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Abstract. In non-rigid image registration problems, it can be difficult to
construct a single cost function that adequately captures concepts of sim-
ilarity for multiple structures, for example when one structure changes
in density while another structure does not. We propose a method that
locally switches between cost functions at each iteration of the registra-
tion process. This allows more specific similarity criteria to be embed-
ded in the registration process and prevents costs from being applied to
structures for which they are inappropriate. We tested our method by
registering chest computed tomography (CT) scans containing a healthy
lung to scans of the same lung afflicted with acute respiratory distress
syndrome (ARDS). We evaluated our method both visually and with the
use of landmarks and show improvement over existing methodology.

1 Introduction

Registration methods are increasingly in demand by medical practitioners to
accurately model the transformations they observe in their image data [1]-[4].
The problem of registering lung images has recently gained notice [5]-[9] largely
due to an interest in supporting lung cancer diagnosis. Accurate registration of
lung anatomy, however, remains an open problem, especially in the presence of
pervasive pathology where normal structures have changed drastically in appear-
ance as when the lung is afflicted with emphysema or acute respiratory distress
syndrome (ARDS). In this work, we present a method for registering a chest
CT containing a healthy lung to a chest CT of the same lung afflicted with
ARDS and present a general framework to solve non-rigid registration problems
in which the intensity values of corresponding structures do not change in the
same way for all structures in the images.

ARDS is a disease that involves severe flooding and collapse of the lung,
thereby making it difficult to breathe and maintain adequate gas exchange.
ARDS has a high mortality rate (32% – 45%) [10]. Mechanical ventilation is
often a required therapy in order to maintain the necessary O2 and CO2 levels
of the body. Mechanical ventilation can impose non-physiological forces on the
lung that can exacerbate lung injury. Characterizing the heterogeneous nature
of the disease and how it is impacted by mechanical ventilation is important for
basic survival of these patients [11]. On CT images ARDS is characterized by
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Before Case 1 Case 2 Case 3

After

Fig. 1. Axial view of three sheep chests before and after a saline wash of their lungs

induced ARDS. A saline wash affected the entire lung of case 1, but did not uniformly

affect the lungs of cases 2 and 3 as can be seen from the dark air-filled patches at the

top of case 2’s lungs and throughout case 3’s lungs.

regions within the lung that can be as dense as the tissue surrounding the lung
(Fig. 1). Measures on the mechanics of ARDS have been limited to the order
of quadrants within the lung [11] rather than the order of the finer anatomical
structures visible even in low resolution CT. Non-rigid registration of healthy
lung scans to scans of lungs with ARDS can help researchers understand the
syndrome and may lead to better treatment options than currently exist. To
the best of our knowledge, automatic non-rigid registration approaches have not
been applied to this problem.

There are two principle branches of image registration techniques: those guided
by image similarity cost functions and those guided by feature detectors. This pa-
per presents a modification to non-rigid registration methods using image-based
cost functions. Specifically, we modify the method proposed by Rueckert et al. [12]
in which images are aligned by minimizing the “cost” of correspondence between
the images by comparing intensity values. In registration problems like this, a sim-
ilarity function that might be adequate for capturing the spatial deformations of
temporally constant density tissue, for example the bony anatomy, might not be
sufficient to capture both spatial deformations of structures and temporal changes
in tissues density, as in an ARDS inflicted lung. We do not attempt to solve the cor-
respondence problem of lung anatomy imaged before and after the onset of ARDS.
Instead, we propose a method to non-rigidly register the tissues surrounding the
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Fig. 2. Axial view of a healthy lung (left) and an ARDS inflicted lung before (mid-

dle) and after (right) non-rigid registration using correlation as the only cost to guide

registration. The transformation grid is overlaid in the right image. The voxels of the

bronchi (indicated by arrows in their original form in the middle image) are inappropri-

ately warped to fill the lung (dark regions in right image). In the iterative registration

process, the correlation gradient leads away from correct correspondence within the

lung. Correspondence outside the lung is somewhat better.

lung without adversely affecting the topology of the lung. No segmentation is used
in our approach. Our approach adaptively changes the character of the cost func-
tion at each iteration of the registrationprocess.These changes allow cost functions
to be applied only on appropriate anatomy.

