Camera Calibration, Binocular Stereo, Part 2 Multiview Stereo
 Epipolar Geometry
 Methods for Binocular Scene Reconstruction

Lecture by Margrit Betke, CS 585, March 21, 26, \& 28, 2024

Camera Transformation Problems

1. Interior Orientation = Camera Calibration = Intrinsic Calibration:

What kind of camera?
Simple version: Find focal length f and principal point \mathbf{p} (= point where optical axis intersects image plane)
Better: Correct for lens distortion, check if angle between $x \& y$ axes is 90°
2. Exterior Orientation $=$ Extrinsic Calibration $=$ Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera, and orientation of camera coordinate system in world coordinate system
3. Absolute Orientation $=$ Alignment of 2 Cameras or 2 Medical Scans

Find relationship between cameras. 3D coordinates of points are known
4. Relative Orientation $=$ Alignment of 2 Cameras

Find relationship between cameras. 3D coordinates not known, only rays known

Camera Transformation Problems: Unknown rotation R \& translation r_{0}

Transformation equation: $R r_{\text {camera }}+\mathbf{t}=r_{\text {world }}$
2. Exterior Orientation $=$ Extrinsic Calibration $=$ Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera and orientation of camera coordinate system in world coordinate system

Transformation equation: $R r_{\text {left }}+r_{0}=r_{\text {right }}$
3. Absolute Orientation $=$ Alignment of 2 Cameras or 2 Medical Scans

Find relationship between cameras. 3D coordinates of points are known
4. Relative Orientation = Alignment of 2 Cameras

Find relationship between cameras. 3D coordinates not known, only rays known

How can we represent rotation?

- Euler angles: roll, yaw, pitch (3 degrees of freedom)
- Quaternions (more later, to prepare, review imaginary numbers)
- Axis and angle: Axis is a unit vector ω (2 degrees of freedom) Angle: θ
Rodriguez' Formula:

$$
\mathbf{r}^{\prime}=\mathbf{r} \cos \theta+(\hat{\boldsymbol{\omega}} \cdot \mathbf{r}) \hat{\boldsymbol{\omega}}(1-\cos \theta)+(\hat{\boldsymbol{\omega}} \times \mathbf{r}) \sin \theta
$$

$$
\boldsymbol{\omega} \times \mathbf{r}=\left(\begin{array}{l}
\omega_{2} r_{3}-\omega_{3} r_{2} \\
\omega_{3} r_{1}-\omega_{1} r_{3} \\
\omega_{1} r_{2}-\omega_{2} r_{1}
\end{array}\right)
$$

Most popular representation: Rotation Matrix

Derivation of Rotation Matrix:

Rotation in the image plane by angle θ :
Original
Position:

Rotated
Position:

$$
\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)=\left(\begin{array}{c}
r \cos \alpha_{2} \\
r \sin \alpha_{2} \\
1
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{c}
r \cos \left(\alpha_{1}+\theta\right) \\
r \sin \left(\alpha_{1}+\theta\right) \\
1
\end{array}\right)=\left(\begin{array}{c}
r \cos \alpha_{1} \cos \theta-r \sin \alpha_{1} \sin \theta \\
r \sin \alpha_{1} \cos \theta+r \cos \alpha_{1} \sin \theta \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
x_{1} \cos \theta-y_{1} \sin \theta \\
y_{1} \cos \theta+x_{1} \sin \theta \\
1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right):\left(\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right)
\end{aligned}
$$

$$
R^{\top} R=R R^{\top}=I
$$

R is an orthonormal matrix = columns (or rows) add up to 1 and are perpendicular to each other (dot product $=0$)

Camera Transformation Problems: Unknown rotation R \& translation r_{0}

Transformation equation: $R r_{\text {camera }}+\mathbf{t}=r_{\text {world }}$
2. Exterior Orientation $=$ Extrinsic Calibration $=$ Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera and orientation of camera coordinate system in world coordinate system

Transformation equation: $R r_{\text {left }}+r_{0}=r_{\text {right }}$
3. Absolute Orientation $=$ Alignment of 2 Cameras or 2 Medical Scans

Find relationship between cameras. 3D coordinates of points are known
4. Relative Orientation = Alignment of 2 Cameras

Find relationship between cameras. 3D coordinates not known, only rays known

Relative Orientation for Binocular Stereo

Goal: Recovery of position and orientation of one imaging system relative to another from correspondences between rays

Given: 2D coordinates of image points of same world point

Special Case

3D
scene

Z = bf/ $\boldsymbol{\delta}$

Relative Orientation = General Binocular Stereo

Use perspective projection equations:

$$
\begin{array}{ll}
x_{\text {leff }} / f_{\text {left }}=x_{\text {left }} / z_{\text {left }} & y_{\text {leff }} / f_{\text {left }}=Y_{\text {left }} / z_{\text {left }} \\
x_{\text {right }} / f_{\text {right }}=x_{\text {right }} / z_{\text {right }} & y_{\text {right }} / f_{\text {right }}=Y_{\text {right }} / z_{\text {right }}
\end{array}
$$

Transformation equation: $R r_{\text {left }}+\mathbf{r}_{0}=r_{\text {right }} \quad R=$ rotation matrix, $\mathbf{r}_{0}=$ translation

Relative Orientation for Binocular Stereo

Transformation equation: $R r_{\text {left }}+\mathbf{r}_{0}=r_{\text {right }}$

Unknown: Rotation matrix R, translation \mathbf{r}_{0}, Z coordinates of $r_{\text {left }}, r_{\text {right }}$

