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Abstract. Accurate head tilt detection has a large potential to aid peo-
ple with disabilities in the use of human-computer interfaces and provide
universal access to communication software. We show how it can be uti-
lized to tab through links on a web page or control a video game with
head motions. It may also be useful as a correction method for cur-
rently available video-based assistive technology that requires upright
facial poses. Few of the existing computer vision methods that detect
head rotations in and out of the image plane with reasonable accuracy
can operate within the context of a real-time communication interface
because the computational expense that they incur is too great. Our
method uses a variety of metrics to obtain a robust head tilt estimate
without incurring the computational cost of previous methods. Our sys-
tem runs in real time on a computer with a 2.53 GHz processor, 256 MB
of RAM and an inexpensive webcam, using only 55% of the processor
cycles.

1 Introduction

Many existing face analysis systems require an upright face as input to function
correctly and often assume that no head tilt occurs (e.g., [1–5]). A head tilt
detection system could serve as a pre-processor to these systems by rotating the
input image by the estimated head tilt angle and thus facilitate interaction in
circumstances when the head is not upright. This would be particularly impor-
tant for people with severe motion impairments, e.g., due to cerebral palsy or
multiple sclerosis, who often have difficulties holding their heads straight. They
could then use video-based assistive technology that assumes an upright face,
such as EyeKeys [4], and thus gain access to communication software. Head tilt
detection can also enhance human-computer interaction by providing an addi-
tional mechanism to select commands. Left and right head tilts could be used
to rotate a 3D model, control a video game, tab through a web page, or select
letters in a scan-based text-entry program.

Among previous face detection algorithms, CAMSHIFT [6] is particularly
geared towards real-time human-computer interaction. It requires a color model
of the face that it will be tracking, and it finds the center, elongation, and tilt
of the face by determining the likelihood that pixels in the input image belong
to the face based on a comparison of their color values with the prior face color
model. Other face tracking methods also use color and motion information [7, 8].
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Face detection systems that require extensive training use neural networks [9]
or AdaBoost [10–12]. These systems are very effective in detecting upright faces,
but give only coarse estimates of head tilt and put severe computational and
memory strains on a computer that, if used for human-computer interaction,
must at the same time provide computational resources for the application pro-
gram.

Motion of the head, the foreground object, in a video sequence causes pixels
to transition from background to foreground or foreground to background, de-
pending on the direction of motion. We observed that an image representation of
these transitions contains distinctly grouped pixels created by the motion of the
head, in particular by the change of its occluding boundary. Our contribution is a
method of estimating head tilt from the size, relative location, and orientation of
these groups. A second contribution is our method to estimate head tilt from the
motion of the center of the face. Assuming head rotation is parallel to the image
plane, a circle can be fit to the sequence of face centroids as the head rotates.
This second estimate of head tilt is combined via a weighting function with our
estimate based on motion of the occluding boundary to yield an estimate that
is comparable to the most powerful methods to date (e.g., [9, 12]).

Not only is our method a novel technique, but its real-time performance
on common desktop computers with inexpensive cameras makes it immediately
applicable to human-computer interaction, unlike some previous approaches
(e.g., [9, 12]). Our method can be integrated as part of a larger interaction
system; here we show its performance as a stand-alone system.

2 Head Tilt Estimation Algorithm

Our head tilt estimation algorithm has four steps:

1. Foreground and background segmentation,
2. Analysis of the motion of the occluding boundary of the face, which provides

head tilt estimate θb,
3. Analysis of the motion of the center of the face to compute angle estimate θc,
4. Analysis of the confidence factor w that determines the weighting of the two

estimates θb and θc in computing the final head tilt estimate θ = (1−w)θb +
w θc.

We assume that our algorithm has access to a foreground-detection method.
Ideally, the segmented foreground image If contains the user’s head alone, but
our method can also handle foreground segmentations that include the user’s
neck and shoulders and regions in the background (e.g., it works for the poor
foreground segmentation in Fig. 1C). In our experiments, we used a simple fore-
ground estimation method that subtracted the current frame (Fig. 1B) from the
initial frame without the user (Fig. 1A). Our method also relies on the mild as-
sumptions that movements in the background are not correlated with the user’s
head motion and affect a smaller number of pixels in the video than the user’s
head motion.
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A B C D

Fig. 1. Images used by our system. A) Background image. B) Example input frame.
C) Foreground image If,t computed from differencing images in A and B (here noisy
due to camera shift). D) The signed difference If,t − If,t−1. The gray pixels represent
Ib→f , the white pixels represent If→b

Foreground pixels in If are set to 1, while background pixels are set to 0.
A representation of motion is obtained by subtracting the foreground image of
the previous frame from the foreground image of the current frame, taking care
to preserve the sign of the result (Fig. 1D). The image is then separated into
two frames: binary image Ib→f to represent pixels that changed from belonging
to the background at time t − 1 to belonging to the foreground at time t, and
If→b to represent pixels in the foreground at time t − 1 and in the background
at time t.

