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Abstract

A vision system is developed that recognizes and
tracks multiple cars from sequences of gray-scale
images taken from a moving car in hard real-time.
The recognition method is based on feature detec-
tion, on-line deformable template matching, and
temporal differencing. The vision system utilizes
the hard real-time operating system Maruti which
guaranices that the timing constraints on the var-
tous processes of the vision system are satisfied.
The dynamic creation and termination of tracking
processes optimizes the amount of computation re-
sources spent and allows fast real-time recognition
and tracking of multiple cars as demonstrated over
a large number of image frames.

1 Introduction

We have developed a vision system that recognizes
and tracks cars in hard real-time from sequences
of gray-scale images taken from a moving car. We
are interested in applications that improve traffic
safety, for example, for camera-assisted or vision-
guided vehicles. Such vehicles must react to dan-
gerous situations immediately. This requires the
supporting vision system not only to be extremely
fast, but also to be guaranteed to react within a
fixed time frame. Therefore, we use a hard real-
time system that can predict in advance how long
its computations take.

Recognizing and tracking objects in images taken
by a moving camera (or fixed camera within a mov-
ing car) is much more challenging than real-time
tracking with a stationary camera. Not only is
there motion of the objects in the images, but also
relative motion between the camera, the objects,
and the environment. Our method uses the rela-
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tive motion between the camera-assisted car and
its environment to detect potential cars. To han-
dle cases where there is little relative motion, our
method searches for features that are typical for
cars. Recognition of a car is verified if an objective
function yields a high value. The objective function
defines how likely it is that an object with certain
parameters is a car. The objective function com-
bines evaluating the history of tracking a potential
car with the correlation of the potential car with a
deformable template of a car created on-line using

the method described in Ref. [1].

Various approaches for recognizing and/or track-
ing cars have been suggested in the literature, for
example, detecting symmetry points [6], approx-
imating optical flow [9, 2], exploiting binocular
stereopsis [3, 4], matching templates [4], and train-
ing a neural net [5]. Related problems are au-
tonomous convoy driving (e.g., [8]) and lane de-
tection (e.g.,[3]). Unlike some methods described
in the literature, our vision system can track more
than one car at a time. In addition, it does not
need any initialization by a human operator, but
recognizes the cars it tracks automatically. Our
method also does not rely on having to estimate
road parameters (as does Ref. [3]).

Unlike other methods [2, 3, 4, 5, 6, 9], our vi-
sion system processes the video data in real-time
without any specialized hardware. All we need is
a consumer video camera and a low-cost PC. Sim-
plicity is the key to the real-time performance of
our method. We developed a system that is sim-
ple enough to be fast, but sophisticated enough to
work robustly.

Most of the related research aims at “virtual
real-time” performance, 1.e., fast processing with-
out timing guarantees. On the contrary, we utilize
the advantages of Maruti, a hard real-time operat-
ing system developed at the University of Mary-
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Figure 1: The hard real-time vision system for car detection and tracking.

land [7]. Maruti finds an efficient schedule for
allocating resources to the various processes that
search for, recognize, and track the cars. Maruti’s
scheduling guarantees that the required deadlines
are met. It reserves the required resources for each
task prior to execution.

This paper is organized as follows. An overview
of the vision system is given in Section 2. Section 3
summarizes the features of the hard real-time oper-
ating system that are important to our work. The
component of our vision system that detects cars
is described in Section 4 and the component that
tracks cars is described in Section 5. Section 6 re-
ports our experimental results and Section 7 sum-
marizes our conclusions.

2 Vision system overview

Given an input of a video sequence taken from a
moving car, the vision system outputs an on-line
description of the location and size of other cars in
the environment.

The vision system contains three main compo-
nents: the car detector, the process coordinator,
and the tracker (see Figure 1). Once the car de-
tector recognizes a potential car in an image, the
process coordinator creates a tracking process for
each potential car and provides the tracker with
information about the size and location of the po-
tential car. For each tracking process, the tracker
analyzes the history of the tracked areas in the pre-
vious image frames and determines how likely it is
that the area in the current image contains a car. If
it contains a car with high probability, the tracker
outputs the location and size of the hypothesized
car in the image. If the tracked image area con-
tains a car with very low probability, the process
terminates. This dynamic creation and termina-
tion of tracking processes optimizes the amount of
computation resources spent.