Relative Orientation for Binocular Stereo

$$
R r_{\text {left }}+r_{0}=r_{\text {right }}
$$

is equivalent to:

$$
\begin{aligned}
& r_{11} X_{\text {left }}+r_{12} Y_{\text {left }}+r_{13} Z_{\text {left }}+r_{14}=X_{\text {right }} \\
& r_{21} X_{\text {left }}+r_{22} Y_{\text {left }}+r_{23} Z_{\text {left }}+r_{24}=Y_{\text {right }} \\
& r_{31} X_{\text {left }}+r_{32} Y_{\text {left }}+r_{33} Z_{\text {left }}+r_{34}=Z_{\text {right }}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Insert Perspective Projection Equations: } \\
x_{\text {left }} / f=x_{\text {left }} / Z_{\text {left }} & y_{\text {left }} / f=Y_{\text {left }} / Z_{\text {left }} \\
x_{\text {right }} / f=X_{\text {right }} / Z_{\text {right }} & y_{\text {right }} / f=Y_{\text {right }} / Z_{\text {right }}
\end{array}
$$

$$
\begin{aligned}
& r_{11} x_{\text {left }} Z_{\text {left }} / f+r_{12} y_{\text {left }} Z_{\text {left }} / f+r_{13} z_{\text {left }}+r_{14}=x_{\text {right }} z_{\text {right }} / f \\
& r_{21} x_{\text {left }} z_{\text {left }} / f+r_{22} y_{\text {left }} Z_{\text {left }} / f+r_{23} z_{\text {left }}+r_{24}=y_{\text {right }} z_{\text {right }} / f \\
& r_{31} x_{\text {left }} z_{\text {left }} / f+r_{32} y_{\text {left }} z_{\text {left }} / f+r_{33} z_{\text {left }}+r_{34}=Z_{\text {right }}
\end{aligned}
$$

Multiply by $f / Z_{\text {left }}$

Relative Orientation for Binocular Stereo

$$
R r_{\text {left }}+r_{0}=r_{\text {right }}
$$

is equivalent to:

$$
\begin{aligned}
& r_{11} x_{\text {left }}+r_{12} y_{\text {left }}+r_{13} f+r_{14} f / Z_{\text {left }}=x_{\text {right }} Z_{\text {right }} / Z_{\text {left }} \\
& r_{21} x_{\text {left }}+r_{22} y_{\text {left }}+r_{23} f+r_{24} f / Z_{\text {left }}=y_{\text {right }} Z_{\text {right }} / Z_{\text {left }} \\
& r_{31} x_{\text {left }}+r_{32} y_{\text {left }}+r_{33} f+r_{34} f / Z_{\text {left }}=Z_{\text {right }} / Z_{\text {left }}
\end{aligned}
$$

One measurement pair ($\mathrm{x}_{\text {left }}, y_{\text {left }}$) and ($\mathrm{x}_{\text {right }}, y_{\text {right }}$) => 3 equations with 14 unknowns $r_{11}, r_{12}, \ldots, r_{34}$, and $Z_{\text {right }}, Z_{\text {left }}$

Relative Orientation

$r_{11} x_{\text {left }}+r_{12} y_{\text {left }}+r_{13} f+r_{14} f / z_{\text {left }}=x_{\text {right }} z_{\text {right }} / z_{\text {left }}$
$r_{21} x_{\text {left }}+r_{22} y_{\text {left }}+r_{23} f+r_{24} f / Z_{\text {left }}=y_{\text {right }} z_{\text {right }} / z_{\text {left }}$
$r_{31} x_{\text {left }}+r_{32} y_{\text {left }}+r_{33} f+r_{34} f / Z_{\text {left }}=Z_{\text {right }} / z_{\text {left }}$

One measurement pair ($\left(\mathrm{x}_{\text {left }}, y_{\text {left }}\right)$ and ($\mathrm{x}_{\text {right }}, \mathrm{y}_{\text {right }}$) => 3 equations with 12 unknown $r_{11}, r_{12}, \ldots, r_{34}$ and 2 unknown $Z_{\text {right }}, Z_{\text {left }}$

Trick: To solve for 14 unknowns:
Use n measurements $=>3 n$ equations
Find additional equations

Relative Orientation

$r_{11} x_{\text {left }}+r_{12} y_{\text {left }}+r_{13} f+r_{14} f / Z_{\text {left }}=x_{\text {right }} Z_{\text {right }} / Z_{\text {left }}$
$r_{21} x_{\text {left }}+r_{22} y_{\text {left }}+r_{23} f+r_{24} f / Z_{\text {left }}=y_{\text {right }} Z_{\text {right }} / Z_{\text {left }}$
$r_{31} x_{\text {left }}+r_{32} y_{\text {left }}+r_{33} f+r_{34} f / Z_{\text {left }}=Z_{\text {right }} / Z_{\text {left }}$

One measurement pair ($\mathrm{x}_{\text {left }}, \mathrm{y}_{\text {left }}$) and ($\mathrm{x}_{\text {right }}, \mathrm{y}_{\text {right }}$) => 3 equations with 12 unknown $r_{11}, r_{12}, \ldots, r_{34}$, and 2 unknown $Z_{\text {right }}, Z_{\text {left }}$

One extra equation:
Scale factor ambiguity $\mathbf{r}_{0}, Z_{\text {right }}, Z_{\text {left }}$
$\Leftrightarrow k r_{0}, k Z_{\text {right }}, k Z_{\text {left }}$
Force \mathbf{r}_{0} to be unit vector
$\Rightarrow\left|r_{0}\right|=1$
kr_{0}

Relative Orientation

$r_{11} x_{\text {left }}+r_{12} y_{\text {left }}+r_{13} f+r_{14} f / z_{\text {left }}=x_{\text {right }} z_{\text {right }} / z_{\text {left }}$
$r_{21} x_{\text {left }}+r_{22} y_{\text {left }}+r_{23} f+r_{24} f / z_{\text {left }}=y_{\text {right }} z_{\text {right }} / z_{\text {left }}$
$r_{31} x_{\text {left }}+r_{32} y_{\text {left }}+r_{33} f+r_{34} f / Z_{\text {left }}=Z_{\text {right }} / z_{\text {left }}$

