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Abstract

We developed an automated system for registering computed tomography (CT) images of the chest temporally. Our system detects
anatomical landmarks, in particular, the trachea, sternum and spine, using an attenuation-based template matching approach. It computes
the optimal rigid-body transformation that aligns the corresponding landmarks in two CT scans of the same patient. This transformation
then provides an initial registration of the lung surfaces segmented from the two scans. The initial surface alignment is refined step by step
in an iterative closest-point (ICP) process. To establish the correspondence of lung surface points, Elias’ nearest neighbor algorithm was
adopted. Our method improves the processing time of the original ICP algorithm from O(kn log n) to O(kn), wherek is the number of
iterations andn the number of surface points. The surface transformation is applied to align nodules in the initial CT scan with nodules in
the follow-up scan. For 56 out of 58 nodules in the initial CT scans of 10 patients, nodule correspondences in the follow-up scans are
established correctly. Our methods can therefore potentially facilitate the radiologist’s evaluation of pulmonary nodules on chest CT for
interval growth.
 2003 Elsevier Science B.V. All rights reserved.
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1 . Introduction include functional lung imaging to evaluate asthma and
emphysema and detection of primary lung cancer. Lung

Chest computed tomography (CT) has become a well- cancer remains the leading cause of cancer death in the
established means of diagnosing pulmonary metastases of United States, killing 160,000 people a year. The overall
oncology patients and evaluating response to treatment 5-year survival rate is only 15%(Landis et al., 1999),but
regimens. Since diagnosis and prognosis of cancer general- early detection and resection of pulmonary nodules in
ly depend upon growth assessment, repeated CT studies Stage I can improve the prognosis to 67%(Mountain,
are used to assess for growth of pulmonary nodules 1997). The curability of early stage lung cancer has
(Naidich, 1994; Yankelevitz et al., 2000). motivated researchers to propose CT-based lung-cancer

Our long-term objective is to develop an image analysis screening(Henschke et al., 2002)and diagnostic image
system that assists the radiologist in detecting and compar- analysis systems(Reeves and Kostis, 2000).
ing pulmonary nodules between two or more CT studies. Automated lung and nodule registration in CT has been
Our main focus in this paper is nodule registration in addressed previously by our group (Betke et al., 2001,
metastatic disease. Other potential applications of our work 2001; Betke and Ko, 1999; Ko et al., 2001), as well as by

Brown et al. (2001), Kubo et al. (2001)and Shen et al.
(2002).Our first system automatically segments the lungs*Corresponding author.
and detects nodules in axial chest CT images, but humanE-mail addresses: betke@cs.bu.edu (M. Betke), http: /

/www.cs.bu.edu/ faculty /betke(M. Betke). intervention was needed to match up the studies(Betke
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and Ko, 1999; Ko et al., 2001).In the current paper, we rithms are used to find the best alignments according to
focus on automating the registration task. We describe a specific match measures (for a comparison of match
nodule registration method that is based on the three- measures, see (Holden et al., 2000; Rueckert et al., 1999).
dimensional (3D) alignment of anatomical landmarks and We use three match measures—the Euclidean and the
lung surfaces. We developed an attenuation-based feature chamfer(Barrow et al., 1977)distances between corre-
matching approach that detects the trachea, vertebra and sponding surface points and the correlation between entire
sternum and use the point-to-point registration method by CT volumes.
Horn (1987) to align them with an optimal rigid-body Our algorithm improves the iterative closest-point (ICP)
transformation. This transformation is then applied to start algorithm proposed byBesl and McKay (1992), Cham-
an iterative process to align the lung surfaces. pleboux et al. (1992)and Zhang (1994)by including an

A large body of literature has been published on efficient technique for determining correspondences of
registration techniques; see, for example, the surveys by surface points. For other variants of the ICP algorithm, see
Duncan and Ayache (2000), Audette et al. (2000)and (Eggert et al., 1998; Rusinkiewicz and Levoy, 2001). An
Maintz and Viergever (1998).The focus has primarily exhaustive search for corresponding point pairs requires

2been on developing and applying registration methods to O(n ) comparisons, wheren is the number of points on the
brain images (e.g.Ferrant et al., 2001; Grimson et al., surfaces. Registration algorithms with O(n log n) com-
1996; Maes et al., 1997; Maurer et al., 1996, 1998; parisons use octree(Champleboux et al., 1992)or k–d-tree
Pelizzari et al., 1989; Roche et al., 2001; Viola and Wells, data structures(Feldmar and Ayache, 1996; Maurer et al.,
1997).For the chest, radiographs(Kano et al., 1994)and 1996).We apply Elias’ algorithm(Rivest, 1974)to search
MR images(Leleiveldt et al., 1999)have been matched for corresponding points in regions of increasing distance
temporally and CT studies have been registered to PET from the test point. Following the analysis byRivest
studies(Yu et al., 1995).CT-derived virtual bronchoscopic (1974) and Cleary (1979),we can show that the expected
images have been matched to endoscopic views(Bricault costs of establishing point correspondences are O(n).
et al., 1998). Registration of thoracic CT studies is We do not use external fiduciary points, such as skin-
challenging due to differences in inspiratory volumes surface or bone-implanted markers(Malison et al., 1993;
between two studies. The patient’s thorax is imaged while Maurer et al., 1998)which would be impractical in the
the patient is supposed to be in maximal inspiration. Not clinical setting, and rely on patient-generated image con-
all patients, however, start out with and maintain maximal tent only. We do not require any manual input to compen-
inspiration throughout the entire scan. In addition, the sate for large initial differences between CT studies, as is
patient’s torso may be rotated and translated differently sometimes required by other methods(Pelizzari et al.,
each time a study is taken. 1989).We obtain a close alignment of the lung surfaces

