
CS320 Handout 12

Side E�ects, Aliasing, Managing Share State

Typical Scheme programs are mostly written in a pure functional style. But imperative features have their place

in programming, as many computational tasks are more conveniently implemented when it is possible to allocate

(or mutate) storage during program evaluation. For example, this is the more natural way to do input and output.

So, Scheme, like other functional languages, support imperative features. Programming in this style is commonly

called programming with side-e�ects.

1 How Not To Program With Side-E�ects

On the left is an implementation of the factorial function in Scheme, written in an imperative style. On the right

is an implementation of the factorial in C.

;; Scheme implementation ; C implementation

;; --------------------- ----------------

(define (imperative-fact n) ; int fact(int n)

(let ((count 0) (product 1)) ; { int count = 0, product = 1;

(define (loop) ; while

(if (< count n) ; (count < n)

(begin (set! count (+ count 1)) ; { count = count + 1;

(set! product (* product count)) ; product = product * count;

(loop)) )) ; };

(loop) ; return product;

product)) ; }

The C implementation was written �rst, and the Scheme implementation was written second, so that it closely

mimics the �rst. Perhaps the C implementation is as clear as we can make it in C. But the Scheme implementation

is atrocious: Not only because it is needlessly complicated (although it is not much more complicated than the C

implementation), but more importantly because there is no good reason to use side-e�ects in this case. Compare,

for example, with the following Scheme implementation:

(define (fact n)

(if (<= n 0) 1 (* (fact (- n 1)) n)))

The preceding is not only much simpler, but also follows closely the mathematical de�nition of the factorial

function, which makes it easier to understand and verify.

1



For comparison purposes, here is the SML program that mimics the C implementation of the factorial function:

fun imperative_fact (n: int) =

let val count = ref 0

val product = ref 1

fun loop () =

if (!count < n)

then (count := !count + 1;

product := !product * !count;

loop () )

else ()

in

loop (); !product

end;

The SML code for imperative fact is a little clearer than the Scheme code for imperative-fact, if only because

the variables count and product are explicitly declared as reference cells from the very beginning of the program

and retain their identity throughout. (Although there are subtle di�erences and sometimes ambiguities in the

way people use these phrases, \reference cells" are also called \mutable cells", or \memory locations" by C

programmers, or \state variables" by Scheme programmers.)

In the Scheme code, by contrast, count and product are initially names for integer values (0 and 1 respec-

tively), and they retain this identity to the end of the computation, if the input n is 0. However, both count and

product lose their initial identity and become state variables if the computation is started on an input n di�erent

from 0.

Although the SML imperative fact is arguably more transparent than the Scheme imperative-fact, there

is again no reason to avoid a functional style of coding the factorial in SML:

fun fact (n : int) : int =

if (n <= 0) then 1 else fact(n - 1) * n;

This functional de�nition is easy to read and verify and cannot be any simpler.

2



2 New syntax features

We take a closer look at the imperative features used in the Scheme translation of the C program for the factorial

function, on page 1. (We leave for now the imperative features of the SML translation on page 2.)

Assignments

A set!-expression in Scheme is a special form, and it accomplishes the same thing as an assignment in other

programming languages. It has the following shape:

(set! hvariablei hexpressioni)

The hvariablei is the left-hand side, and hexpressioni is the right-hand side, of the assignment. The left-hand side

being assignable, i.e., referring to a memory cell, is now called a state variable.

To use state variables in Scheme they �rst have to be declared, as all other variables. To update state

variables, we use the special form set!, as well as other special forms, all with names ending with \!". Without

prior declaration of a state variable, we get an error; for example, the following causes an error:

(set! x 5) ;; x is not yet declared

But the following is correct:

(define x 0) ;; x is declared and initialized to 0

(set! x 5)

Use side-e�ects with much care. Remember also that di�erent Scheme interpreters deal di�erently with some

expressions with side-e�ects.1 Consider, for example, the following Scheme code:

(define x) ;; x is declared but not initialized

(set! x 5)

MIT Scheme will not raise an error, but UMB Scheme and Guile Scheme will. Or consider:

(define y 0)

(define z (set! y 5))

z

This is legal code for MIT Scheme, UMB Scheme, Guile Scheme, and other Scheme interpreters. But what should

be the value of z? Keep in mind that a set! expression is supposed to return no value: It is only used for its

side-e�ect. Well, MIT Scheme binds z to the value of y before it is updated to 5:

1 ]=> (define y 0)

;Value: y

1 ]=> (define z (set! y 5))

;Value: z

1 ]=> z

;Value: 0

1 ]=>

Whereas UMB Scheme binds z to the value of y after it is updated to 5:

1This is so because the Scheme language speci�cation { the most recent is called R5RS { does not specify what the values of these

expressions are.

