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Highway Scene Analysis in Hard Real-Time *
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ABSTRACT

A hard real-time vision system has been devel-
oped that analyses color videos taken from a
car driving on a highway. The system uses a

“combination of color, edge, and motion informa-

tion to recognize and track the road boundaries,
lane markings and other vehicles on the road.
Cars are recognized by matching templates that
are cropped from the input data online, by de-
tecting image features, and by evaluating how
these features relate to each other. Cars are
also recognized by temporal differencing and by
tracking motion parameters that are typical for
cars. The system recognizes and tracks road
boundaries and lane markings using a recur-
sive least squares filter. Experimental results
demonstrate robust, real-time car recognition
and tracking over thousands of image frames.

1 INTRODUCTION

The general goal of the our research is to de-
velop an intelligent, camera-assisted car that
is able to interpret its surroundings automati-
cally, robustly, and in real-time. Even in the
specific case of a highway’s well-structured en-
vironment, this is a difficult problem. Traffic
volume, driver behavior, lighting and road con-
ditions, and so forth are unpredictable. Our ini-
tial vision system, introduced in Ref. [1], failed
in heavy traffic or on highways with cluttered
roadsides. Our new system overcomes some of
these problems by analyzing the whole highway
scene, in particular, by segmenting the road us-
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ing color information, and then recognizing and
tracking lane markings, road boundaries and
multiple cars on the road. Our vision system
does not need any initialization by a human op-
erator, but recognizes the cars it tracks auto-
matically. The video data is processed in real
time without any specialized hardware. All we
need is an ordinary video camera and a low-cost
PC with an image capture board.

Due to safety concerns, camera-assisted or
vision-guided vehicles must react to danger-
ous situations immediately. Not only must the
supporting vision system do its processing ex-
tremely fast, i.e., in soft real time, but it also
must guarantee to react within a fixed time
frame under all circumstances, i.e., in hard real
time. Hansson et al. [7] have developed a non-
vision based, distributed real-time architecture
for vehicle applications that incorporates both
hard and soft real-time processing. However,
computer vision research for intelligent vehicles
has so far only aimed at soft real-time perfor-
mance, i.e., fast processing without timing guar-
antees. In contrast, we use a hard real-time sys-
tem that can predict in advance how long its
computations take. We utilize the advantages of
the hard real-time operating system “Maruti,”
whose scheduling guarantees — prior to any exe-
cution - that the required deadlines are met and

the vision system will react in a timely man-
ner [14].

Approaches for recognizing and /or tracking cars
from a moving camera are, for example, given
in Refs. [5, 6, 10, 11, 12, 16, 17, 18] and for lane
detection, e.g., in Refs. [4, 11, 12, 13]. Related
problems are autonomous convoy driving, e.g.,
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Ref. [15] and traffic monitoring using a station-
ary camera, e.g., Ref. (3, 9].

2 VISION SYSTEM OVERVIEW
Given an input of a video sequence taken from
a moving car, the vision system outputs an on-
line description of road parameters and loca-
tions and sizes of other vehicles in the images.
This description could be used to estimate the
positions of the vehicles in the environment and
their distances from the camera-assisted car.
The vision system contains four main compo-
nents: the car detector, the road detector, the
tracker, and the process coordinator (see Fig-
ure 1). Ref. [1] provides the details of an early
version of the system.
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Figure 1: The real-time vision system.

3 COLOR IMAGE ANALYSIS

Color provides information that makes feature
detection more robust. For example, in Fig-
ure 2, the hue and saturation images highlight
the traffic signs, some car features, and the lane
markings. The algorithms described below use
a composite image as an input that is com-
prised of the sum of the horizontal and verti-
cal brightness edge maps, hue and saturation

images. Figure 2 illustrates the results of mod-
elling the road color using the composite image.

Figure 2: The black-bordered road region in the
top left image is used to train road parameter
models. The top right and middle images illus-
trate hue, saturation, and the composite image
of the scene. Using the grayscale model, the
pixels classified to belong to the road within the
white-bordered region in the top left image are
shown in black in the bottom left image (only
60% correct classification). Using the composite
of hue, saturation and edge information, how-
ever, 96% of the pixels are classified correctly
as shown in the bottom right image.