For detection and registration of nodules in chest CT, prior to applying the iterative algorithm by using the
Brown et al. (2001)developed a rule-based system based transformation that registers the anatomical landmarks
on fuzzy logic that creates patient-specific models. Of 27 optimally. Nonlinear optimization methods, such as the
nodules in 17 patients, 22 nodules (81%) were relocated. ICP method, generally work well on data with small initial
To find the corresponding images in repeated CT scans, misalignments(Besl and McKay, 1992; Maurer et al.,
Kubo et al. (2001)developed a slice-by-slice method that 1996), even if they cannot guarantee convergence to the
uses landmarks and lung shape in the upper lung and globally optimal solution.
vessels in the lower lung. Of 3502 CT slices of 60 patients,
3227 (92%) were correctly matched.Shen et al. (2002)
describe a two-step method to align the CT scans first 2 . Methods
globally and then locally, and report an average nodule
mismatch error of only a couple of millimeters. In our Our system analyzes a pair of chest CT scans in three
experiments, nodule correspondences for 56 (97%) out of phases as illustrated inFig. 1. In the first phase, anatomical
58 nodules of 10 patients are established correctly. landmarks are detected and registered in a point-to-point

Our approach to chest registration is a combination of registration scheme (Sections 2.1 and 2.2). In the second
3D landmark-, surface- and attenuation-based techniques. phase, the points on the lung surface are collectively
Similar techniques have been explored to register feature registered in a surface-to-surface registration scheme (Sec-
points and surfaces(Besl and McKay, 1992; Borgefors, tions 2.3 and 2.4). In the last phase, the system finds
1988; Chui and Rangarajan, 2002; Chi and Rangarajan,correspondences between nodules located by a radiologist
2001; Feldmar and Ayache, 1996; Ferrant et al., 2001; (Section 2.6).

´Gueziec et al., 2000; Johnson and Christensen, 2002;
Pelizzari et al., 1989; Rangarajan et al., 1999; Sharp et al.,2 .1. Attenuation-based detection of anatomical
2002; Thirion, 1996),or match intensities of subimages landmarks
(Althof et al., 1997; Kano et al., 1994; Weaver et al., 1998)
or volumes(Maes et al., 1997; Rueckert et al., 1999; Viola Two objectives guide the choice of landmarks. Firstly,
and Wells, 1997).Various nonlinear optimization algo- to obtain reliable registration estimates, the landmarks
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Fig. 1. System overview.

must be consistent despite variations in patient positions The sum is computed over a regionO that is the union of
all pixels that contain the expected feature,A(a)5 uOu isduring the scans as well as changes in the chest due to

¯ ¯the number of pixels inO, I (a)5o I (x, y) and q(a)5disease progression and varying inspiratory volumes. Sec- q q

o q(x, y; a) are the respective local image sample means,ondly, the landmarks must be chosen so that their positions
2 2 2scaled byA(a), ands (a)5 A(a) o I (x, y) 2 o I (x, y)and correspondences can be estimated both reliably and s dI q q

2 2 2efficiently. ands (a)5 A(a) o q(x, y; a) 2 (o q(x, y; a)) are theq

We chose the sternum and vertebra as landmarks, since respective local sample variances.
they are bones with relatively fixed positions within the A set of subimages ofI are tested to find the position of
chest and have attenuation values (.600 Hounsfield units the subimage that best matches the template. The templates
(HU)) that are significantly different from those of the were manually cropped from a training CT scan, which
surrounding soft tissue (30240 HU). The centers of the was not included in our test data set. Although the template
landmarks in thex 3 y plane are used as estimates of landmarks look slightly different in the test data, template
landmark position; for example, the center of the spinal and test data generally match well. Position estimates are
canal is used as the position of the vertebra. We also use obtained with correlations of at least 0.8, which lie far
the trachea as an anatomical landmark. Since it is an above the expected correlationE[r(a)] 50. The normalized
air-containing structure, its attenuation values are below correlation coefficient serves as a match measure that is
2900 HU. Although the trachea is not a rigid body, its ‘information conserving’ because it exploits all the mea-
position is relatively fixed within the chest if the patient is sured data relevant to the feature’s recognition. In our
in maximal inspiration. previous work(Betke and Makris, 2001),we showed when

To detect a landmark in a CT imageI, we use a a statistically optimal estimator for the affine parameters
template-based method that correlates the attenuation takes the form of the normalized correlation coefficient.
values of template imageq with the attenuation values in a The search for matching landmarks starts with the most
subimageI of I. The three template images used in our cranial CT image and proceeds downward, slice by slice.q

experiments are shown inFig. 2. The normalized correla- Two tracheal landmarks are used for registration—the
tion coefficient quantifies how well the landmark in tracheal centroid in the most cranial image with visible
subimageI (x, y) matches the template imageq(x, y; a), lung (image A) and the tracheal centroid in the image atq

wherea describes the affine parameters position, scale and the carina (image B), where the trachea bifurcates into the
rotation of the template landmark. The normalized correla- right and left main stem bronchi, as shown inFig. 2. To
tion coefficient is defined by automatically identify images A and B, the attenuation CT

images are converted into binary images using a threshold
1

of 2524 Hounsfield units. This separates air-filled regions,]]]r(a)5 A(a) O I (x, y)q(x, y; a)qSs (a)s (a)I q (x,y)[O such as lung and trachea, from denser areas. The connected
components(Horn, 1986) within the binary images are

¯ D¯2 I (a)q(a) . (1) then analyzed for position, shape and size (seeFig. 3). Theq

 

Fig. 2. On the left, generic template images of the sternum, trachea and vertebra. Next, a coronal view of a chest CT scan. The white line marks the most
cranial image with visible lung (A), the gray line the axial image at the carina (B). On the right, axial views of images A and B with sternum (light gray),
trachea (dark gray) and vertebra (medium gray).
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Fig. 3. The processed axial images 1, 4, 8, 15 and 16 of a low-resolution CT scan. The different connected components detected within an image are
shown in differing shades of gray. Slice 1 shows the trachea as the only connected component within the chest. Slice 4 is the most cranial image with
visible lung (image A). It contains a round trachea (e 5 0.73). Slice 15 is the image at the carina (image B). It contains a horizontally elongated trachea
(e 5 0.1). The two connected components at the bottom of the carina in slice 16 demonstrate the separation of the tracheal airway into the bronchi.