2.1 Angle Estimation Based on Occluding Boundary of Face

We now explain how head tilt angles are estimated in the binary motion images
Ib→f and If→b. Three filtering steps are performed on both Ib→f and If→b to
find connected components that represent the motion of the occluding boundary
of the face well, in particular, at the sides of the face. First, connected compo-
nents too large or too small to represent the face are removed (Fig 2A). Then
components too far from the centroids of the respective components of Ib→f,t−1

and If→b,t−1 are removed (Fig. 2B). Furthermore, components whose orientation
is too far from the estimated orientation of the face in the previous frame are
removed (Fig. 2C). To perform this last filtering step, each remaining component
is processed as follows:

Pixels with high curvature at the top and bottom of the filtered components
are removed since they do not represent the motion of the sides of the face
well (Fig. 2D). For each connected component i, its lowest pixel xi,o is used as
the origin of a local polar coordinate space. We ignore additional portions of
the connected component above the origin with lower, but still relatively high
curvature within this connected component (orange in Fig. 2D) to allow for more
accurate angle estimation. The angle αi,j representing pixel xi,j is thus the angle
between the line xi,j−xi,o and the horizontal axis. If the face is tilting left, which
appears as a right rotation in the image, the pixel with the largest angle θL,i is
roughly equivalent to the head tilt angle estimated in the previous frame, and
the pixel with the smallest angle θR,i can be used to describe the head tilt in
the current frame:

θL,i = max { αi,j | ∀ j in component i }, (1)



Fast Head Tilt Detection for Human-Computer Interaction 93

θR,i = min { αi,j | ∀ j in component i }. (2)

Angle θR,i is a particularly good approximation of the head tilt if component i
represents the motion of the right side of the face (shown left) in If→b (Fig. 2D)
or the motion of the left side of the face (shown right) in Ib→f . Vice versa, if the
face is tilting right, angle θL,i is a particularly good approximation of the head
tilt if component i represents the motion of the right side of the face (shown left)
in Ib→f or the motion of the left side of the face (shown right) in If→b.

If angles θL,i or θR,i are not within a small γT of the head tilt estimate
from the previous frame, then component i is discarded. The threshold γT was
experimentally set to 10 degrees and found to work quite well.

A B C D

Fig. 2. Results of filtering steps on image If→b in Fig. 1D. A) Size filter. B) Filter on
distance from centroid (cross) in previous frame. C) Filter on on difference to estimated
angle in previous frame. Here, but not generally, only one component remained. D)
Zoomed-in sub-image of If→b containing the filtered component in C (colored pixels)
and the discarded components (white). The pixels at the top and bottom of the filtered
component (blue, red, and orange) are disregarded in estimating the orientation of the
occluding boundary. Angle θL,i is approximately the head tilt in the previous frame
(dashed line) and angle θR,i the head tilt in the current frame (solid line)

At this point in the process, our method has eliminated all components that
do not represent the motion of the sides of the face well and created a list of angles
θL,i and θR,i for both Ib→f and If→b. Our algorithm compares these two lists by
only considering those pairs of angles θb→f , θf→b that are within a threshold τ
of each other. Threshold τ was experimentally set to 20 degrees. If there is more
than one pair remaining, pairs are eliminated if their size difference is too large.
In particular, a component that is less than 2/3 the size of its paired component
can be safely eliminated. If, however, no components meet this criterion and
there is only a single candidate component remaining in either Ib→f or If→b,
then no pairs are eliminated in this way. This deals with cases when components
of motion that should be considered are broken into smaller pieces as a result of
poor foreground estimation. If there are still multiple pairs remaining, the pair
θb→f , θf→b that has the largest combined area is chosen.
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The estimate of head tilt based on the analysis of the occluding boundary of
the sides of the face is then computed by the average

θb =
θb→f + θf→b

2
. (3)

We also define a measure of confidence pt that θb,t represents head tilt in the
current frame t:

pt = 1 − |θb→f − θf→b|
τ

. (4)

The confidence is high if the angle estimates based on binary motion images
Ib→f and If→b are similar and low otherwise.

2.2 Angle Estimation Based on Circular Face Motion

The angle estimate θb can be further refined by comparing the location ct,meas

of the center of the face in current frame t, measured in foreground image If ,
with its predicted location ct,circle. The prediction is based on a motion model
that assumes that the center of the face follows a circular arc in the video as the
face tilts sideways, and the center of rotation is a point on the neck (Fig. 4A).
A pixel x0 is used as the center of rotation. It has the same x-coordinate as
the center of the face c1,meas when the face is in an upright position. The initial
radius of the circle is the distance ‖ c1,meas − x0 ‖ between the initial center
of the face and its projection (Fig. 4A). The location of ct,circle on the circular
arc is determined by the intersection of the line between x0 and ct,meas with
the arc. If a large distance ‖ ct,circle − ct,meas ‖ between predicted and measured
face center occurs in subsequent frames, the radius is updated by the distance
‖ x0 − ct,meas ‖.