One measurement pair ($\mathrm{x}_{\text {left }}, y_{\text {left }}$) and ($\mathrm{x}_{\text {right }}, \mathrm{y}_{\text {right }}$) => 3 equations with 14 unknowns $r_{11}, r_{12}, \ldots, r_{34}$, and $Z_{\text {right }}, Z_{\text {left }}$

```
# unknowns:
12 for R, ro
2n for }\mp@subsup{Z}{\mathrm{ right }}{},\mp@subsup{Z}{left }{}\mathrm{ for each of n pairs of measurements
```

$12+2 n$ unknowns

Relative Orientation

$r_{11} x_{\text {left }}+r_{12} y_{\text {left }}+r_{13} f+r_{14} f / Z_{\text {left }}=x_{\text {right }} Z_{\text {right }} / Z_{\text {left }}$
$r_{21} x_{\text {left }}+r_{22} y_{\text {left }}+r_{23} f+r_{24} f / Z_{\text {left }}=y_{\text {light }} Z_{\text {right }} / Z_{\text {left }}$
$r_{31} x_{\text {left }}+r_{32} y_{\text {left }}+r_{33} f+r_{34} f / Z_{\text {left }}=Z_{\text {right }} / Z_{\text {left }}$

One measurement pair ($\mathrm{x}_{\text {left }}, \mathrm{y}_{\text {left }}$) and ($\mathrm{x}_{\text {right }}, \mathrm{y}_{\text {right }}$) => 3 equations with 14 unknowns $r_{11}, r_{12}, \ldots, r_{34}$, and $Z_{\text {right }}, Z_{\text {left }}$

Number of equations: 6
1 for unit length translation: $\left|r_{0}\right|=1$
$3 n \quad$ for 3 equations per measurement pair
$7+3 n$ equations

Relative Orientation

$$
\begin{aligned}
& r_{11} x_{\text {left }}+r_{12} y_{\text {left }}+r_{13} f+r_{14} f / Z_{\text {left }}=x_{\text {righ }} z_{\text {right }} / Z_{\text {left }} \\
& r_{21} x_{\text {left }}+r_{22} y_{\text {left }}+r_{23} f+r_{24} f / Z_{\text {left }}=y_{\text {right }} z_{\text {right }} / z_{\text {left }} \\
& r_{31} x_{\text {left }}+r_{32} y_{\text {left }}+r_{33} f+r_{34} f / Z_{\text {left }}=Z_{\text {right }} / z_{\text {left }}
\end{aligned}
$$

One measurement pair ($\mathrm{x}_{\text {left }}, y_{\text {left }}$) and ($\mathrm{x}_{\text {right }}, \mathrm{y}_{\text {right }}$) => 3 equations with 14 unknowns $r_{11}, r_{12}, \ldots, r_{34}$, and $Z_{\text {right }}, Z_{\text {left }}$
\# unknowns:
12 for $\mathrm{R}, \mathrm{r}_{0}$
$2 n \quad$ for $Z_{\text {right }}, Z_{\text {left }}$ for each of n pairs of measurements
Number of equations: 6 for orthonormal R (columns sum to 1 , dot products 0)
1 for unit length translation r_{0}
$3 n \quad$ for 3 equations per measurement pair
Need at least $\mathrm{n}=$? measurement pairs: $12+2$ * $\mathrm{n}=7+3 * \mathrm{n}$

Relative Orientation

$$
\begin{aligned}
& r_{11} x_{\text {left }}+r_{12} y_{\text {left }}+r_{13} f+r_{14} f / z_{\text {left }}=x_{\text {right }} z_{\text {right }} / Z_{\text {left }} \\
& r_{21} x_{\text {left }}+r_{22} y_{\text {left }}+r_{23} f+r_{24} f / Z_{\text {leff }}=y_{\text {right }} z_{\text {right }} / z_{\text {left }} \\
& r_{31} x_{\text {left }}+r_{32} y_{\text {left }}+r_{33} f+r_{34} f / Z_{\text {left }}=Z_{\text {right }} / z_{\text {left }}
\end{aligned}
$$

One measurement pair $\left(\mathrm{x}_{\text {left }}, \mathrm{y}_{\text {left }}\right)$ and ($\left.\mathrm{x}_{\text {right }}, \mathrm{y}_{\text {right }}\right)$ => 3 equations with 14 unknowns $r_{11}, r_{12}, \ldots, r_{34}$, and $Z_{\text {right }}, Z_{\text {left }}$
\# unknowns:
12 for R, r_{0}
$2 n \quad f o r Z_{\text {right }}, Z_{\text {left }}$ for each of n pairs of measurements
Number of equations: 6 for orthonormal R (columns sum to 1, dot products 0)
1 for unit length translation $\left|r_{0}\right|=1$
$3 n \quad$ for 3 equations per measurement pair
Need at least 5 measurement pairs: $12+2 * 5=22=7+3 * 5$

Relative Orientation

$r_{11} x_{\text {left }}+r_{12} y_{\text {left }}+r_{13} f+r_{14} f / z_{\text {left }}=x_{\text {right }} z_{\text {right }} / z_{\text {left }}$
$r_{21} x_{\text {left }}+r_{22} y_{\text {left }}+r_{23} f+r_{24} f / Z_{\text {left }}=y_{\text {right }} z_{\text {right }} / z_{\text {left }}$
$r_{31} x_{\text {left }}+r_{32} y_{\text {left }}+r_{33} f+r_{34} f / Z_{\text {left }}=z_{\text {right }} / z_{\text {left }}$

n measurement pairs $\left(\mathrm{x}_{\text {left }}, \mathrm{y}_{\text {left }}\right)$ and $\left(\mathrm{x}_{\text {right }}, \mathrm{y}_{\text {right }}\right) \quad \Rightarrow 3 n$ equations +7 with 14 unknowns $r_{11}, r_{12}, \ldots, r_{34}$, and $Z_{\text {right }}, Z_{\text {left }}$

Need at least 5 measurement pairs --
Does that mean 5 pairs are enough?