topmost binary image generally only contains one com- p57(x)5Rx1 x , (2)0

ponent (see slice 1 inFig. 3). Image A is detected when
where the matrixR is orthonormal. Three point pairs areadditional connected components appear (see slice 4 in
needed to solve this equation. Since there may be errors inFig. 3). The shape of the trachea is measured by comput-
the estimation of landmark positions, a greater accuracy ining the ratioe 5E /E , whereE and E are themin max min max
computing the transformation parameters may be obtainedrespective sums of the squared distances of tracheal points
if more than three points are used.to the trachea’s axes of least and most inertia(Horn,

To find the registration parameter that matches a setX1986). In images in whiche is close to 1, the trachea is
of n points x , . . . , x in study 1 to a setP of corre-1 nnear circular (see slice 4 inFig. 3). Once a considerable
sponding pointsp , . . . , p in study 2, we minimize the1 nreduction of the ratio and an increase in size, followed by a
sum of square residual errorsdramatic decrease in size in the next slice, occurs, image B

n nis detected. The generic sternum and vertebra templates,
2 2Oip 27(x )i 5O ip 2Rx 2 x i , (3)shown inFig. 2, are used to find the sternum and vertebra i i i i 0

i51 i51in image B. For efficiency purposes, the respective search
regions for the sternum and vertebra are restricted to the with respect to the unknownsR and x . A closed-form0

image portion anterior and posterior to the trachea. optimal solution to this least-squares problem was given by
The resolution of the correlation-based estimator can be Horn (1987) and is summarized in Appendix A. An

improved by rotating and scaling the bone templates advantage of Horn’s solution is that the best possible
slightly, and by using 3D templates of landmarks, for transformation is computed in one step and an iterative
example, the attenuation values in neighboring CT slices scheme and initial guess are not required. An additional
that comprise a full vertebra. Another option is to work advantage is that the solution is symmetric, meaning that
with patient-specific templates that are manually cropped the solution that transformsX into P is the inverse of the
from scan 1 and then automatically detected in scan 2. In solution that transformsP into X.
our experiments, however, generic 2D templates were Horn’s method is applied in the first phase of our
sufficient, since the resolution of the correlation estimator registration method to compute the optimal rigid-body
is high. transformation of the four chest landmarks described in

Section 2.1 (seeFig. 4).
2 .2. Registration of two sets of corresponding points

 

Given the positionx of a chest landmark in an initial CT
scan and the positionp in a follow-up scan, our goal is to
find a 3D affine transformationp5Ax1x that mapsx0

into p, where vectorx describes translation and matrixA0

rotation, scaling and skewing. In our application, the
rotation parameters model the orientation of the patient’s
body on the CT table. We assume that the Cartesian
coordinates of 3D points are preserved and CT reconstruc-
tion does not introduce skewing. The scaling parameters
model the field of view (x and y) and slice thickness (z)
differences between two CT scans. They are determined
during CT image reconstruction, so we do not need to

Fig. 4. Initial landmark registration. Four points used for registration areinvert for them. Instead we adjust the two studies for
shown for each scan: the center of the trachea cross-section in slice A and

scaling differences using the field-of-view and slice-thick- the centers of the cross-sections of sternum, trachea and vertebra in slice
ness information included in the scan data. The problem B in each study. The landmarks in study 1 (gray) are then matched to the
then reduces to finding a rigid-body transformation landmarks in study 2 (white).
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 2 .3. Iterative surface registration

The point-to-point registration algorithm described
above assumes that the correspondence between points in
X and P has been established. For landmark points,
correspondences can be established by correlation as
described in Section 2.1, but the correspondences of
surface point pairs are difficult to establish. For example, a
lung border point in the right lung apex in scan 1
corresponds tosome border point in the right apex in scan
2, butwhich physical point generally cannot be determined
by a human observer. We therefore follow the standard ICP
approach and define a correspondence mapping# based
on the distances between the points on the two surfaces. In
particular, pointx in X is the corresponding point ofp ini j

P if the Euclidean distance between7(x ) and p is thei j

shortest among all distances betweenp and any trans-j

formed point inX, i.e.,

#(p )5 x 5argminip 27(x )i. (4)j i j k
x [Xk

Eq. (4) applies to two point sets that may contain a
different number of points. The correspondence mapping
# is many-to-one—several points on a surface in scan 1
may map to the same point on a surface in scan 2 and not

Fig. 5. Flowchart of the lung registration algorithm.
all points in scan 2 may be assigned to some point in scan
1. In addition, there is an asymmetry: the mapping of
points in P to points inX is generally different from the The lung registration algorithm converges monotonically

to a local minimum of the least-squares registration error,mapping of points inX to points inP. The corresponding
as can be shown by adapting Besl’s arguments(Besl andpoint of x is not necessarilyp , since the shortest distancei j

McKay, 1992). The choice of the initial registrationamong all distances between7(x ) and any point inP mayi

parameters determines the rate of convergence and whichbe shorter thanip 27(x )i.j i

local minimum is reached. Experimental results on theThe paradoxical goals—to find corresponding points via
convergence performance are given in Section 4.registration and to register points via correspondence—are

solved alternately. The flowchart of our lung surface
2 .4. Neighborhood search for correspondencesregistration algorithm is shown inFig. 5. We first detect

anatomical landmarks in studies 1 and 2 and compute the
A registration method must be computationally efficient3D affine transformation that registers them optimally. We

so that it can eventually be employed in a clinical setting.then segment the lungs by converting the attenuation
For the ICP method, the computationally most extensivevalues in each CT slice into binary values and tracing the
step is finding point correspondences. Tree data structurescontour of each lung in each slice. We use a fixed threshold
have been proposed(Champleboux et al., 1992; Feldmarof 2524 HU to separate the lower attenuation air-filled
and Ayache, 1996; Maurer et al., 1996)to reduce thelungs from the higher attenuation soft tissue structures and

