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Abstract. We developed an automated system that registers chest CT
images temporally. Our registration method matches corresponding ana-
tomical landmarks to obtain initial registration parameters. The initial
point-to-point registration is then generalized to an iterative surface-to-
surface registration method. Our “goodness-of-fit” measure is evaluated
at each step in the iterative scheme until the registration performance is
sufficient. We applied our method to register the 3D lung surfaces of 10
pairs of chest CT scans and report a promising registration performance.1

1 Introduction

Chest computed tomography (CT) has become a well-established means of di-
agnosing pulmonary metastasis of oncology patients and evaluating response to
treatment regimens. Since diagnosis and prognosis of cancer generally depend
upon growth assessment, repeated CT studies are used to determine growth
rates of pulmonary nodules. Chest CT is currently being evaluated as a method
for screening for lung cancer. Lung cancer remains the leading cause of cancer
death in the United States, killing 160,000 people a year. The overall 5-year sur-
vival rate is 15%, but early detection and resection can improve the prognosis
significantly. For example, the 5-year survival rate for Stage I cancer is 67% [13].

Our long-term objective is to develop an image analysis system that assists
the radiologist in detecting and comparing pulmonary nodules in repeated CT
studies in a clinical setting. Such a system must solve the classical problems
in medical image analysis – segmentation, detection, and registration – for the
important domain of chest CT images. References [4] and [10] describe our pre-
liminary system. It automatically segments the thorax, lungs, and structures
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within the lungs, and detects nodules in axial chest CT images. Human inter-
vention is needed to match up the studies. In the current paper, we focus on
automating the registration task. In particular, we describe a method for auto-
matic three-dimensional (3D) alignment of lung surfaces in repeated CT scans.

A large body of literature has been published on registration techniques
[1, 2, 3, 6, 7, 8, 9, 11, 14, 15]. Here we can only point to some approaches
that are most closely related to our work, e.g., approaches that use anatomical
landmarks for registration [7], register points to points [8] or surfaces [2, 11],
and correlate subimages [1]. Often only a small misalignment of the images is
assumed [1]. Other registration methods require some manual input to compen-
sate for rotational and translational differences between two studies [14]. Earlier
surveys on registration are [6, 15].

Medical registration techniques have primarily been developed for the brain.
Registration of chest radiographs has been addressed by Kano et al. [9]. To
the best of our knowledge, an automated system to register chest CT images
temporally has not been developed yet. Registration of thoracic CT studies is
challenging, since patient position varies each time a study is taken in terms of
differences in torso rotation and translation. Differences in inspiratory volumes
between two studies are other obstacles to registration.

In this work, the lung surfaces of two CT scans were segmented and regis-
tered for 10 patients. We first describe an automatic landmark-based registration
method, then generalize it to surface-to-surface registration, and improve it with
an iterative algorithm, which extends Besl’s registration scheme [2]. Finally, we
report and discuss the registration results for the 10 pairs of chest CT scans.

2 Methods

Registration of Anatomical Landmarks. Registration techniques determine
the absolute orientation of one data set with respect to the other. The 3D coor-
dinates of corresponding points in the two different data sets are known. For our
3D data sets, it is difficult to establish the anatomical correspondence of voxels,
even for a human observer. We therefore use the voxels that make up anatomical
landmarks for our initial registration method. We do not use external fiduciary
markers, which would be impractical in a clinical setting.

Bones are rigid anatomical features that can be registered reliably. In par-
ticular, the sternum and vertebrae are excellent anatomical landmarks, because
their positions are relatively fixed within the chest. We also use the trachea as
an anatomical landmark. Although the position and shape of the trachea change
with respiration, the trachea centroid serves as a reliable landmark for registra-
tion of our data sets. Finally, we also tested the use of structures within the
lungs, for example nodules, for registration. Figure 1 shows how the centroids of
sternum, trachea, and a nodule in the left lung are registered in corresponding
axial images of two CT data sets.
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Fig. 1. (a) Template images of the sternum, trachea, and spine. (b) Correspond-
ing CT images in two studies. The landmarks are the centroids of the sternum,
trachea, and a nodule in the left lung. (c) The light grey test points in study 2
must be matched to the white model points in study 1. The best transformation
of the test points is shown in dark grey.