The estimate of head tilt based on the average of the observed and predicted
positions of the face center is

θc,t =
‖ ct,meas − ct,circle ‖

2
. (5)

As a measure of confidence in the angle estimate, we use the ratio et of distance
between the observed and predicted center positions to the maximum possible
distance Tt that the two points could be apart, i.e.,

et = 1 − ‖ ct,meas − ct,circle ‖
Tt

, (6)

where Tt is the distance to the farthest corner of the image from ct,circle.

2.3 Weighted Angle Estimation

The head tilt estimate θb, computed by analyzing the occluding boundary of the
face, and the estimate θc, computed by analyzing the circular motion of the face,
can be combined to compute the weighted angle estimate

θt = (1 − wt) θb,t + wt θc,t, (7)
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where the weighting factor

wt =
e2

t

e2
t + p2

t

(8)

is computed from et and pt, which represent the respective confidences in esti-
mates θb and θc. To prevent one measure from being the sole source of our final
angle estimate, we set a lower bound of 0.2 for the weight of θb,t and 0.1 for the
weight of θc,t.

A summary of the head tilt estimation algorithm is given in Figure 3.

Foreground Identification

Motion Retrieval

Face Centroid

Components
Connected

to Background
Foreground

Output: Head Tilt
Angle Estimate

Background
to Foreground

Components
Connected

Motion Circle EstimationInput
Video Weighted Angle Estimate

Previous Frame

Fig. 3. Flowchart of head tilt estimation method

3 Human-Computer Interaction Experiments

To evaluate our method we performed three experiments. In experiment 1, we
compared our system’s head tilt estimation to that of two volunteers, who labeled
each frame of five 320-frame video segments with their estimate of head tilt
angle (Fig. 4B). Each of these video segments contained 5–7 separate head tilts
with motion varying from slow and smooth to quick and erratic for a total of 31
distinct head tilts across 1320 images. In two of the video sequences, people were
walking through the background. To verify that all the steps in our algorithm
are necessary, we also tested our method in three other configurations: with the
weighting component removed, with the centroid angle estimation removed, and
with only centroid angle estimation.

In the second experiment, we tested users’ ability to play the BlockEscape
game [4] using our interface. We tested 5 users who each played 4 games. The
game BlockEscape was developed as a tool to test the performance of human-
computer interfaces. In the BlockEscape game, the screen contains a number
of horizontal walls that are separated vertically by a fixed distance (Fig. 4C).
Each wall has one or more holes of various widths. At the beginning of the
game, a block appears on top of the screen. The goal of the game is for the user
to lead the block through the holes in the walls until it reaches the bottom of
the screen. The game was implemented so that the user only needs to initiate
the block’s horizontal movement by issuing “move block left” or “move block
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right” commands. The block continues to move in the initiated direction until
the user issues a command for movement in the opposite direction. The block’s
vertical motion is automatic – when a hole is reached, the block “falls through”
to the next wall or bottom of the screen. When a wall reaches the user’s block,
it pushes the block upwards. The user wins if he or she leads the block through
the holes in the walls to the bottom of the screen and loses if a wall pushes the
block up to the top of the screen. During playing, usage statistics, in particular,
the departure of the user-controlled block from an optimal path, were computed
based on the positions of the block, walls, and holes.

Our last experiment tested users’ ability to navigate web pages with our
head tilt estimation method. Test subjects were repeatedly shown web pages
consisting of three links and directed to select a particular sequence of links (on
average, the 2nd link on the page). A left head tilt directed the web browser to
highlight the next link, while a right head tilt directed the browser to follow the
currently selected link. The same sequence of links was used for all participants.
We recorded the number of links each participant successfully followed before
following an incorrect link.

A B C

Fig. 4. A) Centroid angle detection binary image showing the centroid circle, circle
center, and the original and current frame centroid positions. B) Experimental system
output. Our system’s head tilt estimate is represented by the white line, while the blue
line represents the average of the two volunteers’ estimates. C) Screenshot of the game
BlockEscape. As the white block falls towards the bottom of the screen, the player
navigates it through the holes in the black walls, which move upwards, by initiating
“move block left” or “move block right” commands