2bone, as described byKo et al. (2001).The segmented number of required comparisons from O(n ) for an exhaus-
lung surfaces are then registered with the transformation tive search to O(n log n). We designed a ‘voxel space’ data
parameters computed by the landmark registration. We structure for Elias’ algorithm(Rivest, 1974; Cleary, 1979).
establish correspondences based on the closest Euclidean It decomposes the Euclidean 3D space into cubic neigh-
distances between points, register the transformed lung borhoods and finds closest points by searching the neigh-
borders in study 2 to the lung borders in study 1, determine borhoods in the order of increasing distance from the test
the new point correspondences, compute the distance point (seeFig. 6). The algorithm takes as input the points
errors between corresponding points, and then iterate. on surfaceP and the points on surfaceX that are
Once the registration performance is sufficient, the process transformed into the coordinate system of surfaceP for
is terminated. The registration performance is considered alignment.
sufficient when, from one iteration to the next, the change
in the sum of squared distances (SSD), as defined in Eq.2 .4.1. Cubic neighborhood search
(3), becomes smaller than 1%. For each pointp on surfaceP:
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 to be uniform, b is constant (Cleary, 1979). In our
scenario, the points inP are not uniformly distributed
throughout the scan, but instead clustered and collectively
define a surface. This is more favorable for Elias’ algo-
rithm, since the lung surfaces are never severely mis-
aligned and the closest transformed point inX to test point
p can be expected to be nearp. In addition, the proximity
of two neighboring surface points inX implies proximity
of their corresponding points inP and an overlap of their

Fig. 6. The neighborhood search algorithm during the search for the
cubic neighborhoods. As the alignment improves duringtransformed point inX that corresponds top. The voxel containingp[P
the iterative process, the number of voxelsb examined byis shown as cubeC . Cubic neighborhoodC is shown with dotted lines.0 1

the neighborhood search algorithm decreases.Two points7(x) and7(x9) are found in cubic neighborhoodC . Among3

the two, the point with the closest Euclidean distance top is the
corresponding point.

2 .5. Alternative alignment measures: chamfer distances
and correlation

1. Check if the voxels adjacent top contain transformed
points on surfaceX. Take advantage of the connectivity Surface registration algorithms based on the chamfer
of P to avoid re-checking voxels. method use a preprocessed lookup table to determine the

2. If such points exist, select among them the point7(x) distance from a test point to a surface(Barrow et al.,
with the smallest Euclidean distance top. Otherwise 1977). The lookup table contains a discrete distance map
expand the search space by one voxel in all directions. that decomposes the 3D space into voxels. This is similar

3. Repeat step 2 until the closest transformed point7(x) is to the decomposition of the 3D space into cubic neigh-
found. borhoods as described above for our method. However, our
Note that the decomposition of the Euclidean space used data structure keeps track of points at a certain Euclidean

here does not necessarily correspond to the voxel structure distance, while the chamfer data structure only stores the
of the CT scans. The coordinates of the lung surface points distance to the closest surface point. Although the chamfer
in the CT scans are converted from voxel to millimeter method does not establish point correspondences explicit-
units. This is convenient, because the mm-to-pixel ratios ly, it uses an error criterion similar to our method, namely
and slice thickness of the scans may differ. It is also the root mean square distance values, to evaluate an
convenient, because an arbitrarily coarse decomposition of alignment. To evaluate an alignment ofn surface points,
the Euclidean space can be chosen. For example, a ‘voxel’ both methods require O(n) computations.

3 3in our data structure can represent a 1 mm or 5 mm Chamfer methods generally substitute the Euclidean
volume in 3D space. metric with distance metrics similar to the city-block orL1

We can adopt the average-case analysis of Elias’ algo- metric(Borgefors, 1988).We tested the two metrics shown
rithm by Rivest (1974)andCleary (1979)to show that the inFig. 7 to evaluate surface alignments. The first metric is
expected costs of establishingn point correspondences are a 3D version of a 2D metric proposed byBorgefors (1988)
O(n). In particular, for a given test pointp, the number of that takes into account the resolution differences in CT
voxelsb examined by Elias’ algorithm is averaged over all between pixel width and slice thickness. The version
data sets and test points. In this analysis,b does not shown inFig. 7 assumes a slice thickness of 5 mm and
depend on the number of surface pointsn, but instead on pixel width of 0.65 mm and must be adjusted for scans
the density of the surface points. If the density is assumed with other parameters. Our second metric is a Euclidean

 

Fig. 7. Image masks for preprocessing scan 2 with the chamfer method. The Euclidean distance mask accounts for slice thicknessq and pixel widthw.
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metric that explicitly uses parameters for slice thicknessq sponding nodules or vessels. In addition, the location of
and pixel widthw. the branching point or nodule centroid may be determined

Since pixel widths generally differ between scan 1 and inaccurately and errors of a few pixel lengths in thex andy
scan 2, scan 1 must first be transformed into the voxel dimensions may occur. Errors in misidentifying the correct
lattice of scan 2 by resampling. When a rotation is applied axial image have a more significant impact for studies with
to the resampled surface points of scan 1, the resulting large slice thickness. To guarantee the accuracy of the
voxel lattice generally does not match the lattice of scan 2 vessel-based validation method, we take two precautionary
and therefore additional distance approximations must be measures: (1) the radiologist uses a large number of vessel
made. branching points and (2) the points cover a large propor-

Alternatives to surface-based registration methods are tion of the lung volume. The reasoning is that the larger
‘intensity-based registration methods’(Althof et al., 1997; the number of points and the 3D space containing them,
Kano et al., 1994; Maes et al., 1997; Rueckert et al., 1999; the smaller is the impact of potential measurement errors.
Viola and Wells, 1997; Weaver et al., 1998).We use the During the scanning, the patients were supposed to be in
attenuation-based correlation measure defined in Eq. (1) to maximal inspiration. Lung volumes in the initial and
evaluate the alignment of the entire volumes of scan 1 and follow-up scans should therefore be similar for patients
scan 2. who were able to maintain maximal inspiration throughout

both scans. To estimate the lung volume for a particular
2 .6. Nodule registration study, we first segment the lung borders in each axial

image. For each axial slice, the pixels enclosed by the left
To find nodule correspondences in repeated CT scans, and right lung contours are then marked by a ‘flood fill

the nodules of scan 1 are first transformed into scan 2 with algorithm’(Foley et al., 1996).The marked pixels are
the same rigid-body transformation that matches the lung converted into voxels by incorporating the slice thickness
surfaces optimally. The Euclidean distances are computed information. The resulting number of voxels is used as an
for all possible nodule pairings. Correspondences are then estimate for lung volume.
established by the pairs with the smallest distances.Fig. 8
shows the axial slices of two CT scans that contain
corresponding nodules of large, increasing size.

