and textbooks make this look like a linear 
problem that can be solved using a few measurement pairs.  Methods such as the 8-point 
algorithm, or computing the “fundamental matrix,” are sensitive to noise and numerically 
unstable.  They are not used in practice.   But the math is elegant… 
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r11 xleft  + r12 yleft + r13 f + r14 f/ Zleft =  xright Zright/Zleft 
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r31 xleft + r32 yleft + r33 f + r34  f/Zleft =   f Zright/Zleft 
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The idea to use homogeneous coordinates (first used in projective 
geometry in 1827) for computer vision comes from computer graphics.
Note that task of computer graphics generally is to create images, and 
of computer vision to interpret images, i.e., inverse tasks.
In computer graphics, using homogeneous coordinates is convenient 
because operations such rotation, scaling, translation, and perspective 
projection can be represented as matrices.  A sequence of such 
operations can be represented as a sequence of matrix multiplications, 
enabling fast processing.   Using Cartesian coordinates, perspective 
projection and translation cannot be expressed as matrix 
multiplications.

CS 585:  Image and Video Computing 

“Elegant” Computer Vision Math:  Projective Geometry
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Recall:  Perspective Projection

x = f X/Z

y = f Y/Z
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Cartesian coordinates (=“heterogeneous” coordinates):
Image point (x,y)T = (f X/Z, f Y/Z)T  

Homogeneous coordinates add a dimension 2D->3D,  3D->4D:
Image point (x,y,w)T =                            (X,Y,Z,1)T =  (X, Y, Z/f)T 

Image point (x,y,w)T =                            (X,Y,Z,1)T =  (fX, fY, Z)T 

Both map back to (x,y)T

CS 585:  Image and Video Computing 

“Elegant” Computer Vision Math:  Projective Geometry
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Projection matrix:

Principal Point
shifted (px,py)T :                                             =                                            = K [ I| 0 ]

CS 585:  Image and Video Computing 

Projective Geometry:  Projection Matrix and PP Shift

General 3D to 2D 
perspective projection with
same image & camera 
coordinate origins, z=1

K = 
2D to 2D transformation 
accounting for shift p and 
focal length f
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Projection matrix:

Principal Point
shifted (px,py)T :                                             =                                            = K [ I| 0 ]

CS 585:  Image and Video Computing 

Projective Geometry:  Projection Matrix and PP Shift

General 3D to 2D 
perspective projection with
same image & camera 
coordinate origins, z=1

K = 
2D to 2D transformation 
accounting for shift p and 
focal length f

Camera Calibration
= Intrinsic Calibration
= Find K
= Find pp and f
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Camera Transformation Problems
1. Interior Orientation = Camera Calibration = Intrinsic Calibration:

 What kind of camera?  
 Simple version: Find focal length f and principal point p (= point where optical axis 

intersects image plane) 
 Better: Correct for lens distortion, check if angle between x & y axes is 900 

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in 
Robotics:
       Where is the camera?  Find center of projection of camera, and orientation of 

camera coordinate system in world coordinate system
3. Absolute Orientation  =   Alignment of 2 Cameras or 2 Medical Scans

 Find relationship between cameras.  3D coordinates of points are known 
4. Relative Orientation  =   Alignment of 2 Cameras

 Find relationship between cameras. 3D coordinates not known, only rays known

CS 585:  Image and Video Computing 
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Camera Transformation Problems
1. Interior Orientation = Camera Calibration = Intrinsic Calibration:

 What kind of camera?  
 Simple version: Find focal length f and principal point p (= point where optical axis 

intersects image plane) 
 Better: Correct for lens distortion, check if angle between x & y axes is 900 

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in 
Robotics:
       Where is the camera?  Find center of projection of camera, and orientation of 

camera coordinate system in world coordinate system

CS 585:  Image and Video Computing 

Transformation equation:   R rcamera + t  = rworld 
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Camera Transformation Problems
Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in Robotics:

       Where is the camera?  Find center of projection of camera, and orientation of
 camera coordinate system in world coordinate system

CS 585:  Image and Video Computing 

Transformation equation:   R rcamera + t  = rworld 
R rcamera = rworld - t

RTR rcamera = RT  (rworld – t)
rcamera = RT  (rworld – t)                          R here is 
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Camera Transformation Problems
Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in Robotics:

       Where is the camera?  Find center of projection of camera, and orientation of
 camera coordinate system in world coordinate system

In homogeneous coordinates:   rcamera  =                                rworld   or

rworld    =                           rcamera  
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Transformation equation:   R rcamera + t  = rworld 
R rcamera = rworld - t

RTR rcamera = RT  (rworld – t)
rcamera = RT  (rworld – t)                          R here is 

CW2C

CC2W

1x3

3x3

heterogenous (= ‘regular’)  
3D vectors rcamera, rworld, t 

homogeneous 4D vectors 
rcamera, rworld, t 

~

~

~

~

~

~

~

~

~
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      rimage     = K [ I| 0 ] CW2C rworld 
  
      rimage  = P rworld                (also written as π(rworld) for projection)

Warning:  This notation is dangerous…  This is NOT a linear equation.
                   See also: Horn’s “Projective Geometry Considered Harmful” 
    https://people.csail.mit.edu/bkph/articles/Harmful.pdf
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Projective Geometry:  
Mapping World Coordinates to Image Coordinates

rimage = rcamera=                                                             rworld ~

~

~

~

~

~ ~

~

Interior calibration                              exterior calibrationInterior calibration

https://people.csail.mit.edu/bkph/articles/Harmful.pdf
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Assumptions:
• At least 2 cameras
• Intrinsic camera parameters are known (f, pp) 
• Extrinsic camera parameters are known (mapping from each camera to the 

world coordinate system or mapping from one camera to the other) 
Using these parameters, we can plug into the binocular stereo eq’s to compute  
3D coordinates of rworld from a matching pair of image points rimage1 & rimage2 
If no error:  |πi (rworld)- rimage,i |=0
But likely errors, so use a least squares approach:

 rworld,best = argmin   Σ  |πi (rworld)- rimage,i |2

Triangulation:  Computing World Coordinates 



Stereoscopic 3D Reconstruction with Triangulation

3D position 
of bat

left camera                                               right camera
Lisa Premerlani, 2007
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Camera Transformation Problems:

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in 
Robotics:
       Where is the camera?  Find center of projection of camera and orientation of 

camera coordinate system in world coordinate system

4. Relative Orientation  =   Alignment of 2 Cameras
 Find relationship between cameras. 3D coordinates not known, only rays known

If 2. or 4. are solved, you can use triangulation to compute 3D points

CS 585:  Image and Video Computing 

Transformation equation:   R rleft + r0  = rright 

Transformation equation:   R rcamera + t  = rworld 
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• Longuet-Higgins’ 8-point Algorithm  (1981):    
                                 (xleft ,yleft ,1 )T F   (xright ,yright ,1)  = 0
F is called the 3x3 “fundamental matrix”  (use homogeneous coordinates)
Algorithm is sensitive to how accurate point pairs were located ( = numerically unstable)

• Variations of the 8-point Algorithm
         e.g. Hartley’s Normalized 8-point algorithm (1997)
• Horn's Iterative Relative Orientation Method, 1990.  Does not use 

homogeneous coordinates
• Bundle Adjustment:  Bundles of light rays, originating from 3D points, used 

to adjust estimates of camera parameters and depths

CS 585:  Image and Video Computing 

Methods to Solve the Problem of General
Binocular Stereo Reconstruction = Relative Orientation

https://people.csail.mit.edu/bkph/articles/Relative_Orientation_Revisited_TeX.pdf
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Multi-Camera Stereo