2 Methods

We follow the framework proposed by Rueckert et al. [12] in which a multi-level
non-rigid registration algorithm is built upon a hierarchical grid of b-splines.
Multi-level approaches progress from coarse to fine image resolutions during the
process of registration to avoid local minima problems and reduce computation
time. A hierarchical b-spline grid controls the transformation T of the source im-
age I1 into the coordinate system of the target image I2. The similarity between
the two images is evaluated with a cost function of the form:

Cost(θ) = CImageSimilarity(T (θ, I1), I2) + CRegularization(T (θ)),

where θ designates the positions of the grid points controlling the b-spline. The
gradient of this cost function is followed in steps of size µ to find the optimal
registration between the two images. The registration process iteratively checks
the gradient and modifies the transformation parameters.

The above approach will not work when the cost function does not appropri-
ately embody all the changes that occur between image acquisitions. In Figure 2,
for example, correlation was used as the only cost to guide the registration be-
tween healthy and ARDS inflicted lungs. The correlation gradient, in effect,
pushed the transformation in an anatomically inappropriate direction.

We would like to construct a framework for using cost functions only on the
anatomy for which a particular cost function is most appropriate. We can do this
by associating each knot θi of the b-spline grid for i = 0, ..., N, where N is the
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number of grid control points, with a particular cost function. For k = 1, ..., K
cost functions, this takes the form:

Cost(θi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cost1(θ) if f1(θi, T (θ, I1), I2) > τ1

Cost2(θ) if f2(θi, T (θ, I1), I2) > τ2

...
CostK(θ) otherwise

(1)

where fk are K − 1 functions used to decide which cost function to apply by
comparing each of them to a threshold τk. The cost function association of
each control point is decided at each iteration. The algorithm, a modification of
Rueckert et al.’s framework that includes our method of cost function selection,
is detailed below.

Non-rigid Multi-scale Registration Algorithm with Local Cost Switching
Input: Two 3D scans

1 calculate an initial rigid registration

2 initialize the control points θ(l) and down sample the images to the coarsest
resolution, l = 1,

3 repeat
4 determine the cost function Cost(θi) = Costk(θ) to associate with

each control point θi (Eq. 1)

5 calculate ∇C =
∂Cost(θ

(l)
i )

∂θ
(l)
i

6 for µ = max. step size until µ = min. step size
7 while ‖∇C‖ > threshold ε or iteration count < max. iterations do
8 recalculate the control points θ = θ + µ ∇C

‖∇C‖
9 determine the cost function Costk(θ) to use at each control point θi

10 recalculate the gradient vector ∇C
11 decrease step size µ
12 increase the control point resolution and image resolution l
13 until finest level of resolution, l = L, is reached

Output: θ

We adapted the local cost switching algorithm to the specific application
of registering healthy lungs to lungs inflicted with ARDS. We needed to con-
struct cost functions that could appropriately express tissue transformations in
this problem. First, we incorporated transformation costs that discourage dra-
matic bending of the transformation grid and extreme volume changes across
the entire image. Secondly, the correspondence of anatomy outside of the lung
can be captured by an image-intensity similarity term. We constructed a single
cost function incorporating these terms and weighted their contributions to the
overall cost using α, β, and γ as follows:

Cost() = α CImageSimilarity(T (θ, I1), I2) + β CBendingEnergy(T (θ))
+ γ CV olumePreservation(T (θ)) (2)

Specifically, we define CImageSimilarity() to be the correlation coefficient
Covariance(I1,I2)

Std.Deviation(I1)∗Std.Deviation(I2) , CBendingEnergy(T (θ)) to be the bending energy
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thin metal plate [12], where X, Y , and Z are the dimensions and V is the volume
of the scan, and CV olumePreservation(T (θ)) =

∫

V | log(det(Jacobian(T (θ))))| dθ
[13].