3 . Patient data
2 .7. Validation method

Ten patients were selected from the patients with
We apply the output transform of the surface registration thoracic CT scans taken for clinical indications at our

algorithm to the structures within the lungs. The physical institutions between 1993 and 2001. The patients were
correspondences of these structures are easier to establish randomly selected by searching radiology reports for the
than those of lung surface points. We use two sets of points terms ‘cancer’ and ‘pulmonary nodules’. A patient was
for validation—nodules and vessel branching points, which excluded if he or she did not undergo follow-up CT. The
were marked manually. The rigid-body transformations process was repeated until 20 studies, two per patient, were
that minimize the sums of the squared Euclidean distances found. The set of patients contains six female and four
between the nodule pairs and between the vessel pairs is male patients. The interval of time between initial and
computed (Eq. (3)). They serve as two ‘gold standard’ follow-up studies ranges from 1 to 6.5 months.
rigid-body transformations. Fourteen chest CT scans had been performed helically

Note that the radiologist could misidentify corre- on GE HiSpeed Advantage machines. The CTs were
obtained from above the lung apices through the adrenal
glands using a 1:1 pitch either with 5 mm collimation for
the entire study or 10 mm collimation with 5 mm
collimation through the hila. Six studies were taken on a

 

multi-helical Siemens Somatom Volume Zoom CT using a
1 mm collimator for the entire study and were recon-
structed in 1.25 mm increments using a high-frequency
reconstruction algorithm. The images were acquired with a
5123512 matrix and quantized using 16 bits per pixel.
Pixel width in the axial images ranges from 0.5 mm to 0.8
mm with an average of 0.65 mm and was different
between scan 1 and scan 2 for patients 2–10. A thoracic
radiologist determined the position of vessel branch points.
An average of 35 vessel branch points and 5.8 nodules

Fig. 8. Positions of two nodules in an initial and a follow-up scan. were used per case.
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 per-point basis using the root mean squared error (RMS)
between corresponding surface points and on a per scan
basis using the sum of squared distances (SSD), as defined
in Eq. (3). The average RMS error for rigid-body vessel
alignment is also reported. The landmark registration (LR)
algorithm reduces the initial SSD by 71% on average. If,
as an alternative method to landmark registration, the
surfaces in scan 1 are aligned along the principal axes of
the surfaces in scan 2, the original SSD is reduced by only
46% on average. The most significant reduction of the
initial misalignment (81%) is obtained with the landmark
alignment and subsequent iterative surface registration
algorithm (LSR). It has a better performance than the
iterative surface registration without initial landmark align-
ment (SR).Fig. 10 shows the alignment of a lung beforeFig. 9. Lung volumes for the initial and follow-up scans of 10 patients.
and after the LR and LSR algorithms are performed,Fig.Patients 2, 3, 4, 7 and 8 have large changes in volume (13.5%); the other

five patients have small changes (2.8%). 11 gives a zoomed-in view of an alignment, andFig. 12
shows the proportional decrease of the SSD per ICP
iteration.

4 . Results The average running time of the LSR algorithm on an
866 MHz Pentium III processor is 9 min; 8 min for

Our landmark detection method succeeded in finding all low-resolution (patients 1–7) and 12 min for high-res-
80 landmarks with good accuracy (within 5 pixels). The olution (patients 8–10) data (see inTable 2). Computation-
processing time to detect the tracheal landmarks depends ally, the most expensive step is establishing corre-
on the number of slices in the data set above the carina. It spondences at each ICP iteration. The processing time per
takes 1.5 s on average to process each slice. Once image B iteration decreases with the improvement of the alignment
is detected, it takes an average of 15 s to find the sternum of the lung surfaces (seeFig. 13). Due to a better initial
and vertebra landmarks in image B. alignment, the LSR algorithm is significantly faster than

The lung volumes of the 20 scans are shown inFig. 9. the SR algorithm (seeFig. 14).
The change in volume is 8.1% on average. There are five The average Euclidean distances between corresponding
patients with a proportionately large change (13.5% on nodules before and after alignment are shown inTable 3.
average), which indicates significant differences in inspira- Nodule alignment based on the LSR algorithm has an
tion between scans. Patient 7 was breathing significantly average error of 8.0 mm.Figs. 15 and 16visualize nodule
during the scanning. For the other five patients, a change and vessel registration results, respectively.Table 4com-
of only 2.8% was measured on average. pares the nodule alignment based on the LSR algorithm to

The lung registration results are reported inTable 1on a nodule alignment based on transformations that locally

T able 1
Surface registration results

Patient Time Recon- Lung Surface SSD Iterations
between struction volume RMS error error needed

No. Gender
studies interval difference (mm) reduction
(months) (mm)

Vessel SR LSR LR LSR

1 M 2 10/5/10 3.7% 8.9 6.2 5.4 61% 69% 5
2 F 4.5 10/5/10 15.9% 9.0 4.7 3.6 92% 94% 6
3 M 1.5 5 12.6% 4.8 4.4 4.1 77% 91% 11
4 F 2 5 12.3% 9.7 9.8 9.4 91% 93% 3
5 M 1.25 5 2.0% 15.6 14.5 4.3 97% 97% 3
6 F 1 5 5.9% 9.6 3.8 4.1 38% 83% 11
7 M 1.5 5 15.1% 9.7 5.3 4.5 53% 66% 11
8 F 4 1.25 12.9% 6.9 4.4 4.3 56% 65% 7
9 F 7 1.25 2.2% 7.3 1.8 1.8 22% 40% 8