2

i1 is projection of scene point P1 
i2 is projection of scene point P2
in view of camera C1

View 
from 
above: 
Z axis = 
direction 
of 
gravity



© Betke CS 585:  Image and Video Computing 

Multi-Camera Stereo

2

i1 could be projection of scene point G1 
i2 could projection of scene point G2
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3rd Camera resolves the ambiguity:  
G1 and G2 are “ghosts” (non-existing points)
P1 and P2 are the true scene points
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Green line is ray from P1 into camera C3. 
It appears as an “epipolar line” in the image 
of camera C1
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Discuss with your neighbor:  
• What does the orange line in C1 represent?
• What do the green/red lines in C2 represent?
• What do the red/orange lines in C3 represent?
• Why do the lines in C1, C2, and C3 intersect in  
    i1, i3, and i5 ?

View from above:



© Betke CS 585:  Image and Video Computing 

The green line is the ray from P1 
into the 3rd camera. 
The orange line is the ray from P1 
into the 2nd camera. 

They appear as “epipolar lines” 
in the image of camera C1  and 
must intersect at the same image 
point i1.
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P1 is imaged in the intersection 

The green and red epipolar lines in the camera C2 
intersect at image point i3.  
The orange and red epipolar lines in the camera C3 
intersect at image point i5 
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How to use epipolar lines for bat tracking:

CS 585:  Image and Video Computing 
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Used a lighter to register the 
two cameras in time

CS 585:  Image and Video Computing 

Temporal Calibration
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Epipolar Geometry

left image                                                                                                                   right image
    

Image Credit: OpenCV.org
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Epipolar Geometry

CoPleft

* *
CoPright

left image                                                                                                                   right image
    plane                                                                                                                       plane

*
3D scene
point M

M’

M’’’

M’’

Baseline b =
Distance between 

Center of Projections (CoPs)

mr’’’
mr’

mr’’
mr

eright_epipole

Formal Definition:
1. All possible scene points M   (M’, M’’, …)  that 

produce image mleft are on a half line through  
mleft and CoPleft

2. All possible images mr of M are images of this 
half line called “epipolar line.” 

3. The image of CoPleft in the right image plane is 
called “epipole”    i.e., eright_epipole

mleft



Using Epipolar Geometry to Estimate Camera Motion 
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Image Credit: Hartley & Zisserman, 2004

Sideway
Camera
Motion:

Epipole
=

Vanishing
Point

Forward
Camera
Motion:

Epipole
=

Focus of
Expansion
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Remember from Linear Algebra:

• The dot product of two perpendicular vectors is  zero.
• The cross product of two co-planar vectors computes a vector 

perpendicular to the plane the vectors span.
• The vector cross product can be expressed as the product of a skew-

symmetric matrix and a vector:  t x b =[t]x b

CS 585:  Image and Video Computing 
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Derivation of the “Fundamental Matrix:”
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t

R

rcamera,left 

rworld

rcamera,right

Pleft =K[I|0] Pright =K[R|t]

rcamera,right = R (rcamera,left - t)   or
 (rcamera,left - t)T = rcamera,right T R

These three vectors are
 in the same plane:
               t, rcamera,left, rcamera,right

rcamera,left 
T (t  X rcamera,left ) = 0

Cross product

Dot product

(rcamera,left – t )T (t  X rcamera,left ) = 0
rcamera,right T R (t  X rcamera,left ) = 0

rcamera,right T R ([t]x rcamera,left ) = 0

rcamera,right T (R [t]x ) rcamera,left = 0

Here both 3D heterogeneous or 
4D homogeneous coordinates 
can be used
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Derivation of the “Fundamental Matrix:”
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t