Correlation-Based Recognition of Anatomical Features. We use tem-
plate images of anatomical landmarks, such as sternum, vertebra, and trachea
shown in Fig. 1, to detect these landmarks in our test data. The template im-
ages are created offline by manually cropping subimages of the features out of a
training data set. Although the features look slightly different in the test data,
training and test data generally match well. This is particularly true if we use a
deformable template that can be scaled or rotated.

Let a describe the affine parameters position, scale, and rotation of the tem-
plate. We use the normalized correlation coefficient to find the best estimate of
the affine parameters. In our previous work [5], we showed when the statistically
optimal estimator for the affine parameters takes the form of the normalized cor-
relation coefficient. It quantifies how well the measured data in subimage Iq(x, y)
matches the template feature in q(x, y;a). The normalized correlation coeffi-
cient is defined by r(a) = 1/(σI(a)σq(a)(A(a)

∑
(x,y)∈O Iq(x, y)q(x, y;a) −

mI(a)mq(a)), where mI(a) =
∑

Iq(x, y) and mq(a) =
∑

q(x, y;a) are the
respective local image means, σ2

I (a) = A(a)
∑

Iq(x, y)2 − (
∑

Iq(x, y))2 and
σ2

q (a) = A(a)
∑

q(x, y; a)2 − (
∑

q(x, y;a))2 are the respective local variances,
and where the sums are computed over a region O that is the union of all pixels
that contain the expected feature and A = |O| is the number of pixels in O.

The ambiguity surfaces for the position estimates of anatomical features have
global peaks with correlations of at least 0.8, which lie far above the expected
correlation E[r(a)] = 0. In addition, once a feature, such as the trachea, is found
in some axial image, the search space for the same feature in subsequent images
can be reduced significantly. In addition, we update the template feature q auto-
matically online with the cropped image of the detected feature in the previous
slice. This results in high correlations (≥ 0.9) and reliable estimates of feature
position and size.

Three-Dimensional Affine Point-to-Point Registration. Given a voxel x
in study 1 and a voxel p in study 2, the general 3D affine transformation x =
Ap + x0 maps p into x, where the 3 × 3 matrix A can be expressed in terms



728 M. Betke, H. Hong, and J.P. Ko

of nine parameters, three for rotation, three for scaling, and three for skewing.
Vector x0 describes the 3D translation between x and p.

In our application, the rotation parameters model the orientation of the pa-
tient’s body on the CT table. Scaling in the x and y dimensions models changes
in the field-of-view, i.e., the pixel-width-to-millimeter ratio. Scaling in z is due
to the differing slice thickness and number of slices in the two studies. Since
the scaling parameters are determined before scan acquisition, we do not need
to invert for the scaling parameters. We assume that the CT scanner does not
introduce skewing and preserves the Cartesian coordinates of 3D points. Then
the problem of finding the general affine transformation reduces to finding the
rigid-body transformation after the 2 studies have been adjusted for scaling dif-
ferences. The rigid-body transformation T maps p into x,

x = T (p) = Rp+ x0, (1)

where the orthonormal 3 × 3 matrix R rotates p into vector Rp, which is then
shifted into x by translation vector x0. We have 12 unknowns (9 matrix coef-
ficients and 3 translation parameters) and only 3 linear equations. So we need
at least 4 corresponding points to compute the unknown transformation pa-
rameters. If we impose the orthonormality condition, we obtain an additional
equation and therefore only need 3 corresponding points.

Since there may be errors in the measurement of the points or in the corre-
sponding landmark detection algorithm, a greater accuracy in determining the
transformation parameters can be obtained if more than three points are used.
Given a set X of n points x1, . . . ,xn in study 1 and a set P of corresponding
points p1, . . . ,pn in study 2, we minimize the sum of square residual errors

n∑

i=1

‖ei‖2 =
n∑

i=1

‖xi − T (pi)‖2 =
n∑

i=1

‖xi −Rpi − x0‖2 (2)

with respect to the unknowns R and x0. A closed-form optimal solution to this
least-squares problem was given by Horn [8]. The best translation vector x̂0 is
the difference between the centroid x̄ = 1/n