10 F 6.5 1.25 0.5% 12.4 2.2 2.2 89% 97% 14
Average 3 – 8.1% 9.4 5.0 3.7 71% 81% 8

SSD: sum of squared Euclidean distances between corresponding surface points; RMS error, root mean squared Euclidean distances between
corresponding surface points; SR: iterative surface registration without initial landmark alignment (25 iterations); LR: surface alignment based only on
landmark registration; LSR: initial landmark and subsequent iterative surface registration.
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Fig. 10. Top views of the right lung of patient 8 are given before any processing (left), after the initial surface registration based on the landmark
registration parameters (middle), and after 25 iterations of the lung surface registration (right). The surface in scan 1 is shown in gray; the surface in scan 2
in white.

 

Fig. 11. Registration results for high-resolution lung surfaces. The lung surfaces are shown on the top before (left) and after (right) registration. Zoomed-in
views of the lungs are given below. The lungs in scan 1 are shown in gray and in scan 2 in white. The registration process shifted the surfaces in scan 2 to
the left and slightly rotated them to align with the surfaces in scan 1.



ARTICLE IN PRESS
10 M. Betke et al. / Medical Image Analysis 0 (2003) 000–000

  

Fig. 12. Proportional reduction of the SSD per iteration of the registration Fig. 14. The impact of initial landmark-based registration on the process-
algorithm for 10 CT pairs. ing time of surface registration. Without initial registration, the first few

iterations of the lung surface registration algorithm take several minutes
for low resolution data (solid line). With initial registration, the processingT able 2
time of the first iteration is reduced to a third and then drops below 1 minAverage processing times
per iteration (dashed line).

Procedure Time (min)

Low High
Resolution data Euclidean metric proposed in Section 2.5. The results for

Landmark detection and registration 1:25 5 the other chamfer metric, designed for the 5 mm CT scans,
Initial correspondences 1:39 are similar. Nodule correspondences for 56 (97%) out of
Average ICP iteration 0:44 58 nodules of 10 patients are established correctly.
Iterative surface registration 6:45
Overall algorithm 8 12
25 iterations of LSR 18
25 iterations of SR 71 5 . Discussion
Exhaustive search algorithm 52 1820

5 .1. Landmark detection

optimize the chamfer and correlation measures. The local The landmarks in our data set have relatively similar
optima were determined by an exhaustive six-dimensional appearances on CT. Their appearance may change due to
search in the neighborhood of the best LSR solution. The metastatic disease in sternum or vertebrae and lung col-
local optima in the 6D search are at or near the LSR lapse. Lung collapse would result in a mostly horizontal
solution. SSD, chamfer and correlation values in the 2D shift of the location of the trachea. This would not cause
subspace of translations in the axial plane are shown in difficulties for our algorithm since it searches for low
Figs. 17 and 18.The chamfer values inTable 4 use the attenuation regions to find the trachea in a slice above the

lung apex. Connectivity is used to reduce the search space
 

T able 3
Nodule registration results

Patient Number Average error (mm)
of

Without Alignment based on
nodules

alignment
Radiologist LSR

1 15 35.6 7.1 17.0
2 7 24.7 2.8 3.3
3 7 18.3 5.5 8.5
4 4 32.6 1.8 4.2
5 4 56.9 2.5 5.1
6 3 29.7 1.7 5.9
7 2 17.0 – 10.6
8 4 11.4 3.1 5.5
9 4 15.8 1.6 15.6

Fig. 13. Processing times of the neighborhood search algorithm decrease
10 8 26.6 3.3 4.7

with each iteration of the lung registration algorithm for all 10 data sets.
The first iteration takes up to a few minutes for data sets with large initial

Average 5.8 25.3 3.3 8.0
misalignment (e.g. solid curve for low-resolution data). Each iteration
takes 43 s on average: 40 s for low-resolution data and 51 s for Average Euclidean distances between corresponding nodules before and
high-resolution data. after alignment based on nodule centroids and lung surfaces.
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Fig. 15. Coronal views of lung surface contours in scan 2 for patients 1, 2, 3 and 10 with nodules in scan 2 (light grey) and nodules transformed from scan
1 into scan 2 (dark grey).

in lower slices and would help find the trachea even if it sternum or vertebra were not found in image B, i.e.
was shifted due to a lung collapse. Lung collapse is less maximal correlation values were too small. If the lesion is
common with metastatic disease, the focus of this paper, asymmetric, the estimate of the landmark position may be
and more common with lung cancer. If a lung collapsed shifted slightly. Such a small error in landmark detection
before scan 1 is taken, landmark detection and surface will not affect the surface registration process significantly.
registration in the other lung will not be affected. If a lung
collapsed between scan 1 and scan 2, a rigid-body trans-5 .2. Landmark registration
formation, however, will fail to provide an accurate model
of the anatomical changes. This scenario may occur for Three non-collinear feature points are sufficient to invert
lung cancer patients. Note, however, that our system is Eq. (2). Due to the body’s anatomy, three out of the four
designed to work in conjunction with a radiologist who landmarks used can never be collinear. The three land-
would be able to identify such a problem easily. marks in image B, however, may be collinear. This means

Metastatic disease in the sternum and the vertebrae that the landmarks do not span the full 3D space of the
expands the bone. The likelihood of involving every chest, in particular, along thex-dimension. Small errors in
vertebral body and every portion of the sternum, however, estimating thex-coordinates of landmark positions there-
is very low. The algorithm could be expanded, so that fore have a larger impact on the overall registration error
neighboring slices are tested, in the unlikely case that than small errors in estimating they- and z-coordinates. It
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Fig. 16. Coronal views of the lung surface contours of study 2 for patient 1. On top, vessel points in study 1 (gray) and study 2 (black) are shown before
registration. In the middle, the points in study 1 are aligned to the points in study 2 by the transformation that minimizes the SSD between the 36 vessel
point pairs. On the bottom, the vessel points are matched using the transformation computed by the LSR algorithm.

