
CS320 Handout 01

Di�erent Ways of Programming the Factorial Function

The factorial function fact() consumes a non-negative integer and returns a non-negative integer. It is de�ned by:

fact(x) =

(
1 if x = 0;

1� 2� 3� � � � � x if x > 1;

or, more compactly, by:

fact(x) =

(
1 if x = 0;

fact(x� 1)� x if x > 1:

We can program the factorial function in many di�erent ways, using di�erent programming languages and also
using di�erent features of the same programming language. Among good qualities of a program are: its correctness
(\the program indeed computes the desired function"), its eÆciency (\the program is not wasteful of time and
memory resources"), and its transparency (\the program is easy to understand and document"). Beyond these
qualities, there is typically no \best" way of programming the same function without considering the particular
application where the program will be used.

We illustrate some of these issues by programming the factorial function with four well-known languages: C,
Java, ML and Scheme.

1 A Procedural Language: C

Here is a straightforward implementation in C, using a for-loop:

int fact(int x)

{ int i, answer = 1;

for (i = 2; i <= x; ++i)

answer = answer * i;

return answer;

}

Using a while-loop, we can also write:

int fact(int x)

{ int i = 1, answer = 1;

while (i++ < x)

answer = answer * i;

return answer;

}

Using a while-loop again, if we do not need to preserve the value of the input x but building up the answer by
multiplying values of decreasing size, we can write:

1

int fact(int x)

{ int answer = 1;

while (x > 0)

{ answer = answer * x; x = x - 1; }

return answer;

}

or, more compactly (if somewhat obscurely):

int fact(int x)

{ int answer = 1;

while (x > 0)

answer *= x--;

return answer;

}

2 An Object-Oriented Language: Java

Object-orientation can be seen as a re�nement of the procedural approach, and both are cases of the imperative

approach to programming. An object is a package of data together with operations on this data, and therefore
knows how to do things to itself.

Because Java is object-oriented, it makes it easier to write programs usign objects. This approach applied to
the factorial function produces a rather verbose code, consisting of objects that hold an integer value and can
return both that value and its factorial:

public class MyInt

{ private int value;

public MyInt(int value)

{ this.value = value;

}

public int getValue()

{ return value;

}

public MyInt getFact()

{ return new MyInt(fact(value));

}

private int fact(int x)

{ int answer = 1;

while (x > 1) answer *= x--;

return answer;

}

}

The object-oriented approach is best applied to \programming in the large". The factorial function is very simple
and should not require more than a couple of lines of code. A comparison with other languages shows Java's many
advantages when dealing with the development of a large software package and organizing the inter-dependence
of its many parts.

3 A Typed Functional Language: ML

The simplest and most natural implementation of the factorial function is in ML:

fun fact (x : int) : int =

if x <= 0 then 1 else fact(x - 1) * x;

2

But you can also leave out the types, if you wish:

fun fact (x) =

if x <= 0 then 1 else fact(x - 1) * x;

More precisely, the types are implicit in the preceding implementation: You do not see them, but the ML
type-checker has to infer the types before the code is further processed and executed.

What stands out in the functional approach is that there are no commands in the code: There are only
expressions and you only need to worry about their values. Another way of saying the same, there are no states

and no side-e�ects in functional programming (at least in its pure form). You may feel uncomfortable with
a programming language that does not have \commands" and give you the ability to allocate and de-allocate
storage space. But you will see there is no loss of computational power and, very often, the more direct and
transparent implementation of a computational task is to use a functional approach.

4 An Untyped Functional Language: Scheme

Much in the style of the implicitly-typed ML code, we can write in Scheme:

(define (fact x)

(if (<= x 0) 1 (* (fact (- x 1)) x)))

The Scheme implementation is very succint, but you may be uncomfortable with several things, including:

1. Expressions are written in pre�x rather than in�x notation. For example,

(<= x 0) rather than (x <= 0)

(- x 1) rather than (x - 1)

(* (fact (- x 1)) x) rather than (fact(x - 1) * x)

Granted, this notation may appear strange at �rst, but it also has several advantages. The in�x notation
is convenient in the case of binary operators, such as <= and *, but it is not clear how to extend it (in a
natural way) to ternary operations. A clear advantage of the pre�x notation is that operators, whether
pre-de�ned or user-de�ned and regardless of how many arguments they take, all follow the same pattern:

(hoperatori hargument-1i hargument-2i � � � hargument-ni)

2. All expressions and subexpressions have to be each enclosed in a pair of matching parentheses. Moreover
the application of fact to x is written (fact x) rather than fact(x). Would it not be simpler to adjust
the syntax of Scheme, omitting parentheses wherever we can and changing the \if" to \if-then-else", so
that we can write the following declaration instead?

define fact(x)

if (<= x 0) then 1 else (* fact(x-1) x)

Or even the following declaration?

define fact(x)

if x <= 0 then 1 else fact(x-1) * x

Perhaps. But this would work only if we could also use a delimiter (e.g., \=" in ML) to separate the
declaration heading \fact(x)" from its body \if x <= 0 then 1 else fact(x-1) * x". However, in
keeping with Scheme's minimalist approach to syntax, no such delimiter is introduced, and the only markers
used to delimit (valid) program phrases are pairs of matching parentheses.

3