Relative Orientation

$$
\begin{aligned}
& r_{11} x_{\text {left }}+r_{12} y_{\text {left }}+r_{13} f+r_{14} f / Z_{\text {left }}=x_{\text {righ }} z_{\text {right }} / Z_{\text {left }} \\
& r_{21} x_{\text {left }}+r_{22} y_{\text {leff }}+r_{23} f+r_{24} f / Z_{\text {left }}=y_{\text {right }} z_{\text {right }} / Z_{\text {left }} \\
& r_{31} x_{\text {left }}+r_{32} y_{\text {left }}+r_{33} f+r_{34} f / Z_{\text {left }}=Z_{\text {right }} / z_{\text {left }}
\end{aligned}
$$

14 unknowns $r_{11}, r_{12}, \ldots, r_{34}$, and $Z_{\text {right }}, Z_{\text {left }}$
Need at least 5 measurement pairs
Does that mean 5 pairs are enough? No - the equations are not linear No - there is likely noise involved

Nonetheless: Computer Vision courses and textbooks make this look like a linear problem that can be solved using a few measurement pairs. Methods such as the 8-point algorithm, or computing the "fundamental matrix," are sensitive to noise and numerically unstable. They are not used in practice. But the math is elegant...

"Elegant" Computer Vision Math: Projective Geometry

The idea to use homogeneous coordinates (first used in projective geometry in 1827) for computer vision comes from computer graphics. Note that task of computer graphics generally is to create images, and of computer vision to interpret images, i.e., inverse tasks.
In computer graphics, using homogeneous coordinates is convenient because operations such rotation, scaling, translation, and perspective projection can be represented as matrices. A sequence of such operations can be represented as a sequence of matrix multiplications, enabling fast processing. Using Cartesian coordinates, perspective projection and translation cannot be expressed as matrix multiplications.

Recall: Perspective Projection

"Elegant" Computer Vision Math: Projective Geometry

Cartesian coordinates (="heterogeneous" coordinates):
Image point $(\mathrm{x}, \mathrm{y})^{\top}=(\mathrm{f} \mathrm{X} / \mathrm{Z}, \mathrm{f} \mathrm{Y} / \mathrm{Z})^{\top}$

Homogeneous coordinates add a dimension 2D->3D, 3D->4D:
Image point $(X, Y, W)^{\top}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 / f & 0\end{array}\right)(X, Y, Z, 1)^{\top}=(X, Y, Z / f)^{\top}$
Image point $(x, y, w)^{\top}=\left(\begin{array}{llll}f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right) \quad(X, Y, Z, 1)^{\top}=(f X, f Y, Z)^{\top}$
Both map back to $(x, y)^{\top}$

Projective Geometry: Projection Matrix and PP Shift

Projection matrix:

$$
\left(\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Principal Point shifted $\left(p_{x}, p_{y}\right)^{\top}$:

$$
\left.\begin{array}{c}
\left(\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=\mathrm{K}[\| \mid 0]
\end{array}\right]
$$

Projective Geometry: Projection Matrix and PP Shift

Projection matrix:

$$
\left(\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Principal Point shifted $\left(p_{x}, p_{y}\right)^{\top}$:

$$
\left.\begin{array}{ccc}
\left(\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=\mathrm{K}[\| \mid 0]
\end{array}\right]
$$

Camera Transformation Problems

1. Interior Orientation = Camera Calibration = Intrinsic Calibration:

What kind of camera?
Simple version: Find focal length f and principal point \mathbf{p} (= point where optical axis intersects image plane)
Better: Correct for lens distortion, check if angle between $x \& y$ axes is 90°
2. Exterior Orientation $=$ Extrinsic Calibration $=$ Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera, and orientation of camera coordinate system in world coordinate system
3. Absolute Orientation $=$ Alignment of 2 Cameras or 2 Medical Scans

Find relationship between cameras. 3D coordinates of points are known
4. Relative Orientation $=$ Alignment of 2 Cameras

Find relationship between cameras. 3D coordinates not known, only rays known

Camera Transformation Problems

1. Interior Orientation $=$ Camera Calibration $=$ Intrinsic Calibration:

What kind of camera?
Simple version: Find focal length f and principal point \mathbf{p} (= point where optical axis intersects image plane)
Better: Correct for lens distortion, check if angle between $\mathrm{x} \& \mathrm{y}$ axes is 90°
2. Exterior Orientation $=$ Extrinsic Calibration $=$ Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera, and orientation of camera coordinate system in world coordinate system

Transformation equation: $R r_{\text {camera }}+\mathbf{t}=r_{\text {world }}$

Camera Transformation Problems

Exterior Orientation $=$ Extrinsic Calibration $=$ Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera, and orientation of camera coordinate system in world coordinate system

Transformation equation: $R r_{\text {camera }}+\mathbf{t}=r_{\text {world }}$

$R r_{\text {camera }}$	$=r_{\text {world }}-\mathbf{t}$
$R^{\top} R r_{\text {camera }}$	$=R^{\top}\left(r_{\text {world }}-\mathbf{t}\right)$
$r_{\text {camera }}$	$=R^{\top}\left(r_{\text {world }}-\mathbf{t}\right)$

Camera Transformation Problems

Exterior Orientation $=$ Extrinsic Calibration $=$ Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera, and orientation of camera coordinate system in world coordinate system

Transformation equation: $\mathrm{Rr}_{\text {camera }}+\mathbf{t}=\mathrm{r}_{\text {world }}$

$$
\begin{aligned}
R r_{\text {camera }} & =r_{\text {world }}-\mathbf{t} \\
R^{\top} R r_{\text {camera }} & =R^{\top}\left(r_{\text {world }}-\mathbf{t}\right) \\
r_{\text {camera }} & =R^{\top}\left(r_{\text {world }}-t\right)
\end{aligned}
$$