follows that rotations in the sagittal (y 3 z) and coronal guarantee that corresponding points are the samephysical
(x 3 z) planes can be estimated with more accuracy than points. For example, if the patient is rotated counter-
rotations in the axial plane (x 3 y). To overcome this clockwise in the coronal plane (i.e. the left shoulder is
limitation, we would need to use lateral chest landmarks, closer to the head of the scanning table) in scan 1 but lies
for example, the ribs. straight in scan 2, the most cranial image with visible lung

Correspondences between landmark pairs can be estab- may only contain the left lung in scan 1, but both lungs in
lished easily; however, our detection method does not scan 2. In this scenario, the trachea cross-section in image

T able 4
Comparison of registration methods

Patient Average error (mm) Reduction of measures
w.r.t. initial mismatch

Without Nodule alignment based on
alignment Chamfer Correlation

Radiologist Vessels LSR Chamfer Correlation

3 18.3 5.5 7.9 8.5 10.2 8.1 69% 36%
7 17.0 – 12.6 10.6 9.7 8.2 43% 9%
9 15.8 1.6 – 15.6 23.4 17.2 7% 5%

10 26.6 3.3 5.2 4.7 4.3 5.5 64% 54%

Average 25.3 3.3 8.5 9.9 11.9 9.8 46% 26%
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Fig. 17. Ambiguity surfaces for patient 3. Top left: the SSD in a local neighborhood defined by the LSR solution and translation offsets (t , t ). Top right:x y

the chamfer distances in the same neighborhood. The lowest average chamfer distance is 3.62, shown at (21, 0). The solution found by the LSR method is
adjacent at (0, 0) and has an average chamfer distance of 3.64. Bottom: the values of the normalized correlation coefficient in a local neighborhood defined
by the LSR solution. The peak of 0.87 of the ambiguity surface corresponds to the LSR solution.

A in scan 1 will be located above the trachea cross-section iterations to overcome. If a better initial landmark align-
in image A in scan 2, and the cross-sections are therefore ment is desired, 3D landmark templates should be used.
not images of the same part of the trachea. Note that such a
scenario does not impact our overall registration per- 5 .3. Lung surface registration
formance, but only results in an initial misalignment that
requires more processing time and surface registration An iterative algorithm is called ‘stable’ or ‘robust’ if

small variations in the starting point result in small
differences in the output of the algorithm. Our method

 

showed a stable performance in our experiments: two
versions of our algorithm—surface registration with and
without landmark alignment (LSR and SR)—converged to
similar solutions. Their start points were relatively close
due to prospective attention to patient positioning (see, for
example,Fig. 10 left).

The accuracy of the lung surface registration depends on
the accuracy of the lung segmentation. Small segmentation
errors involving a few pixels on the boundary have a
negligible effect on the registration, since the number of
points on the surfaces range from several tens of thousands
in the low-resolution scans to several hundred thousands in
the high-resolution scans.Fig. 18. The autocorrelation of an entire CT scan for6908 rotations

To reduce the processing time of our method, we canaround thez-axis. High correlations (above 0.8) are only found for a
small range of rotation angles (628). apply the iterative surface registration algorithm to a low-
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resolution version of the surface data and then increase the differences for patient 1 and 10 are indeed due to locally
resolution as needed. Our preliminary investigation(Hong large deformations, possibly near nodules, that result in
et al., 2002)shows that this multilevel method is a useful small overall volume changes. Conversely, for data sets
alternative. with large volume differences but accurate nodule registra-

It is beyond the scope of this paper to develop and tion, deformations may have occurred in regions that do
compare optimization techniques for chest registration not contain nodules.
based on the chamfer and correlation measures. A Gauss– Since the three match measures, i.e. the sum of squared
Seidel algorithm, for example, could be adopted for the Euclidean distances, average chamfer distances, and nor-
chamfer method(Borgefors, 1988)and simulated anneal- malized correlation coefficient, attain local optima in the
ing could be used to search for the best correlation(Betke same small neighborhood in the space of solutions, they
and Makris, 2001).It is instructive, however, to compare provide nodule alignments of similar accuracy (seeTable
the ambiguity surfaces for the different methods. The 4). Note, however, that an optimal value for any of the
shape of the peak of the surface characterizes the res- measures does not necessarily describe a transformation
olution of a method(Betke and Makris, 2001).The wider that results in an optimal nodule alignment. For all three
the peak, the smaller is the method’s resolution. In our measures, we have found suboptimal surface alignments
experiments, the SSD measure has the highest resolution that result in more accurate nodule registration. The reason
and the correlation measure the lowest among the three is that our rigid-body registration method can only approx-
measures. Surface-based methods are often more efficient imate the true geometric relationship of the lungs.
than volumetric methods. The running time of our algo-
rithm and any chamfer method is O(kn) where n is the
number of surface points andk the number of iterations. 6 . Rigid versus non-rigid transformations
The running time of volumetric methods is generally
O(kN) whereN is the number of voxels evaluated. A higher degree of elasticity in the formulation of the

registration transformation is needed to capture the true
5 .4. Nodule registration geometry of the lungs. This applies particularly to the apex

and base of the lung, since lung deformations due to
The optimal rigid-body transformation of the nodules in inspiration occur mainly in these regions(Napadow et al.,

our dataset resulted in an average misalignment of 3.3 mm.2001).Visual inspection of our results indicates that our
The transformation computed by the LSR method has an registration method produces very good matches for most
average misalignment that is more than twice as large and of the lung surface area, but that there are mismatches at
corresponds to an average distance of about 12 pixels in the apex and base of the lungs for some of the scans.
the axial images or six slices in the high-resolution scans. Similarly, when we apply the LSR algorithm to the vessel
For our dataset, this produced a mismatch of only two branching points, most mismatches are found in the
nodules (3%). It could be argued that more mismatches periphery of the lung, in particular, the base of the lung
will occur in data sets with many nodules located within a (seeFig. 16). This also occurs when we apply the gold-
few pixels or slices of each other. However, the size of standard rigid-body transformation to the vessels’ branch-
pulmonary nodules must also be taken into account. Small ing points.
pulmonary nodules have diameters between 3 and 10 mm We presented aglobal registration method—any change
(Yankelevitz et al., 2000).They cover regions with diame- in a transformation parameter influences the transformation
ters of 4–15 pixels. The resolution of our registration of the 3D data set as a whole(Audette et al., 2000).In a
method therefore seems appropriate and our results shouldlocal transformation, such a change influences only a
generalize to other data sets. subset of the data. In future work, we plan to use local