For the single cost in Eq. 2 to be successful if applied by itself, it must not
only relate the anatomy outside the lung which has undergone minimal intensity
changes but also the anatomy within the lung which has drastically changed be-
cause of the infliction of ARDS. In general, CImageSimilarity(T (θ, I1), I2) is used
to capture such a relationship, but as already shown in Fig. 2, correct anatomic
alignment cannot be achieved using the correlation coefficient as the image simi-
larity cost. Moreover, it may not be possible to construct such an image-intensity
similarity function that can capture the entire range of anatomical changes seen
in comparing scans of healthy lungs to scans of diseased lungs. In such cases
where image similarity costs guide registration toward inappropriate solutions,
our cost switching framework can be used to allow regions with strong image
correlation to non-rigidly align themselves while still correctly deforming regions
with weak image similarity. To formulate this, we specify Eq. 1 for two cost func-
tions, Cost1 with an image similarity term and Cost2 without:

Cost1() = α CImageSimilarity(T (θ, I1), I2) + β CBendingEnergy(T (θ))
+ γ CV olumePreservation(T (θ))

Cost2() = β CBendingEnergy(T (θ)) + γ CV olumePreservation(T (θ)),
(3)

Because Eq. 1 is applied for K = 2, we had to specify one decision function f1

for Eq. 3. We defined f1 to be the normalized correlation coefficient with thresh-
old τ1 = 0.5. This function controls how to switch between the two cost functions
at each grid point and differentiates between correlated and uncorrelated image
regions. A fixed size patch around the location of each knot point was used as
the correlation template. An initial alignment is achieved by performing a rigid
registration on high density bony anatomy. The two costs defined in Eq. 3 are
assigned in lines 4 and 9 of our cost switching registration algorithm.

It should be noted that with the costs in Eq. 3, we do not expect the anatomy
within the injured portions of the lung to achieve perfect alignment. There is
no mechanism to draw these regions into correct correspondence except for the
bending and volume preservation costs responding to the deformations of sur-
rounding tissues. Tissue outside of these injured regions should achieve good
alignment.

3 Experiments

To evaluate our cost switching approach, we used CT scans taken from six sheep
(Fig. 1). CT scans were taken both before and after ARDS was induced by
treating their lungs with a saline wash. The sheep were placed on ventilators to
control the pressure level of air in their lungs. The CT images had resolution
0.71 × 0.71 × 10 mm3 and captured the entire area of the lung.
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Fig. 3. Absolute difference in intensity values between unregistered scans (left), rigidly

registered scans (middle left), single cost non-rigid registration (middle right), and cost

switching non-rigid registration (right). The lungs are visible as a result of the density

shift induced by the saline wash. Outside of the lungs, the non-rigid approaches improve

upon the results of the rigid registration and in this case, our cost switching approach

more accurately registered the ribs.

Table 1. Root Mean Squared Error Between Registered Landmarks in the Lung (mm).

Rigid and cost switching non-rigid registration driven by non-lung structures result in

similar error in lung landmark alignment.

Sheep Unregistered Rigid Single Cost Cost Switching

1 38.5 15.4 11.9 14.2
2 10.2 7.9 12.1 8.1
3 7.9 6.7 13.3 5.7
4 20.3 8.1 7.2 7.8
5 13.2 9.9 16.8 11.1
6 27.5 9.8 24.2 14.5

Average 19.6 9.6 14.3 10.2

We tested our method by registering images of the same animal imaged at the
same pressure level before and after the infliction of ARDS. We validated our regis-
tration results both visually and by comparison to ground truth correspondence of
landmarks. Figure 3 shows that non-rigid registration approaches reduced the in-
tensity difference between scans for the anatomy outside the lung. As the anatomy
outside the lung has not changed in density between imaging, a reduction in the
intensity difference reflects a more accurate alignment of anatomy.