3 The hard real-time system

The ultimate goal of our vision system is to pro-
vide a car control system with a sufficient analysis
of its changing environment, so that it can react
to a dangerous situation immediately. Whenever a
physical system like a car control system depends
on complicated computations, such as are carried
out by our vision system, the timing constraints on
these computations become important. A “hard
real-time system” guarantees — prior to any execu-
tion — that the system will react in a timely man-
ner. In order to provide such a guarantee, a hard
real-time system analyzes the timing and resource
requirements of each computation task. The tem-
poral correctness of the system is ensured if a fea-
sible schedule can be constructed. The scheduler
has explicit control over when a task is dispatched.

Our vision system utilizes the hard real-time sys-
tem Maruti [7]. Maruti is a “dynamic hard real-
time system” that can handle on-line requests. It
either schedules and executes them if the resources
needed are available, or rejects them. We imple-
mented the processing of each image frame as a
periodic task consisting of several subtasks (e.g.,
distant car detection, car tracking). Since Maruti
is also a “reactive system,” it allows switching tasks
on-line. For example, our system could switch from
the usual cyclic execution to a different operational
mode. This supports our ultimate goal to improve
traffic safety: The car control system could react
within a guaranteed time frame to an on-line warn-
ing by the vision system which may have recognized
a dangerous situation.

The Maruti Programming Language is a high-
level language based on C with additional con-
structs for timing and resource specifications. Our
programs are developed in the Maruti virtual run-
time environment within UNIX. The hard real-time



platform of our vision system runs on a PC.

4 Car recognition

The input data of the vision system consists of im-
age sequences taken from a camera-assisted moving
car. The camera is mounted inside the car pointing
towards the windshield. It takes pictures of the en-
vironment in front of the car, i.e., the road, other
cars, trees next to the road, etc. Recognition of
objects that suddenly enter the scene is difficult.
For example, the continuously changing landscape
along the road and the various lighting conditions
that depend on the time of day and weather are not
known in advance. Cars and trucks come into view
with very different speeds, sizes, and appearances.

To facilitate robust and fast recognition of cars,
we distinguish between recognizing cars that ap-
pear in the field of view after having passed the
camera from behind, and cars that appear in the
far distance in the front. Once a car is recognized,
it is tracked in subsequent image frames until it
moves out of sight.

4.1 Recognizing passing cars

When other cars pass the camera-assisted car, they
are usually nearby and therefore cover a large por-
tion of the image frames. They cause large bright-
ness changes in such image portions over a small
number of frames. We can exploit these facts to
detect and recognize passing cars.

Large brightness changes over a small number of
frames are detected by differencing the current im-
age j frame from an earlier frame k and checking if
the sum of the absolute brightness differences ex-
ceeds a threshold in an appropriate region of the
image (see left of Fig. 2). Region R of image se-
quence I(z,y) in frame j is hypothesized to contain
a passing car if 3~ plLi(z,y) — Li—x(2,y)| > 0
where § 1s a fixed threshold.

The car motion from one image to the next is ap-
proximated by a shift of ¢/d pixels where d is the
number of frames since the car has been detected,
and 7 is a constant that depends on the frame rate.
(For a car that passes the camera-assisted car from
the left, for example, the shift is up and right, de-
creasing from frame to frame.)

If large brightness changes are detected in con-
secutive images, a grayscale template 7" of a size
corresponding to the hypothesized size of the pass-
ing car is created from a model image M. It is
correlated with the image region R that is hypoth-
esized to contain a passing car. The normalized

sample correlation coefficient r is used as a measure
of how well region R and template image 7' corre-
late or match. A high correlation coeflicient verifies
that a passing car is detected. The model image M
is chosen from a set of models that contains images
of the rear of different kinds of vehicles. The aver-
age grayscale value in region R determines which
model M is deformed into template T (see right
of Fig.2). Sometimes the correlation coeflicient is
too low to be meaningful, even if a car is actually
found (e.g., r < 0.2). In this case, we do not base a
recognition decision on just one image, but instead
use the results for subsequent images as described
in the next sections.