The resolution of the method also indicates that it could transformations to better capture the geometric relation-
be used by a nodule detection system to relocate a nodule ships between surface portions at the lung apex as well as
in scan 2 that was previously detected in scan 1. The the lung base. For example, the ‘locally affine deformation
detection system would need to focus only on a small algorithm’ proposed byFeldmar and Ayache (1996)may
region in scan 2 around the predicted nodule location. Our allow sufficient modeling of the deformations of lung apex
preliminary investigation of this topic is promising(Mull- and base and at the same time ensure that the global form
ally et al., 2002). of the lung is preserved.

The accuracy of the nodule registration results is not A nonrigid alignment of the lung may also be guided by
linked to differences in overall lung volume. In the case of landmarks. The ribs are promising here, because they are
the largest volume difference, one lung is about 1/6th at the periphery of the lung, move with respiration, and
larger than the other (patient 3). The seven nodules of this may be easily detected due to the high attenuation values
patient are rigidly aligned with an error smaller than the of bones. Given a biomechanical model of respiratory
error for scan pairs with almost no volume difference, e.g. changes of lung surfaces, ‘deformable surface models’
patients 1 and 10. This indicates that the small volume (Metaxas, 1997)may allow us to describe physical rather
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than pure geometric transformations between lung sur- • The proposed registration method may also prove
faces. valuable in detecting nodule locations in follow-up

Since our goal is to assist radiologists in detecting and scans and comparing structures or regions in the lung
comparing pulmonary nodules, we will need to model the for functional analysis of asthma or emphysema pa-
shape and position of structures within the lungs, i.e. tients.
potential nodules, as functions of lung deformation during In the future, we will integrate the proposed registration
respiration, since these structures move with patient respi- methods into our nodule detection system. We will also
ration. With such a model, accurate nonrigid alignment of investigate techniques for non-rigid alignments of surfaces
lung surfaces may allow accurate alignment of the struc- and volumes to find a method appropriate for the chest.
tures within the lung. Another route to explore is applying Our long-term goal is to provide a system that becomes a
volumetric methods to the lungs only or to regions within clinically useful tool for nodule detection and growth
the lungs, instead of the entire CT scans. assessment.

7 . Summary and conclusions
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Our conclusions are as follows.
• A search process based on template matching can be

used to detect anatomical landmarks in the chest A  ppendix A. Inversion of a rigid-body transformation
reliably and efficiently. The measure of match is the
normalized correlation coefficient applied to generic

This appendix summarizes Horn’s method to computeattenuation templates that comprise the landmarks.
the translation and rotation parameters of a rigid-body• A close alignment of lung surfaces can be obtained by
transformation that optimally aligns corresponding pointsregistering them with the same rigid-body transforma-
in two datasets(Horn, 1987).tion that matches the chest landmarks optimally.

¯ ¯The best translation vectorx is x 2Rp, the difference• The landmark-based alignment of lung surfaces can be 0
n¯between the centroidx 5 1/n o x of point setX andimproved by re-registering them using a few iterations i51 i

n¯the centroidp 5 1/n o p of point set P rotated byof a closest-point matching algorithm. i51 i

rotation R. The translation can therefore be computed• The time needed to iteratively register the lung surfaces
easily once the rotation is found. To find the rotation, theis significantly reduced by the initial landmark-based
coordinates of points inX and P are converted intoalignment.
coordinates of points inX9 and P9 of coordinate systems• A cubic nearest neighbor search used in each iteration

9that are originated at the respective centroids, e.g.x 5of the closest-point algorithm is an efficient linear-time i

¯x 2 x for all x [X. This reduces the least-squaresmethod to establish surface point correspondences. i i
n 9problem of Eq. (3) to a minimization ofo ix 2• A rigid-body transformation can provide a good ap- i51 i

2 n 2 n T n 29 9 9 9 9proximation of the true geometric relationship of the Rp i 5o ix i 22 o x Rp 1o ip i withi i51 i i51 i i i51 i
n Tlungs in maximal inspiration. Non-rigid transformations 9 9respect to rotationR only, or max o x Rp . TheR i51 i i

are needed to describe the alignment of lungs in rotation matrix
differing respirational states.

2 2 2 2q 1 q 2 q 2 q 2(q q 2 q q ) 2(q q 2 q q )• The use of three match measures, i.e. the sum of 0 x y z x y 0 z x z 0 y

2 2 2 2squared Euclidean distances, average chamfer distances, 2(q q 2 q q ) q 2 q 1 q 2 q 2(q q 2 q q )R5 ,y x 0 z 0 x y z y z 0 x3 4and normalized correlation coefficient resulted in 2 2 2 22(q q 2 q q ) 2(q q 1 q q ) q 2 q 2 q 1 qz x 0 y z y 0 x 0 x y znodule alignments of similar accuracy.
• Given the locations of nodules in two scans, nodule (5)

correspondences can be determined automatically. This
may facilitate the radiologist’s evaluation of changes in solves this maximization problem, whereq 5 (q , q , q ,0 x y

nodule size and shape and analysis of the patient’s q ) is the unit eigenvector that corresponds to the maxi-z

response to treatment regimens. mum eigenvalue of the symmetric matrix
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