In homogeneous coordinates: $\tilde{r}_{\text {camera }}=(\underbrace{\left(\begin{array}{cc}\mathbf{R}_{3 \times 3}-\mathbf{R t} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right)}_{c_{\text {w } 2 \mathrm{C}}} \tilde{\mathbf{r}}_{\text {world }}=\tilde{r}_{\text {world }}$ or

Projective Geometry:

Mapping World Coordinates to Image Coordinates

$$
\begin{aligned}
& \tilde{r}_{\text {camera }}=\left(\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cc}
\mathbf{R} & -\mathbf{R t} \\
\mathbf{0} & 1
\end{array}\right) \tilde{\mathbf{r}}_{\text {world }} \\
& \tilde{r}_{\text {camera }}=\mathrm{K}[1 \mid 0] \mathrm{C}^{\mathrm{W} 2 \mathrm{C}} \tilde{r}_{\text {world }} \\
& \tilde{r}_{\text {camera }}=\mathbf{P} \tilde{r}_{\text {world }} \\
& \text { (also written as } \pi\left(r_{\text {world }}\right) \text { for projection) }
\end{aligned}
$$

Warning: This notation is dangerous... This is NOT a linear equation. See also: Horn's "Projective Geometry Considered Harmful" https://people.csail.mit.edu/bkph/articles/Harmful.pdf

Triangulation: Computing World Coordinates

Assumptions:

- At least 2 cameras
- Intrinsic camera parameters are known (f, pp)

- Extrinsic camera parameters are known (mapping from each camera to the world coordinate system or mapping from one camera to the other)
Using these parameters, we can plug into the binocular stereo eq's to compute 3D coordinates of $r_{\text {world }}$ from a matching pair of image points $r_{\text {camera1 }} \& r_{\text {camera2 }}$ If no error: $\left|\pi_{i}\left(r_{\text {world }}\right)-r_{\text {camera, } i}\right|=0$
But likely errors, so use a least squares approach:

$$
r_{\text {world best }}=\operatorname{argmin} \sum\left|\pi_{\mathrm{i}}\left(r_{\text {world }}\right)-r_{\text {camera, }}\right|^{2}
$$

Stereoscopic 3D Reconstruction with Triangulation

3D position of bat
left camera
right camera

Camera Transformation Problems:

Transformation equation: $R r_{\text {camera }}+\mathbf{t}=r_{\text {world }}$
2. Exterior Orientation $=$ Extrinsic Calibration $=$ Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera and orientation of camera coordinate system in world coordinate system

Transformation equation: $R r_{\text {left }}+r_{0}=r_{\text {right }}$
4. Relative Orientation = Alignment of 2 Cameras

Find relationship between cameras. 3D coordinates not known, only rays known

If 2. or 4. are solved, you can use triangulation to compute 3D points

Methods to Solve the Problem of General
 Binocular Stereo Reconstruction = Relative Orientation

- Longuet-Higgins' 8-point Algorithm (1981):

$$
\left(x_{\text {left }}, y_{\text {left }}, 1\right)^{\top} F \quad\left(x_{\text {right }}, y_{\text {right }}, 1\right)=0
$$

F is called the 3×3 "fundamental matrix" (use homogeneous coordinates)
Algorithm is sensitive to how accurate point pairs were located (= numerically unstable)

- Variations of the 8-point Algorithm
e.g. Hartley's Normalized 8-point algorithm (1997)
- Horn's Iterative Relative Orientation Method, 1990. Does not use homogeneous coordinates
- Bundle Adjustment: Bundles of light rays, originating from 3D points, used to adjust estimates of camera parameters and depths

Multi-Camera Stereo

Multi-Camera Stereo

$3^{\text {rd }}$ Camera resolves the ambiguity:
G_{1} and G_{2} are "ghosts" (non-existing points)
P_{1} and P_{2} are the true scene points

Green line is ray from P_{1} into camera C_{3}. It appears as an "epipolar line" in the image of camera C_{1}

Discuss with your neighbor:

- What does the orange line in C1 represent?
- What do the green/red lines in C2 represent?
- What do the red/orange lines in C3 represent?
- Why do the lines in C1, C2, and C3 intersect in
i_{1}, i_{3}, and i_{5} ? $\quad C_{1}$

The green line is the ray from into the $3^{\text {rd }}$ camera.
The orange line is the ray from P_{1} into the $2^{\text {nd }}$ camera.

$$
C_{1}
$$

They appear as "epipolar lines" in the image of camera C_{1} and must intersect at the same image point i_{1}.

How to use epipolar lines for bat tracking:

Temporal Calibration

Used a lighter to register the

two cameras in time

CS 585: Image and Video Computing

Epipolar Geometry

left image

right image

Epipolar Geometry

Formal Definition:

1. All possible scene points $\mathbf{M}\left(M^{\prime}, M^{\prime \prime}, \ldots\right)$ that produce image $\mathrm{m}_{\text {left }}$ are on a half line through $\mathrm{m}_{\text {left }}$ and CoP ${ }_{\text {left }}$
2. All possible images m_{r} of M are images of this half line called "epipolar line."
3. The image of $\mathrm{CoP}_{\text {left }}$ in the right image plane is called "epipole" i.e., $\mathrm{e}_{\text {right_epipole }}$
left image
plane

3D scene
point M
3D scene
point M
plane
Baseline $b=$
right image
plane

Distance between
Center of Projections (CoPs)

Using Epipolar Geometry to Estimate Camera Motion

Fig. 9.7. Under a pure translational camera motion, 3D points appear to slide along parallel rails. The images of these parallel lines intersect in a vanishing point corresponding to the translation direction. The epipole \mathbf{e} is the vanishing point.