Within the lung, since significant density changes have occurred between
data acquisitions, density differences are not a useful measure of misalignment.
We can, however, evaluate changes in landmark location. The landmarks used
consist of branching points of the bronchi and blood vessels within the lung.
We used 18-22 landmarks per case. We show the root mean squared error in
millimeters between corresponding landmarks in Table 1. We report an average
improvement in landmark alignment of 28% by the cost switching approach in
comparison to the single cost approach. We report an average degradation in
landmark alignment of 6% for the cost switching approach in comparison to the
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Fig. 4. Results from single cost non-rigid registration (A,B) and cost switching non-

rigid registration (C,D) in sheep 1. We show the registered images with an overlay of

the local deformation quantities (A,C). Notice the difference in the shape of the trachea

(indicated with an arrow). The single cost approach greatly increased the size of the

trachea. Our approach stayed closer to physically viable transformation.

Fig. 5. Axial view of sheep 2 (top) and 3 (middle and bottom). Images are shown with

(middle left) and without (left) ARDS before registration. Also shown are the single

cost solution (middle right) and our cost switching solution (right) with an overlay of

the deformation grid. Notice that the single cost solution expands the dark region at the

top of the lung, in the process moving vessel structures away from their corresponding

structures. Our approach maintains the character of the rigid transformation within

the lung.

rigid approach, where as the single cost approach degraded 49% in comparison to
the rigid approach. In all but one case, the cost switching approach maintained
the error between landmarks obtained by rigidly registering the scans. In two



374 W. Mullally et al.

cases (the most homogeneous of the ARDS scans), the single cost non-rigid
approach also maintained the same level of error but in four cases it significantly
increased the error, separating the landmarks even more than if the scans had
not been registered in three of those cases.

Visual evaluation shows that our cost switching method more accurately reg-
isters the ribs than the single cost non-rigid approach (Fig. 3). More significant,
however, are the apparent anatomical changes of the trachea, esophagus, and
lungs. In Fig. 4 the principal difference between the methods is in the apparent
shape of the trachea. The single cost approach greatly increased the size of the
trachea. As the only large air filled region in that portion of the body, the tra-
chea was expanded to maximize the correlation with the air filled healthy lungs.
Our cost switching approach thus stayed closer to a physically viable transfor-
mation. Note that some large deformations were needed to capture changes to
the anatomy external to the lung. The single cost approach expanded air filled
regions, most notably at the top of the lungs (Fig. 5). Our approach maintained
an anatomically appropriate transformations.

Instead of cross-correlation as the image similarity function to guide our reg-
istration, other formulations are possible, most notably mutual information. We
did test our approach using mutual information and while we do not present in
depth results, we note that mutual information drew the anatomy within the
lung away from correct correspondence. This performance may indicate that no
general purpose similarity function can be defined to represent the density trans-
formation that occurs between a healthy lung and a lung inflicted with ARDS.

4 Discussion and Conclusion

Assigning cost functions at each iteration allows the registration process itself to
influence what cost function is used at a particular location. This is similar to
several approaches [14,15] for adaptively deciding the impact a particular image
point will have in an image registration process. Shen et al. [14] use a hierar-
chical ordering of “driving voxels” to register images. They propose a similarity
measure in a high dimensional space incorporating tissue classification, image
intensity, and geometric moment invariants. Using all the voxels in the image,
they then find clusters in this space that represent each tissue type. They allow
voxels close to the cluster centers to drive registration early in the registration
process. They gradually relax the distance they use for determining the driv-
ing voxels until all voxel in the image are used. This approach, however, is not
appropriate for the application of registering injured lung images in large part
because the approach is built upon good segmentation, which has not been reli-
ably demonstrated for injured lungs. Furthermore, Shen et al. eventually apply
a single similarity function for all voxels in the images. In the application of
injured lung registration, correlation draws some image regions away from cor-
rect correspondence, therefore we explicitly deny regions with low correlation
from driving the registration process. Moreover, our framework allows for the
use of multiple similarity functions, tailored to the requirements of a particular
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Fig. 6. Typical examples of gradient descent during the registration process at one

grid point θi for healthy tissue (A), at boundary of healthy and ARDS inflicted tissue