Figure 2: On the left, a passing car is detected in a
difference image. On the right, two model images.

4.2 Recognizing distant cars

Cadrs that are being approached by the camera-
assisted car usually appear in the far distance as
rectangular objects. Generally, there is very little
relative motion between such cars and the camera-
assisted car. Therefore, any method based only on
differencing image frames will fail to detect these
cars. Therefore, we use a feature-based method to
detect distant cars. We look for rectangular objects
by evaluating horizontal and vertical edges in the
images. The horizontal edge map H(z,y,t) and the
vertical edge map V(z,y,t) are defined by a finite
difference approximation of the brightness gradient
and subsequent thresholding. Since the edges along
the top and bottom of the rear of a car are more
pronounced in our data, we use different thresholds
for horizontal and vertical edges (the threshold ra-
tio is 7:5).

Due to our real-time constraints, our recognition
algorithm consists of two processes, a coarse and
a refined search. The refined search is only em-
ployed for small regions of the edge map, while the
coarse search is used over the whole image frame.
The coarse search determines if the refined search is
necessary. It divides the edge map into small hor-
izontal regions that are processed separately. In
each region a counting method checks if the edge
map contains prominent, i.e., long, uninterrupted



edges. Whenever this is the case in some region,
the refined search process is started in that re-
gion. Since the coarse search takes a substantial
amount of time (because it processes the whole im-
age frame), it is only called every 10th frame.

In the refined search, the vertical and horizontal
projection vectors v and w of the horizontal and
vertical edges H and V in the region are computed
as follows (see also Fig. 3):

v = (00, He,yn 1), S0, By, 1),0),

w= (30, Vienyt), . 20, Viem, y,1),1).

The threshold for selecting projection values is
one half of the largest projection value in each
direction; fv = imax{v]l < i < m}, Ow =
% max{w;|l < j < n}. The projection vector of
the vertical edges is searched from the left and also
from the right until a vector entry is found that lies
above the threshold in both cases. The positions of
these entries determine the position of the left and
right side of the potential object. Similarly, the
projection vector of the horizonal edges is searched
from the top and from the bottom until a vector
entry is found that lies above the threshold in both
cases. The positions of these entries determine the
position of the top and bottom side of the potential
object.

Figure 3: In the left image, the horizontal edge
map H of a car is projected onto column v on the
right. In the right image, the vertical edge map V
1s projected onto row w on the bottom.

To verify that the potential object is a car, an
objective function is evaluated as follows. First,
the aspect ratio of the horizontal and vertical sides
of the potential object is computed to check if it is
close enough to 1 to imply that a car is detected.
Then the car template is correlated with the po-
tential object marked by the four corner points in
the image. If the correlation yields a high coeffi-
clent value, the object is recognized as a car. If the
“history” of the potential object gives additional
evidence for the existence of a car, our objective

function yields a high value and outputs that a car
1s detected, where it is located, and what its size is
(which can be used as a clue for its distance to the
camera-assisted car).

5 Tracking cars

The process coordinator creates a separate track-
ing process for each recognized car. It uses the ini-
tial parameters for the position and size of the car
that are determined by the car detector and ensures
that no other process is tracking the same car. A
“tracking window” is created that contains the car
and is used to evaluate edge maps and templates in
subsequent image frames. In each frame a refined
search of the tracking window provides new esti-
mates of the four sides of the rear of the car and
uses them to determine the new window bound-
aries. In every 10th frame the window is correlated
with a car template that is created on-line to the
appropriate size to verify that the tracked object
is still the car originally detected. In each frame,
the objective function is evaluated. It checks the
aspect ratio, size, and, if applicable, correlation for
the current tracking window. It assigns credits or
penalties depending on how likely it is that the ob-
ject tracked is a car. We call a tracking process
“stable” if the credit assignments have been high
for several image frames. For stable processes, the
history of the tracking window is used to update
position and size parameters if the current param-
eters yield penalties. For example, this is the case if
the rear window is mistaken to be the whole rear of
the car. This can be determined easily, because the
aspect ratio of the rear window is much larger than
previous aspect ratios of the process. The process
1s adjusted by increasing the height of the window
towards the bottom of the car.