Fig. 9.8. Pure translational motion. (a) under the motion the epipole is a fixed point, i.e. has the same coordinates in both images, and points appear to move along lines radiating from the epipole. The epipole in this case is termed the Focus of Expansion (FOE). (b) and (c) the same epipolar lines are overlaid in both cases. Note the motion of the posters on the wall which slide along the epipolar line.

Remember from Linear Algebra:

- The dot product of two perpendicular vectors is zero.
- The cross product of two co-planar vectors computes a vector perpendicular to the plane the vectors span.
- The vector cross product can be expressed as the product of a skewsymmetric matrix and a vector: $\mathrm{tx} \mathrm{b}=[\mathrm{t}]_{\mathrm{x}} \mathrm{b}$

$$
[\mathbf{t}]_{x}=\left(\begin{array}{ccc}
0 & -t_{3} & t_{2} \\
t_{3} & 0 & -t_{1} \\
-t_{2} & t_{1} & 0
\end{array}\right)
$$

Derivation of the "Fundamental Matrix:"

$$
r_{\text {camera,right }}=R\left(r_{\text {camera,left }}-t\right) \text { or }
$$

$$
\left(r_{\text {camera,left }}-t\right)^{\top}=r_{\text {camera, right }}{ }^{\top} R
$$

These three vectors are in the same plane:

$$
t, r_{\text {camera,left, }} r_{\text {camera,right }}
$$

$\left(r_{\text {camera,left }}-t\right)^{\top}\left(t X r_{\text {camera,left }}\right)=0$
$r_{\text {camera, } r i g h t ~}{ }^{\top} R\left(t X r_{\text {camera,left }}\right)=0$

$$
r_{\text {camera, right }}^{\top} R\left([t]_{x} r_{\text {camera,left }}\right)=0
$$

$$
\mathrm{r}_{\text {camera,right }}{ }^{\top}\left(\mathrm{R}[\mathrm{t}]_{\mathrm{x}}\right) \mathrm{r}_{\text {camera,left }}=0
$$

Derivation of the "Fundamental Matrix:"

$$
{\underset{\sim}{\sim}}_{\text {right }}=E \tilde{r}_{\text {camera,left }}
$$

$$
\mathrm{E} \tilde{\mathrm{e}}_{\text {left }}=0
$$

$r_{\text {camera, right }}{ }^{\top} E r_{\text {camera,left }}=0$

$$
\tilde{\mathbf{r}}_{\text {camera,right }}^{\top} \mathrm{F}{\tilde{r_{\text {camera,left }}}}=0
$$

$$
\tilde{\mathbf{t}}^{\top} \mathrm{E}=\mathbf{0}
$$

F is of rank 2

Methods to Solve the Problem of General Binocular Stereo Reconstruction

- Longuet-Higgins' 8-point Algorithm (1981):

$$
\left(x_{\text {left }}, y_{\text {left }}, 1\right)^{\top} F \quad\left(x_{\text {right }}, y_{\text {right }}, 1\right)=0
$$

F is called the 3×3 "fundamental matrix" (use homogeneous coordinates)
Algorithm is sensitive to how accurate point pairs were located (= numerically unstable)

- Variations of the 8-point Algorithm
e.g. Hartley's Normalized 8-point algorithm (1997)
- Horn's Iterative Relative Orientation Method, 1990. Does not use homogeneous coordinates
- Bundle Adjustment: Bundles of light rays, originating from 3D points, used to adjust estimates of camera parameters and depths

Methods to Solve the Problem of General Binocular Stereo Reconstruction

Longuet-Higgins' 8-point Algorithm (1981):

$$
\begin{aligned}
& \tilde{\mathbf{r}}_{\text {camera,right }}^{T} F \tilde{\mathbf{r}}_{\text {camera,left }}=\left(x_{r}, y_{r}, 1\right)\left(\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right)\left(\begin{array}{c}
x_{l} \\
y_{l} \\
1
\end{array}\right)=0 \\
& \qquad\left(x_{r} x_{l}, x_{r} y_{l}, x_{r}, y_{r} x_{l}, y_{r} y_{l}, y_{r}, x_{l}, y_{l}, 1\right)\left(\begin{array}{l}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right)=0
\end{aligned}
$$

Longuet-Higgins' 8-point Algorithm for Binocular Stereo Reconstruction

Use 8 matching points in both views to create matrix U:

$$
\mathbf{U f}=\left(\begin{array}{ccccccccc}
& & & & \vdots & & & \\
x_{r} x_{l} & x_{r} y_{l} & x_{r} & y_{r} x_{l} & y_{r} y_{l} & y_{r} & x_{l} & y_{l} & 1 \\
& & & & \vdots & & & &
\end{array}\right)
$$

$\left(\begin{array}{l}f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33}\end{array}\right)=0$

Result likely produces a matrix F that is not singular. Trick: To enforce rank 2, take the single-value decomposition $U \Sigma V^{\top}$ of F and remove the smallest eigenvalue of Σ.

Hartley's Normalized 8-point algorithm

Note that the entries in matrix U vary by orders of magnitude:

$$
\begin{aligned}
& \begin{array}{lllll}
10^{6} & 10^{6} & 10^{3} & \ldots . & 1
\end{array} \\
& \mathbf{U} \mathbf{f}=\left(\begin{array}{cccccccccc}
& & & & \vdots & & & \\
x_{r} x_{l} & x_{r} y_{l} & x_{r} & y_{r} x_{l} & y_{r} y_{l} & y_{r} & x_{l} & y_{l} & 1 \\
& & & & & \vdots & & & &
\end{array}\right)
\end{aligned}
$$

This causes numerical stability.
Trick: Rescale pixels so that mean squared difference is 2.
Compute F. Enforce singularity. Scale back entries. Compute R\&t.