(B), within ARDS inflicted tissue (C), and averaged across all transformation grid

locations θ (D). Changes in resolution level l occurred at iteration 22 and 50 and are

indicated with vertical lines. (A) Outside the lung and within healthy regions of the

lung, correlation is strong so Cost1 is used. (B) At the boundary between healthy

tissue and injured tissue, correlation can dominate the cost during the low resolution

stages of the registration. At the highest resolution, however, strong correlation no

longer exists so the registration process automatically switches to Cost2 which does not

include correlation costs. (C) Within injured regions of the lung, correlation is weak so

Cost2 is used throughout the registration. As the regularizing costs are affected by the

movement of neighboring points on the transformation grid, the cost initially increases

as other image patches move in response to the gradient of Cost1. The cost begins to

decrease once Cost1 no longer drives large movements in other regions of the image.

(D) On average, the cost always moves in the direction of a minimum except when the

resolution level changes.

application, that can simultaneously drive the registration process on many dif-
ferent image regions of arbitrarily complex description.

Guest et al. [15] propose a reliability measure that can be used on any simi-
larity measure and in any method for computing a registration transformation.
The “reliability” of a measure at a particular image point is high if the point
matches well to a single point or line in the corresponding image and is low if it
matches well to a large region. Our framework can incorporate this measure or
any other measure of reliability that is appropriate to a particular application.

We show typical examples of how the cost changed during the registration
process in Figure 6. Parameters were set to α = −1, β = .001, and γ = .001 in
Eq. 3. Dues to the low weight given to them, the bending and volume preser-
vation terms did not noticeably impact the solution until the later half of the
registration process when the correlation gradient is small. Notice that our al-
gorithm minimizes cost with respect to the transformation parameters and not
with respect to the cost function used. The algorithm is not allowed to choose a
cost function because it has the lowest value, otherwise, transitions from Cost1
to Cost2 would not occur as seen in Fig. 6 B at iteration 50.
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We were limited to using six data sets for a proof of concept test of our
approach for registering healthy lungs to diseased lungs. The images came from
biomedical study into ARDS where animals were deliberately injured [11]. It
is not feasible to obtain a large collection of such images. Our approach may
have application to the study of other diseases and injuries to the lung as in
pneumonia, asthma, or the effects of near drowning.

Ultimately, to solve the problem of registering CT scans containing healthy
lungs to CT scans containing injured lungs, it may be necessary to fuse a feature
based approach, perhaps using vessel branching points, to an image similarity
approach. Segmentation of these structures, however, is still challenging, espe-
cially in the presence of an injury or disease like ARDS. Also, the cost functions
used for in our current approach are not directly drawn from biomechanics. The
elasticity properties of bones, ligaments, and other tissues should replace the
bending energy of thin metal plates and volume preservation costs used here. In
addition to formalizing such properties as costs, work remains to apply them to
the appropriate anatomy within the registration framework.

In summary, we have presented a novel method for incorporating multiple
cost functions into a single registration process. This allows for greater specificity
and variation in the definitions of anatomical correspondence used in non-rigid
registration problems. We have tested our approach on the difficult problem of
registering chest CT scans before and after the infliction of ARDS. By providing
a method to register healthy and ARDS inflicted lung scans, we hope to help
researchers better understand the syndrome and find new treatment options.
Our results demonstrate that being able to selectively apply cost functions on
appropriate anatomy does increase the accuracy of the resulting registration.
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