4 VEHICLE DETECTION AND
TRACKING

The input data of the vision system consists of
image sequences taken from a camera mounted
inside our car, just behind the windshield. The
images show the environment in front of the
car — the road, other cars, bridges, and trees
next to the road. The primary task of the sys-
tem is to distinguish the cars from other sta-
tionary and moving objects in the images and
recognize them as cars. This is a challenging
task, because the continuously changing land-
scape along the road and the various lighting

813



814

conditions that depend on the time of day and
weather are not known in advance. Recogni-
tion of vehicles that suddenly enter the scene is
difficult. Cars and trucks come into view with
very different speeds, sizes, and appearances. In
Ref. [1], we describe how passing vehicles are
recognized by an analysis of the motion infor-
mation provided by multiple consecutive image
frames. We also describe how vehicles in the far
distance, which usually show very little relative
motion between themselves and the camera-
assisted car, can be recognized by an adaptive
feature-based method. Immediate recognition
from one or two images, however, is very dif-
ficult and only works robustly under coopera-
tive conditions (e.g., enough brightness contrast
between vehicles and background). Therefore,
if an object cannot be recognized immediately,
our system evaluates several image frames and
employs its tracking capabilities to recognize ve-
hicles.

Recognition by tracking. The process coor-
dinator creates a separate tracking process for
each potential car (see Fig. 1). It uses the initial
parameters for the position and size of the po-
tential car that are determined by the car detec-
tor and ensures that no other process is track-
ing the same image area. The tracker creates a
“tracking window” that contains the potential
car and is used to evaluate composite informa-
tion, edge maps, and templates in subsequent
image frames. The position and size of the
tracking window in subsequent frames is deter-
mined by a simple recursive filter: The tracking
window in the current frame is the window that
contains the potential car found in the previous
frame plus a boundary that surrounds the car.
The size of this boundary is determined adap-
tively. The outline of the potential car within
the current tracking window is computed by a
feature search described in detail in Ref. [1]. As
a next step, a template of a size corresponding
to the hypothesized size of the vehicle is created
from a stored model image using the method de-
veloped in Ref. [2]. The template is correlated
with the image region that is hypothesized to
contain the vehicle. If the normalized correla-

tion of the image region and the template is high
and typical vehicle motion and feature param-
eters are found, it is inferred that a vehicle is
detected. Note that the correlation coefficient is
invariant to constant scale factors in brightness
and can therefore adapt to the lighting condi-
tions of a particular image frame. The model
images shown in Ref. [1] are only used to cre-
ate car templates online as long as the tracked
object is not recognized to be a vehicle yet; oth-
erwise, the model is created online by cropping
the currently tracked vehicle.

Online model creation. The outline of the
vehicle found defines the boundary of the im-
age region that is cropped from the scene. This
cropped region is then used as the model vehi-
cle image from which templates are created that
are matched with subsequent images. The tem-
plates created from such a model usually corre-
late extremely well (e.g., 90%), even if their sizes
substantially differ from the cropped model, and
even after some image frames have passed since
the model was created. As long as these tem-
plates yield high correlation coefficients, the ve-
hicle is tracked correctly with high probability.
As soon as a template yields a low correlation
coefficient, it can be deduced automatically that
the outline of the vehicle is not found correctly.
Then the evaluation of subsequent frames ei-
ther recovers the correct vehicle boundaries or
terminates the tracking process.

Symmetry check. In addition to correlat-
ing the tracked image portion with a previ-
ously stored or cropped template, the system
also checks for the portion’s left-right symmetry
by correlating its left and right image halves.
Highly symmetric image portions with typical
vehicle features indicate that a vehicle is tracked
correctly.

Adaptive window adjustments. An adap-
tive window adjustment is necessary if — after
a vehicle has been recognized and tracked for a
while — its correct current outline is not found.
This may happen, for example, if the rear win-
dow of the car is mistaken to be the whole rear



Figure 3: The left car corners are identified
incorrectly (top left). The vertical edges (top
right) of the car’s left side can be found by
searching the horizontal edge map (bottom left)
and shifting the window to the left (bottom
right). The car is fully captured in subsequent
image frames.

of the car, because the car bottom is not con-
tained in the current tracking window (the cam-
era may have moved up abruptly). This can
be determined easily by searching along the ex-
tended left and right side of the car for signifi-
cant vertical edges. In particular, the pixel val-
ues in the vertical edge map that lie between the
left bottom corner of the car and the left boi-
tom border of the window, and the right bottom
corner of the car and the right bottom border
of the window, are summed and compared with
the corresponding sum on the top. If the sum
on the bottom is significantly larger than the
sum on the top, the window is shifted towards
the bottom (it still includes the top side of the
car). Similarly, if the aspect ratio is too small,
the correct positions of the car sides are found
by searching along the extended top and bot-
tom of the car for significant horizontal edges,
as illustrated in Figure 3.