∑n
i=1 xi of point set X and the

centroid p̄ = 1/n
∑n

i=1 pi of point set P rotated by rotation R :

x0 = x̄−R(p̄). (3)

Therefore, the translation can be computed easily once the rotation is found.
To find the rotation, the coordinates of voxels in X and P are converted into
coordinates of voxels in X ′ and P ′ of coordinate systems that are originated
at the respective centroids, e.g., x′

i = xi − x̄ for all xi ∈ X . This reduces
the least-squares problem of Eq. 2 to a minimization of

∑n
i=1 ‖x′

i − Rp′
i‖2 =∑n

i=1 ‖x′
i‖2 − 2

∑n
i=1 x

′T
i Rp′

i +
∑n

i=1 ‖p′
i‖2 with respect to rotation R only, or

maxR

∑n
i=1 x

′T
i Rp′

i. The solution of this maximization problem is given by a
unit quaternion (see details in [8, 3]). In Fig. 1, the centroids of the sternum,
trachea, and a nodule in study 1, shown in white, are registered to the corre-
sponding centroids in study 2, shown in light grey. The registration results are
shown in dark grey.
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(a) (b) (c)

Fig. 2. 3D visualization of the lung. (a) Coronal view of both lungs, (b) top-
down axial view of the right lung, and (c) wire-frame visualization of the right
lung.

Three-Dimensional Affine Shape Registration. In this paper, we focus
on lung border surfaces that are segmented from the full 3D data set using the
method described in our ealier work [10, 4]. Figure 2 visualizes lung surfaces
segmented from a low-dose CT scan. Our goal is to register such a surface to the
lung surface of the same patient that is imaged at a later time.

The point-to-point registration algorithm described above assumes that the
correspondence between points has been established. For certain points, e.g.,
the centroids of the sternum in corresponding axial slices, correspondence can
be determined with relatively high confidence, but the correspondences of other
point pairs are not as easily established. For example, a lung border point in
the apex of study 1 corresponds to some border point in the apex of study 2,
but which point generally cannot be determined, even by a human observer. We
therefore define the correspondence C of two points on different surfaces by their
distance. In particular, test point pi corresponds to model point xj = C(pi), if
their Euclidean distance is the shortest among all distances between pi and any
point in X , i.e., C(pi) = xj , for which ‖xj −pi‖ = minxk∈X ‖xk−pi‖. With this
definition, we can match two surfaces that contain a different number of voxels.

The computed correspondences are reliable if the two data sets are close to
each other, in particular, if they have been registered. This creates a paradoxical
situation: we would like to register corresponding points, but need to register
them first in order to establish their correspondences. To resolve this situation,
we solve the registration and correspondence problems concurrently, an approach
proposed by Besl [2]. We first detect anatomical landmarks in studies 1 and 2
and compute the 3D affine transformation that registers them optimally. We
then segment the lungs [10, 4] and register them with the transformation pa-
rameters computed for the landmark registration. We establish correspondences
by computing the Euclidean distances between all point pairs of the two data
sets, register the transformed lung borders in study 2 to the lung borders in
study 1, compute the new correspondences and error, and then iterate. Once the
error is sufficiently small, the process is terminated. Note that this process does
not guarantee that corresponding points are the same physical point.
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Fig. 3. Visualization of the 3D registration of 10 left lung border curves with
views from the lung’s side (top left), bottom (bottom left), and top (right).
Points in study 2 (light grey) are registered to points in study 1 (white) by a
transformation that maps them into points shown in dark grey. The registration
error is minimal.

Function LungRegistration takes as inputs 3D voxel data sets CTstudy1
and CTstudy1 that have been adjusted for field-of-view differences, and a pa-
rameter threshold that is used to decide when the function can terminate with a
sufficient registration result. It outputs the transformation parameters for trans-
lation and rotation. For its function calls, we use C-style notation to distinguish
input parameters, e.g., in line 5, lung1, from parameters that change during the
function call, e.g., &lungR, &translation.