R

rcamera,left 

rworld

rcamera,right

Pleft =K[I|0] Pright =K[R|t]

rcamera,right T (R [t]x ) rcamera,left = 0

               “Essential matrix” E

rcamera,right T   E  rcamera,left = 0

rimage,right T Kright
-T E Kleft

-1 rimage,left = 0

            “Fundamental matrix” F

rimage,right T   F  rimage,left = 0

Epipolar lines:                 Epipoles: 
Lright= E rcamera,left               E eleft = 0
Lleft= ET rcamera,right             eright

T E = 0

~ ~

~ ~

~
~~

~

~
~ tT E = 0 ~

F is of rank 2 

~ ~

~~

Here use 4D homogeneous coordinates 



© Betke 

• Longuet-Higgins’ 8-point Algorithm  (1981):    
                                 (xleft ,yleft ,1 )T F   (xright ,yright ,1)  = 0
F is called the 3x3 “fundamental matrix”  (use homogeneous coordinates)
Algorithm is sensitive to how accurate point pairs were located ( = numerically unstable)

• Variations of the 8-point Algorithm
         e.g. Hartley’s Normalized 8-point algorithm (1997)
• Horn's Iterative Relative Orientation Method, 1990.  Does not use 

homogeneous coordinates
• Bundle Adjustment: Bundles of light rays, originating from 3D points, used 

to adjust estimates of camera parameters and depths
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Methods to Solve the Problem of 
General Binocular Stereo Reconstruction

https://people.csail.mit.edu/bkph/articles/Relative_Orientation_Revisited_TeX.pdf
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Longuet-Higgins’ 8-point Algorithm  (1981):    
 

Algorithm is sensitive to how accurate point pairs were 
located ( = numerically unstable)

CS 585:  Image and Video Computing 

Methods to Solve the Problem of 
General Binocular Stereo Reconstruction
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Use 8 matching points in both views to create matrix U: 

Compute f as                                          by finding an Eigenvector of UTU 

Result likely produces a matrix F that is not singular.  Trick:  To enforce rank 2, take the 
single-value decomposition UΣVT of F and remove the smallest eigenvalue of  Σ.

CS 585:  Image and Video Computing 

Longuet-Higgins’ 8-point Algorithm for Binocular Stereo Reconstruction 
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Hartley’s Normalized 8-point algorithm
Note that the entries in matrix U vary by orders of magnitude:
                                                 106    106 103                   ….                         1 
                          

This causes numerical instability. 
Trick: Rescale pixels so that mean squared difference is 2.
           Compute F.  Enforce singularity.  Scale back entries.  Compute R&t.                        
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Horn's Iterative Relative Orientation Method, 1990, computes R & t from 
corresponding rays.  It does not use homogeneous coordinates (or F).
Also uses co-planarity of  vectors t, rcamera,left, rcamera,right to define an error 
function to minimize
Uses a least squares approach to include n matching 2D point pairs 
Uses a quaternion representation (we will see more about quaternions later)
Minimization is constrained by equations that express the physical properties 
of the problem (i.e., constraints on rotation matrix)  
Resulting algorithm iteratively improves error (usually < 10 iterations needed)
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Horn’s Method -- “Relative Orientation” for Binocular 
Stereo Reconstruction:   Compute R & t

https://people.csail.mit.edu/bkph/articles/Relative_Orientation_Revisited_TeX.pdf
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Special Case Parallel Optical Axes: R & t given 

left image                                                                                                                   right image
    

Image Credit: Scharstein, 2014
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left image
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Image Credit: OpenCV.org

right image
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Finding Matching Points:  Follow Epipolar Lines & Template Match

left image                                                                                                                   right image
    

Epipolar lines are parallel =  along image rows  (epipoles are at infinity)

Algorithm:  Find corresponding points in same image rows via template matching (use normalized correlation 

coefficient to compute the match)  
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Result of Binocular Stereo Matching:
Depth Map  

CS 585:  Image and Video Computing 

Z = bf/ δ

http://vision.middlebury.edu/stereo/data/scenes2014/
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Parallel Optical Axes & Active Stereo with Structured Light