Horn's Method -- "Relative Orientation" for Binocular Stereo Reconstruction: Compute R \& t

Horn's Iterative Relative Orientation Method, 1990, computes R \& t from corresponding rays. It does not use homogeneous coordinates (or F).
Also uses co-planarity of vectors t, $r_{\text {camera,left }}, r_{\text {camera,right }}$ to define an error function to minimize
Uses a least squares approach to include n matching 2D point pairs Uses a quaternion representation (we will see more about quaternions later) Minimization is constrained by equations that express the physical properties of the problem (i.e., constraints on rotation matrix)
Resulting algorithm iteratively improves error (usually < 10 iterations needed)

Special Case Parallel Optical Axes: R \& t given

left image
right image

right image

Finding Matching Points: Follow Epipolar Lines \& Template Match

left image
right image
Epipolar lines are parallel = along image rows (epipoles are at infinity)
Algorithm: Find corresponding points in same image rows via template matching (use normalized correlation coefficient to compute the match)

Result of Binocular Stereo Matching: Depth Map

$$
Z=b f / \delta
$$

http://vision.middlebury.edu/stereo/data/scenes2014/

Parallel Optical Axes \& Active Stereo with Structured Light

Illuminant

Illuminant on Scene

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Parallel Optical Axes \& Active Stereo with Structured Light

Illuminant

Illuminant on Scene

Kinect and iPhone, starting with iPhone X
Apple Face ID
L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Active stereo with structured light

Active stereo with structured light

camera 1
View without
structured light

camera 2

Image credit: Li Zhang

Active stereo with structured light

Project "structured" light patterns onto the object simplifies the correspondence problem

Active stereo with structured light

With the special case geometry - i.e., parallel optical axes, scene reconstruction is so much easier.

Why don't we use it instead of the general case?

Rectification of Binocular Stereo Images: Undo Foreshortening

I

Why?
Epipolar lines are now parallel, enabling a simple search for corresponding points along image rows

Image Source:
Loop and Zhang, CVPR 1999

Rectification of Binocular Stereo Images: Undo Foreshortening

I

How?
Iterative Scheme

We want

$$
I_{\text {left }}(x+\delta / 2, y)=I_{\text {right }}(x-\delta / 2, y)
$$

Least Squares Method:
$\min _{\delta} \sum_{\mathfrak{p}}\left[\mathrm{l}_{\text {left }}(x+\delta / 2, y)-I_{\text {right }}(x-\delta / 2, y)\right]^{2}$
p = patch
size of patch \mathbf{p} : tradeoff too small instability too large smearing

Algorithm:
Use current estimate of disparity δ to warp
Then solve LSM \& update disparity

Debevec, Taylor, \& Malik. Modeling and Rendering Architecture from Photographs. SIGGRAPH 1996.

key image

offset image

Debevec, Taylor, \& Malik. Modeling and Rendering Architecture from Photographs. SIGGRAPH 1996.

key image

warped offset image

depth map

Binocular Stereo Solution Paths: 2 Alternatives

1. "Weak Calibration"

- If needed: Use rectification to ensure epipolar lines are along image rows
- Find corresponding points in both views and calculate disparity δ
- Compute depth: Z = bf/ δ

2. "Strong Calibration"

- Calibrate each camera (= interior orientation): f, pp
- Find geometric transformation of cameras (= relative orientation): R, t
- Find 3D coordinates

Binocular Stereo Solution Paths: 2 Alternatives

1. "Weak Calibration"

- If needed: Use rectification to ensure epipolar lines are along image rows
- Find corresponding points in both views and calculate disparity δ
- Compute depth: Z = bf/ δ

2. "Strong Calibration"

- Calibrate each camera (= interior orientation): f, pp
- Find geometric transformation of cameras (= relative orientation): R, r_{0}
- Find 3D coordinates via triangulation

In our animal tracking research, "strong calibration" was the better solution

Binocular Stereo Solution Path: "Strong Calibration"

Images \& Method:
Theriault et al. 2014
Throw wand in the air several times (mark out bird flying space)

Identify wand position in all views
Take advantage of knowing the dimensions of the wand

Estimate R and r_{0}

Binocular Stereo Solution Path: "Strong Calibration"

Binocular Stereo for 3D Bird Flight Analysis

Calibration tool for thermal infrared cameras \& Large Observation Spaces

Calibration tool with heat and ice packs

Binocular Stereo Solution Path: "Strong Calibration"

Indoor scenario is much easier:

Instead of wand, use "checker board" as calibration device

Take many images at different positions \& orientations

Image Source: Jean-Yves Bouguet

Binocular Stereo Solution Path: "Strong Calibration"

Indoor scenario is much easier:

Instead of wand, use "checker board" as calibration device

Take many images at different positions \& orientations

Use

https://data.caltech.edu/recor ds/jx9cx-fdh55

```
Or OpenCV
```


Code from my Research Lab:

Written by Diane Theriault

Published in

Theriault et al., J Exp Biology, 2014

Figure S1:
Software packages for easyCamera, easyWand, and easySBA and documentation can be downloaded from the OpenBU repository at http://hdl.handle.net/2144/8456. The Python SBA source code is also available at https://bitbucket.org/devangel77b/python-sba and the Python PIP stable release at https://pypi.python.org/pypi/sba/1.6.0

Reconstruction Uncertainty

Reconstruction uncertainty due to quantization effects is shown for six hypothetical camera configurations. The cameras were simulated to have a pixel width of $18 \mu \mathrm{~m}$ and a field-of-view angle of 40.5 deg, and be positioned at a fixed height Z and aimed at a common, equidistant fixation point $\mathrm{F}=(0,0, Z)$. Horizontal cuts of the 3D view frustums of the cameras at height Z and lines at $D_{\text {max }}=20$ are shown from above.
Placing the cameras further apart reduces reconstruction uncertainty (A versus B).
If the cameras are placed too far apart (C), however, the view volume is 'closed', and there are unobservable regions of space where the cameras will be looking past each other.
If the distance between the outermost cameras is held constant, adding additional cameras may not decrease the uncertainty due to image quantization in the common observable region (D versus E).
If the image planes of the cameras are parallel (F), the common view volume is smaller and further away from the cameras than in the other configurations.
These 2D cuts of the 3D view frustrums are at the level and elevation angle of the cameras; cuts at a different level or angle would show slightly greater reconstruction uncertainty but similar trends.