1 Function LungRegistration (CTstudy1, CTstudy2, threshold) {

2 DetectLandmarks(&landmarks1, &landmarks2);

3 RegisterLandmarks(landmarks1, landmarks2, &translation, &rotation);

4 SegmentLungs(CTstudy1, CTstudy2, &lung1, &lung2);

5 RegisterLungsInitially(lung1, lung2, translation, rotation, &lungR);

6 ComputeCorrespondencesAndError(lung1, lungR, &error);

7 while (error > threshold) {

8 RegisterLungs(lung1, &lungR, &translation, &rotation);

9 ComputeCorrespondencesAndError(lung1, lungR, &error); }

10 OutputResults(translation, rotation); }

3 Results

Ten patients with cancer diagnoses and pulmonary nodules were selected, who
had two thoracic CT scans for clinical indications between 1993 and 2001. A to-
tal of 20 CT studies was evaluated. Fourteen chest CT scans had been performed
helically on GE HiSpeed Advantage machines. The scans were obtained from the
lung apices through the adrenal glands using a 1:1 pitch either with 5mm colli-
mation for the entire study or 10mm collimation with 5mm collimation through
the hila. Six studies were taken on a multi-helical Siemens Somatom Volume
Zoom CT and reconstructed in 1.0 mm intervals. The landmarks used for the



Automatic 3D Registration of Lung Surfaces 731

Fig. 4. On the left, wire models of the right lung for study 1 (grey) and study 2
(white). On the right, the transformed lung surface of study 2 (white). It matches
well with the lung surface of study 1 (grey).

initial registration are the centroids of the trachea at the apex and just above
the carina, and of the sternum and vertebra also in the slice above the carina.
We evaluated the results quantitatively with the sum-squared-differences (SSD)
measure (Eq. 2) and qualitatively by visual inspection. Table 1 summarizes the
results. Using a fixed length of 25 iterations, the registration error was reduced
up to 86% of the initial error. We also registered CT scans based on correspond-
ing vessel landmarks that a radiologist identified and report the differences in
registration results between human and computer. Visual inspection of the 3D
lung registration results in Figs. 3 and 4 shows that the measured and computed
points match well and confirms the results of our quantitative error analysis.

4 Discussion and Conclusions

To overcome the need of human intervention in our preliminary system [10, 4], we
developed an automatic 3D registration method that matches the lung surfaces
in repeated CT studies. Our results for 10 pairs of CT scans are very promising.
In the future, we will also test if our system can reliably register corresponding
nodules in repeated chest CT scans and thus become a clinically useful tool for
nodule growth assessment.

We presented a global registration method – any change in a transformation
parameter influences the transformation of the 3D data set as a whole [15]. In the
future, we will design deformable surface models [12] to describe local transfor-
mations that are due to differences in patient respiration. We will then address
the difficult task of registering structures within the lung. This will require mod-
eling of nodule shape and position as a function of lung surface deformation,
since nodules may move within the lung due to the patient’s respiration.



732 M. Betke, H. Hong, and J.P. Ko

Table 1: Registration Results

Patient Months Reconstruc- Rotation Trans- SSD Error Transl. Error
between tion interv. in Euler lation Reduction Comp. vs.
Studies in mm Angles in mm after 25 it. Radiol. mm

1 2 10/5/10 (2.3, 0, 9.3) 15 21% 10
2 4 1

2
10/5/10 (-0.5, 0.3, -2.4) 26 34% 8

3 1 1
2

5 (3.6, 1.2, -8.6) 6 86% 9
4 1 1

2
10/5/10 (0.2, -0.6, 3.7) 142 7% –

5 4 1 (0.1, -4.0, 1.9) 5 20% 2
6 7 1 (-1.9, -1.4, 1.8) 3 51% 3
7 6 1

2
1 (-6.7, -5.5, 4.4) 27 78% 8

8 2 5 (-1.8, 3.6, -9.8) 21 75% 4
9 1 1

4
5 (0.2, 0.1, 4.5) 58 8% 6

10 1 5 (5.2, 1.5, 3.3) 14 81% 4

Landmark detection and registration significantly improve the speed of the
registration process. Since there is a tradeoff between speed and precision of
registration, we will test the impact of resolution reduction on registration per-
formance. We will also investigate whether initial registration of a larger set of
landmarks will improve registration precision and speed.

In summary, we have developed a 3D method for registration of lung surfaces
in repeated chest CT scans and shown a promising registration performance for
10 patients.
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