Illuminant                  Illuminant on Scene

L. Zhang, B. Curless, and S. M. Seitz. 
Rapid Shape Acquisition Using Color 
Structured Light and Multi-pass Dynamic 
Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
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Parallel Optical Axes & Active Stereo with Structured Light

Active depth sensors that use IR:
Kinect and iPhone, starting with 
iPhone X
Apple Face ID

Illuminant                  Illuminant on Scene

L. Zhang, B. Curless, and S. M. Seitz. 
Rapid Shape Acquisition Using Color 
Structured Light and Multi-pass Dynamic 
Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
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Active stereo with structured light

Image credit: Li Zhang
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Active stereo with structured light

View without 
structured light

Image credit: Li Zhang



© Betke 

Active stereo with structured light

Project “structured” light patterns onto the object
simplifies the correspondence problem Image credit: Li Zhang
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Active stereo with structured light

Image credit: Li Zhang



With the special case geometry – i.e., parallel optical axes, scene 
reconstruction is so much easier.  

Why don’t we use it instead of the general case?  
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Rectification of Binocular Stereo Images:  Undo Foreshortening

Image Source: 

Loop and Zhang, CVPR 1999

Why?

Epipolar lines are
now parallel,
enabling a simple
search for corresponding
points along image 
rows

https://ieeexplore.ieee.org/document/786928


Rectification of Binocular Stereo Images:  Undo Foreshortening
How?
Iterative Scheme

We want
Ileft (x + δ/2,y) = Iright (x –δ/2,y)

Least Squares Method:

minδ  Σp [Ileft (x + δ/2,y) - Iright (x –δ/2,y) ]2

p = patch   
size of patch p:  tradeoff
              too small  instability  
              too large   smearing
   
Algorithm:
Use current estimate of disparity δ
to warp 
Then solve LSM  & update disparity



Debevec, Taylor, & Malik. Modeling and Rendering Architecture from Photographs. SIGGRAPH 1996. 

key image offset image
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https://www.pauldebevec.com/Research/debevec-siggraph96-paper.pdf


Debevec, Taylor, & Malik. Modeling and Rendering Architecture from Photographs. SIGGRAPH 1996. 

key image warped offset image

depth map
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https://www.pauldebevec.com/Research/debevec-siggraph96-paper.pdf
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1. “Weak Calibration”
• If needed: Use rectification to ensure epipolar lines are along image rows
• Find corresponding points in both views and calculate disparity δ
• Compute depth:  Z = bf/δ  

2. “Strong Calibration”
• Calibrate each camera (= interior orientation): f, pp  
• Find geometric transformation of cameras (= relative orientation):  R, t
• Find 3D coordinates

CS 585:  Image and Video Computing 

Binocular Stereo Solution Paths:  2 Alternatives
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1. “Weak Calibration”
• If needed: Use rectification to ensure epipolar lines are along image rows
• Find corresponding points in both views and calculate disparity δ
• Compute depth:  Z = bf/δ  

2. “Strong Calibration”
• Calibrate each camera (= interior orientation): f, pp  
• Find geometric transformation of cameras (= relative orientation):  R, r0
• Find 3D coordinates via triangulation

In our animal tracking research, “strong calibration” was the better solution
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Binocular Stereo Solution Paths:  2 Alternatives
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Binocular Stereo Solution Path:  “Strong Calibration”

Wand = calibration object

Throw wand in the air several times
(mark out bird flying space)

Identify wand position in all views
Take advantage of knowing the
     dimensions of the wand

Estimate R and r0 Images & Method: 
Theriault et al. 2014
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Binocular Stereo Solution Path:  “Strong Calibration”
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Binocular Stereo for 3D Bird Flight Analysis  

Images & Method: 
Theriault et al. 2014
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Calibration tool for thermal infrared cameras &
Large Observation Spaces