The process coordinator ensures that two track-
ing processes do not track objects that are too close
to each other in the image. This may happen if
a car passes another car and eventually occludes
it. In this case, the process coordinator terminates
one of these processes. Processes that track poten-
tial cars for which the objective function yields low
values terminate themselves. This ensures that on-
coming traffic and objects that appear on the side
of the road, such as traffic signs, are not mistakenly
recognized to be cars.

6 Experimental results

Our data consists of almost 3000 images taken by
a video camera from a moving car on an American
and a German highway. The images are evaluated
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Figure 4: Example of an image sequence where three cars are recognized and tracked. On the top, images
are shown with their frame number on the lower right corner. The black rectangle shows regions wherein
moving objects are detected. The corner of these objects are shown as crosses. The rectangle and crosses
turn white when the system recognizes these objects to be cars.

The graph at the bottom left illustrates the x-coordinate of the position of the three recognized cars. The
graph at the bottom right illustrates the y-coordinates of the top and bottom and the x-coordinates of the
left and right corners of the tracking window of process 2. Note that in the beginning process 2 is created
several times to track a potential car, but is quickly terminated, because the tracked object is recognized
not to be a car. At frame 108 process 2 starts tracking the third car.



Average Computation Time

| Image area t Method | Time l
complete image edges 88 ms
(every 10th frame) | horizontal lines | 35 ms
window differencing 1.2 ms

passing cars 19 ms
template match | 105 ms
tracking cars 2-35 ms

in both hard and virtual real-time in the laboratory.
Processing each image frame takes 98 ms on aver-
age; thus, we achieve a frame rate of approximately
10.2 frames per second. Note that the numbers
are averages, because some images are processed
quickly (if only a small car is being tracked), others
take longer (e.g., if the complete image is searched).
The average amount of time per process is summa-
rized in the table above.

We obtain two sets of results for the German
highway data by visual inspection (see also Fig. 4).
In the first set every frame is processed, and in
the second set (given in parentheses) every fourth
frame is processed. A total of 21 (18) cars are de-
tected and tracked successfully. The image size of
the detected cars is between 10x10 and 80x80 pix-
els. On average, each detected car is tracked during
93 (27) frames. The car detector notices brightness
changes immediately when a passing car appears in
the image. The car is tracked by a window of the
correct size after 14 (4) frames. It takes another
7 (3.75) frames on average until the car tracking
has become stable and the detector verifies that it
found a car. We encounter 3 (2) false alarms dur-
ing a total of 58 (19) frames, i.e., scenarios where
the detector outputs that a car is detected at a
location, but the image does not contain a car at
that location. We obtain similar results for the
American data. However, since the driving speed
on American highways is much slower than on Ger-
man highways, there is less motion detectable from
one image frame to the next.

Our system is robust unless it encounters unco-
operative conditions, e.g., little brightness contrast
between cars and environment, very bumpy roads,
sharp tree shadows cast onto the highway, or con-
gested traffic.

7 Conclusions

We have developed and implemented a hard real-
time vision system that recognizes and tracks mul-
tiple cars from sequences of gray-scale images taken
from a moving car.

To our knowledge, this is the first attempt to rec-

ognize and track multiple vehicles from a moving
car in hard real-time that is described in the litera-
ture. The hard real-time system is essential for our
ultimate goal to improve traffic safety. The control
system of the camera-assisted car must be able to
react to an on-line warning by the vision system
which may have recognized a dangerous situation.
Such a reaction must meet timing deadlines that
can only be guaranteed by a hard real-time system.

Unlike several methods described in the litera-
ture, our vision system can track more than one car
at a time, recognizes the cars automatically, and re-
lies only on simple low-cost hardware. Extensions
of our work will address driving situations with dif-
ficult lighting conditions and congested traffic.

Our hard real-time vision system could be used
not only to track vehicles, but is also applicable
to other motion analysis problems, for example,
robot navigation or recognition of moving people
for surveillance purposes.
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