What is the impact on 3D reconstruction if the location detector is inaccurate?

Can the impact be quantified?

Field biologists really like to know how accurate the 3D estimates are!

Reconstruction uncertainty due to quantization and resolution issues is shown. In a video frame obtained for a flight study (A), the automatically detected locations of the animals may not be at their centers (colored dots in B). When estimating reconstruction uncertainty (C, D), we include this effect by corrupting the image projections of simulated world points, generated throughout the whole space, with Gaussian noise where the standard deviation is one-sixth of the calculated apparent size of an animal at that location (circles in B). When estimating the reconstruction uncertainty, including image location ambiguity (D) increases the estimated uncertainty more than threefold over image quantization alone (C) (note the change in color scale)

Figure S3: 3D flight trajectories of 28 Brazilian Free-tailed Bats during a 1-s interval are shown in the context of the spatially-varying reconstruction uncertainty arising due to both image quantization and image localization ambiguity from an oblique view (A) and from the top (B). The tracks are shown from the point of view of the cameras (C) and from the side (D). The observation distance between cameras and bats was approximately 10 m (B, D), chosen so that the nose-to-tail span of a bat in an image was at least 10 pixels. The baseline distance between the outermost cameras was approximately 6 m , chosen so that the expected uncertainty in reconstructed 3D positions at the observation distance due to image quantization and image localization ambiguity was less than 10 cm , the length of a bat. The RMS reconstruction uncertainty for the 1,656 estimated 3D positions shown was 7.8 cm .

Figure S4: The flight paths of $\mathbf{1 2}$ Cliff Swallows during a 2.3-s interval are shown in the context of the spatiallyvarying reconstruction uncertainty arising due to both image quantization and image localization ambiguity from an oblique view (A) and from the top (B). The tracks are shown from the point of view of the cameras (C) and from the side (D). At an observation distance of approximately 20 m (B,D), the birds, which are approximately 13 cm long, were imaged at an average length of 18 pixels. The baseline distance between the outermost cameras was approximately 11 m . The RMS reconstruction uncertainty for the 2,796 estimated 3D points shown was 5.9 cm , less

First paper on Multiview Stereo and Using Internet Photo Collections to Reconstruct Scenes

Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007

First paper on Multiview Stereo and Using Internet Photo Collections to Reconstruct Scenes

Goesele, Snavely, et al., ICCV 2007,
 Snavely PhD thesis 2008

Bundle Adjustment

1950's photogrammetry technique
Name: Bundles of light rays, originating from 3D points, used to adjust estimates
Goal: Solve simultaneously for 3D scene reconstruction and intrinsic \& extrinsic parameters of each camera

Technique: Non-linear least squares method (use a package, e.g., ceres-solver.org)
Cost function to minimize: Reprojection error between the image locations of observed and predicted image points

where π_{i} is the mapping from an estimated 3D point into ith camera view

Bundle Adjustment is used to solve Structure-from-Motion Problems

Structure-from-Motion Problem:
Find 3D scene coordinates (here called "structure") from a moving camera
Camera is usually calibrated (i.e., we have intrinsic parameters f and $p p$) Motion of camera yields a video where each frame has transformation parameters $R \& t$ that need to be estimated

Schonberger \& Frahm, CVPR, 2016: Structure-from-Motion Revisited

Iterative Bundle Adjustment Algorithm:

Input: Images of scene or object taken by different cameras from different viewpoints
Preprocessing:

1. Extract features
2. Match corresponding features
3. Compute "scene graph" (definition: nodes=images, edges=camera transformation is plausible)
4. Initialize reconstruction based on 2 cameras in dense part of scene graph

Repeat:

1. Register a new image robustly to current 3D reconstruction
2. Add newly triangulated 3D points to current 3D reconstruction
3. Apply Bundle Adjustment to update current 3D reconstruction and camera parameters

Output: 3D reconstruction of scene or object

Rome dataset

74,394 images

What has changed since Deep Learning?

By and large, we still rely on conventional Bundle Adjustment to solve multi-view geometry for us.

While relatively reliable, this has major downsides: Not online, not robust to scene motion, not amenable to end-to-end learning...

IMO we're missing the correct way to "learn" multi-view geometry in a selfsupervised way. It should be possible: Build a model that watches video and learns to reconstruct both pose and a proper 3D scene representation!

Maybe one of you will get there :)

Deep Learning Attempts at 3D Reconstruction

- Unsupervised Learning of Depth and Ego-Motion from Video, Zhou et al., CVPR 2017
- Deep Fundamental Matrix Estimation without Correspondences, Poursaeed et al., 2018
- BARF: Bundle-Adjusting Neural Radiance Fields, Lin et al., ICCV 2021
- The 8-Point Algorithm as an Inductive Bias for Relative Pose Prediction by ViTs, Rockwell et al., 2022
- Input-level Inductive Biases for 3D Reconstruction, Yifan et al., CVPR $\underline{2022}$

Parallel Tracking and Mapping for Small AR Workspaces

Klein \& Murray, ISMAR 2007

https://www.youtube.com/watch?v=Y9HMn6bd-v8

Uses bundle adjustment

The Fundamental Matrix Song, Daniel Wedge:

Learning Objectives You should be able to explain:

- Camera transformation problems
- Different representations of rotation
- Multiple measurement pairs (corresponding pixels in left \& right cameras) are needed to reconstruct 3D coordinates of scene points
- Triangulation
- Epipolar geometry
- Projective geometry derivation of the fundamental matrix F
- Methods to compute F, R \& t
- Special case of parallel optical axes
- Active stereo
- Weak \& strong calibration
- Structure from motion
- Iterative Bundle Adjustment