Images & Method: 
Theriault et al. 2014

Calibration tool with heat and ice packs
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Calibration Apparatus and Reconstructed Points
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Binocular Stereo Solution Path:  “Strong Calibration”

Indoor scenario is much easier:  

Instead of wand,  use “checker board” 
     as calibration device

Take many images at different 
     positions & orientations

Image Source:  Jean-Yves Bouguet
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Binocular Stereo Solution Path:  “Strong Calibration”

Indoor scenario is much easier:  

Instead of wand,  use “checker 
board” as calibration device

Take many images at different 
     positions & orientations

Use 
https://data.caltech.edu/recor
ds/jx9cx-fdh55
Or OpenCV

Image Source:  Jean-Yves Bouguet

https://data.caltech.edu/records/jx9cx-fdh55
https://data.caltech.edu/records/jx9cx-fdh55
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Code from my 
Research Lab:

Written by
Diane Theriault

Published in

Theriault et al., 
J Exp Biology, 2014

https://journals.biologists.com/jeb/article/217/11/1843/12138/A-protocol-and-calibration-method-for-accurate
https://journals.biologists.com/jeb/article/217/11/1843/12138/A-protocol-and-calibration-method-for-accurate


Reconstruction Uncertainty
Reconstruction uncertainty due to quantization 
effects is shown for six hypothetical camera 
configurations. The cameras were simulated to have 
a pixel width of 18 μm and a field-of-view angle of 
40.5 deg, and be positioned at a fixed height Z and 
aimed at a common, equidistant fixation point 
F=(0,0,Z). Horizontal cuts of the 3D view frustums of 
the cameras at height Z and lines at Dmax=20 are 
shown from above. 
Placing the cameras further apart reduces 
reconstruction uncertainty (A versus B). 
If the cameras are placed too far apart (C), however, 
the view volume is ‘closed’, and there are 
unobservable regions of space where the cameras 
will be looking past each other. 
If the distance between the outermost cameras is 
held constant, adding additional cameras may not 
decrease the uncertainty due to image quantization 
in the common observable region (D versus E). 
If the image planes of the cameras are parallel (F), 
the common view volume is smaller and further 
away from the cameras than in the other 
configurations. 
These 2D cuts of the 3D view frustrums are at the 
level and elevation angle of the cameras; cuts at a 
different level or angle would show slightly greater 
reconstruction uncertainty but similar trends.

CS 585:  Image and Video Computing 
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What is the impact on 3D reconstruction if the 
location detector is inaccurate?

Can the impact be quantified?

Field biologists really like to know how accurate 
the 3D estimates are!
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Reconstruction uncertainty due to quantization and resolution issues is shown. In a video frame obtained for a 
flight study (A), the automatically detected locations of the animals may not be at their centers (colored dots in B). 
When estimating reconstruction uncertainty (C,D), we include this effect by corrupting the image projections of 
simulated world points, generated throughout the whole space, with Gaussian noise where the standard deviation 
is one-sixth of the calculated apparent size of an animal at that location (circles in B). When estimating the 
reconstruction uncertainty, including image location ambiguity (D) increases the estimated uncertainty more than 
threefold over image quantization alone (C) (note the change in color scale)
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First paper on Multiview Stereo and Using Internet Photo Collections to 
Reconstruct Scenes
Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007
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http://grail.cs.washington.edu/projects/mvscpc/
https://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf


First paper on Multiview Stereo and Using Internet Photo Collections to 
Reconstruct Scenes
Goesele, Snavely, et al., ICCV 2007,                Snavely PhD thesis 2008
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http://grail.cs.washington.edu/projects/mvscpc/
https://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf
https://www.cs.cornell.edu/%7Esnavely/publications/thesis/thesis.pdf
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Bundle Adjustment
1950’s photogrammetry technique
Name:  Bundles of light rays, originating from 3D points, used to adjust estimates