The window adjustments are useful for captur-
ing the outline of a vehicle, even if the feature
search encounters thresholding problems due to
low contrast between the vehicle and the envi-
ronment. The method supports recognition of

passing cars that are not fully contained within
the tracking window, and it compensates for
the up and down motion of the camera due
to uneven pavement. Finally, it ensures that
the tracker does not lose a car even if the road
curves.

6 BOUNDARY AND LANE DETEC-
TION

Road boundaries and lane markings are de-
tected in each frame by a spatial recursive least
squares filter (RLS) [8]. The image in Fig-
ure 4 illustrates the detected lane and bound-
ary points as black “+” symbols and shows the
lines fitted to these points. The graph shows
the slope of lane 2, updated after each new lane
point is detected.
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Figure 4: The RLS line and boundary detection.

7 EXPERIMENTAL RESULTS

The analyzed data consists of more than 1 hour
of RGB and greyscale video taken on Amer-
ican and German highways. The images are
evaluated in both hard and soft real time in
the laboratory. A Sony CCD video camera is
connected to a 166 MHz Pentium PC with a
Matrox Meteor image capture board, and the
recorded video data is played back and pro-
cessed in real time. Table 1 provides some of the
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timing results of our vision algorithms. Some
of the vehicles are tracked for several minutes,
others disappear quickly in the distance or are
occluded by other cars. Processing each image

Table 1: Duration of Vehicle Tracking

| Tracking Time | No. of | Average
Vehicles Time
| < 1min 41 20 s
1-2 min 5 90 s
2-3 min ) 143 s
3—-7 min 5 279 s

frame takes 68 ms on average; thus, we achieve
a frame rate of approximately 14.7 frames per
second. The average amount of processing time
per algorithm step is summarized in Table 2.
To reduce computation costs, the steps are not
computed for every frame.

Table 2: Average Processing Time

Step Time Average
Time

Searching for 1-32 ms 14 ms
potential cars

Feature search 2-22 ms 13 ms
in window

Obtaining template 1-4 ms 2 ms

Template match 2-34 ms 7 ms

Lane detection 15-23 ms 18 ms

Table 3 reports a subset of the results for
our German and American highway data using
Maruti’s virtual runtime environment. During
this test, a total of 48 out of 56 cars are de-
tected and tracked successfully. Since the driv-
ing speed on American highways is much slower
than on German highways, less motion is de-
tectable from one image frame to the next and
not as many frames need to be processed.

The lane and road boundary detection algo-
rithm was tested by visual inspection on 14 min-

utes of data taken on a two-lane highway under
light traffic conditions. During about 75% of
the time, all the road lanes or boundaries are
detected and tracked (3 lines); during the re-
maining time, usually only one or two lines are
detected.

Our system is robust unless it encounters unco-
operative conditions, e.g., too little brightness
contrast between the cars and the background
and very congested traffic.

8 CONCLUSIONS

We have developed and implemented a hard
real-time vision system that recognizes and
tracks lanes, road boundaries, and multiple ve-
hicles in videos taken from a car driving on Ger-
man and American highways. Our system is
able to run in real time with simple, low-cost
hardware. All we rely on is an ordinary video
camera and a PC with an image capture board.

The vision algorithms employ a combination of
brightness, hue and saturation information to
analyze the highway scene. Highway lanes and
boundaries are detected and tracked using a re-
cursive least squares filter. The highway scene
is segmented into regions of interest, the “track-
ing windows,” from which vehicle templates are
created online and evaluated for symmetry in
real-time. From the tracking and motion his-
tory of these windows, the detected features and
the correlation and symmetry results, the sys-
tem infers if a vehicle is detected and tracked.
Experimental results demonstrate robust, real-
time car recognition and tracking over thou-
sands of image frames.
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