4 Results of Human-Computer Interaction Experiments

Our system runs in real time on a computer with a 2.53 GHz processor, 256 MB
of RAM and in these experiments used less than 55% of the processor cycles.
The comparison of our system’s head tilt estimations to those made by two
volunteers is given in Table 1. A screenshot of the system’s estimate and that of
the volunteers shown in Fig. 4B. If we consider human observation to be ground
truth, our system has exhibited a good performance. Each component of our
method, angle estimation based on the analysis of the motion of the occluding
boundary of the face, analysis of the moving center of the face, and the weighting
scheme, is vital to the success of our interface. It is the combination of these
components that yields a valuable HCI tool, and removing one of them yields a
decline in performance (Table 1).
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Table 1. Accuracy-Evaluation Experiment: Angle differences between four versions
of our method and human observation, using 2 volunteers and five 320-frame video
segments. The estimates of degrees were rounded to whole numbers because precision
beyond this level in human observations is unlikely

Weighted Equally Weighted Boundary-based Center-based
Estimate θ Estimate θb + θc Estimate θb Estimate θc

Subject Median Std. Median Std. Median Std. Median Std.
Ang. Diff. Dev. Ang. Diff. Dev. Ang. Diff. Dev. Ang. Diff. Dev.

1 6 7 9 8 14 9 15 10

2 8 6 11 9 13 9 17 9

Avg. 7 6 10 8 14 9 16 10

The results for our BlockEscape experiment are summarized in Table 2. The
subjects were able to use our head-tilt interface with similar success as the
EyeKeys [4] or Camera Mouse [13] interfaces. All but one subject using our
interface won their last three games. The other won their last two games, which
indicates that practice improved the quality of the human-computer interaction.
If we eliminate each subject’s first game from the analysis, the average path
deviation is 1.4 and the median is 0.6.

Table 2. Game-Interaction Experiment: Five users played 4 games of BlockEscape,
issuing commands by head tilt and with three other interfaces [4]. Rows 1–3: The
number of deviations of the block from the optimal path during gameplay, which are
assumed to be due to false detections of the interface rather than misjudgments of the
player

Interaction Method Head Tilt EyeKeys Camera Mouse Keyboard

Path Deviation: Median 2.2 2.5 0 0

Average 2.6 2.9 2.3 0

Std. Dev. 2.8 4.0 2.7 0

Wins 16/20 (80%) 10/12 (83%) 10/12 (83%) 12/12 (100%)

In the games that resulted in losses, the users tilted their heads too far
sideways in executing a command. This motion and the return motion to the
neutral upright state both took time. As a result, it took the subjects too long
to issue the sequence of commands needed to navigate the block through the
holes in the moving walls before the game ended. After gaining experience with
the interface, the users soon became aware of this issue and played much better.

In the third experiment, users were able to follow an average of 5.9 links to
new web pages, indicating that 11.8 head tilts were correctly detected for each
incorrect detection. Individual results are in Table 3. These results indicate that
our method may be used in a real-world context of surfing the Internet.
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Table 3. Web Browsing Experiment: Number of web links correctly followed until a
link was followed by mistake

Participant Trial 1 Trial 2 Trial 3 Trial 4 Mean

1 3 5 7 2 4.3

2 6 8 9 8 7.8

3 7 7 6 9 7.3

4 4 3 5 2 3.5

5 8 7 7 4 6.5

5 Discussion and Future Work

Through our experimental results, we have shown that our system can act as a
fast, responsive, and usable interface on its own. Our results are very promising
since our system operated in less than ideal conditions: we used background
subtraction for crude foreground estimation, and there were objects moving in
the background. Since our method is not bound to a specific foreground model,
and any background and foreground information collected by a program can be
used as an input to our system, computational load may be significantly reduced,
which is quite important in the context of human-computer interaction.

In our experiments, users were able to play the BlockEscape game and browse
web pages effectively, demonstrating that our method works well in a real world
context. Our method also offers new opportunities for people with disabilities.
Used as a stand-alone interface or with another computer vision system, our
technique could help facilitate a richer interactive experience for quadriplegic
users who can control their head motion by enabling them to browse the web,
enter text, or play a computer game. This is an important aspect of our contri-
bution, since people with disabilities are dependent upon interface systems for
their interaction with computers.

Using the eyes as possible cues to our method could make it even more ro-
bust. The eyes can be detected with a variety of methods (e.g., [4]), and we
could use their axis of orientation to provide additional estimates to our system.
To combine these estimates, the use of democratic integration [14] rather than
equation 7 may be desirable in this case, since democratic integration can weigh
system components relative to their current performance in an extremely effec-
tive fashion. These ideas could extend to tracking other facial features, such as
nostril tracking. Other extensions would be to handle out of plane head rotation
by fitting conic sections rather than circles. However, modeling such head turns
is not as relevant to human-computer interaction, since users typically do not
wish to interact with a computer that is not the focus of their attention.

In summary, we have introduced an efficient, accurate method for fast head
tilt angle estimation. Our system operates on video data in real time with mini-
mal computational requirements. Experiments with our system have shown that
it is easy to use as an input and control device on its own and it has the potential
to become an important part of a robust human-computer interaction system.
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