Goal:  Solve simultaneously for 3D scene reconstruction and 
 intrinsic & extrinsic parameters of each camera
Technique:  Non-linear least squares method  (use a package, e.g., ceres-solver.org)

Cost function to minimize:  Reprojection error between the image locations of    
                  observed and predicted image points

where πi is the mapping from an estimated 3D point into ith camera view

CS 585:  Image and Video Computing 
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Bundle Adjustment is used to solve 
Structure-from-Motion Problems

Structure-from-Motion Problem:
Find 3D scene coordinates (here called “structure”) from a moving 
camera
Camera is usually calibrated (i.e., we have intrinsic parameters f and pp)
Motion of camera yields a video where each frame has transformation 
parameters R & t that need to be estimated
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Schonberger & Frahm, CVPR, 2016: Structure-from-Motion Revisited

Iterative Bundle Adjustment Algorithm:  
Input: Images of scene or object taken by different cameras from different viewpoints
Preprocessing:  
1. Extract features
2. Match corresponding features
3. Compute “scene graph” (definition: nodes=images, edges=camera transformation is plausible)
4. Initialize reconstruction based on 2 cameras in dense part of scene graph

Repeat: 
1. Register a new image robustly to current 3D reconstruction 
2. Add newly triangulated 3D points to current 3D reconstruction
3. Apply Bundle Adjustment to update current 3D reconstruction and camera parameters

Output: 3D reconstruction of scene or object
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https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf


© Betke CS 585:  Image and Video Computing Schonberger & Frahm, CVPR 2016

https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf


MIT’s 6.8300/6.8301 Advances in Computer Vision:  Vincent Sitzmann’s Lection on 
Multi-view Geometry  in Spring 2023
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Deep Learning Attempts at 3D Reconstruction

• Unsupervised Learning of Depth and Ego-Motion from Video, Zhou et 
al., CVPR 2017

• Deep Fundamental Matrix Estimation without Correspondences, 
Poursaeed et al., 2018

• BARF: Bundle-Adjusting Neural Radiance Fields, Lin et al., ICCV 2021
• The 8-Point Algorithm as an Inductive Bias for Relative Pose 

Prediction by ViTs, Rockwell et al., 2022
• Input-level Inductive Biases for 3D Reconstruction, Yifan et al., CVPR 

2022
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https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_Unsupervised_Learning_of_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_Unsupervised_Learning_of_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11131/Poursaeed_Deep_Fundamental_Matrix_Estimation_without_Correspondences_ECCVW_2018_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Lin_BARF_Bundle-Adjusting_Neural_Radiance_Fields_ICCV_2021_paper.pdf
https://arxiv.org/pdf/2208.08988.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Yifan_Input-Level_Inductive_Biases_for_3D_Reconstruction_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Yifan_Input-Level_Inductive_Biases_for_3D_Reconstruction_CVPR_2022_paper.pdf
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Parallel Tracking and Mapping for Small AR Workspaces
Klein & Murray, ISMAR 2007

https://www.youtube.com/watch?v=Y9HMn6bd-v8

Uses bundle adjustment
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https://www.robots.ox.ac.uk/%7Egk/publications/KleinMurray2007ISMAR.pdf
https://www.youtube.com/watch?v=Y9HMn6bd-v8
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The Fundamental Matrix Song, Daniel Wedge:

CS 585:  Image and Video Computing 

https://www.youtube.com/watch?v=DgGV3l82NTk


Learning Objectives
You should be able to explain:

• Camera transformation problems
• Different representations of 

rotation
• Multiple measurement pairs 

(corresponding pixels in left & right 
cameras) are needed to 
reconstruct 3D coordinates of 
scene points

• Triangulation
• Epipolar geometry

• Projective geometry derivation of the 
fundamental matrix F

• Methods to compute F, R & t 
• Special case of parallel optical axes
• Active stereo
• Weak & strong calibration
• Structure from motion
• Iterative Bundle Adjustment

CS 585:  Image and Video Computing 
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