3



==> (define y 0)

y

==> (define z (set! y 5))

z

==> z

5

==>

And Guile Scheme binds z to nothing:

guile> (define y 0)

guile> (define z (set! y 5))

guile> z

guile>

Sequencing

A typical situation in imperative programming is to put in sequence several commands that a�ect the state, i.e.,

that have side-e�ects. This is the purpose of a begin expression: It makes it convenient to collect together several

expressions whose only purpose is their side-e�ects. The shape of a begin-expression is:

(begin hexpression-1 i

hexpression-2 i

� � �

hexpression-ni

hexpressioni)

The evaluation determines the values of the n+ 1 subexpressions in order, ignores the �rst n values, and returns

the value of the last subexpression as the value of the entire begin-expression. To be useful at all, the �rst n

subexpressions have side-e�ects; only the last subexpression has an interesting value. Here is an example:

(define x 0)

(define y 2)

(define z 5)

(begin (set! x y) ; side-effect

(set! y (+ y 2)) ; side-effect

(set! x 3) ; side-effect

(list x y z)) ; returns (3 4 5) for the entire begin-expression

Other new syntax features

In the Scheme code for imperative-fact on page 1, there are two features we have not used before:

� We use the if special form with only 1 branch instead of the usual 2 branches: If the test (< count n) is

false, nothing happens (the else-branch of the \if" is blank).

� The loop in imperative-fact is implemented as a parameterless procedure.

Exercise: What happens if we replace all occurrences of \(loop)" in imperative-fact { there are 3 of them {

by just \loop"?

4



3 Pitfalls of Side-E�ects

A purely functional implementation of the factorial function, but now in tail-recursive form, is:

(define (fact n)

(define (iter product count)

(if (> count n)

product

(iter (* count product)

(+ count 1))))

(iter 1 1))

This is taken from the [A&S] text, in Section 1.2.1 and again in Section 3.1.3. The preceding can be translated

into imperative style, turning count and product into state variables and using assignment (with set!) to update

them:

(define (fact n)

(let ((count 1)

(product 1))

(define (iter)

(if (> count n)

product

(begin (set! product (* count product)) ;; A

(set! count (+ count 1)) ;; B

(iter))))

(iter)))

Although correct, this translation into imperative style is not really called for. In contrast to the pure functional

style, we now have to be careful about the order of the assignments: With side-e�ects, a temporal aspect is

introduced and the order of evaluation matters. Switching the order of the assignments A and B above results in

a buggy program:

(define (fact n)

(let ((count 1)

(product 1))

(define (iter)

(if (> count n)

product

(begin (set! count (+ count 1)) ;; B

(set! product (* count product)) ;; A

(iter))))

(iter)))

The preceding gives you but a small taste of what we have to worry about with imperative programs: Their

semantics are a lot more complicated than those of functional programs. And they become a major headache

when concurrency is introduced (some of the issues are discussed in Section 3.4 of the [A&S] book).

5



4 Side-E�ects That Are Called For

Many computational tasks are more naturally implemented in an imperative style. The material in this section

is partly taken from pages 223 and 233 and in the [A&S] text. Consider the following Scheme code:

(define (make-account balance) ; BALANCE is a local state-variable

(define (withdraw amount) ; local procedure WITHDRAW

(if (>= balance amount)

(begin

(set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount) ; local procedure DEPOSIT

(set! balance (+ balance amount))

balance)

(define (dispatch m) ; local procedure DISPATCH

(cond ((eq? m 'withdraw) withdraw)

((eq? m 'deposit) deposit)

(else (error "Unknown request -- MAKE-ACCOUNT" m))))

dispatch) ; MAKE-ACCOUNT is higher-order,

; it returns procedure DISPATCH

The procedure make-account can be used as follows:

1 ]=> (define acc1 (make-account 100))

;Value: acc1

1 ]=> ((acc1 'withdraw) 50)

;Value: 50

1 ]=> ((acc1 'withdraw) 60)

;Value 1: "Insufficient funds"

1 ]=> ((acc1 'deposit) 40)

;Value: 90

1 ]=> ((acc1 'withdraw) 60)

;Value: 30

There are several things to notice in relation to make-account: In addition to the use of a local state-variable,

balance, to keep track of repeated 'withdraw and 'deposit, message-passing style is used.

Every time make-account is invoked, private (i.e., local) copies of the procedures withdraw and deposit are

created. Thus, another call to make-account:

(define acc2 (make-account 100))

produces a totally separate account, acc2, which maintains its own local state-variable balance. Note that the

following code:

6



(define acc1 (make-account 100))

(define acc2 (make-account 100))

is very di�erent from the following:

(define acc1 (make-account 100))

(define acc2 acc1)

In the �rst case, there are 2 distinct accounts, so that transactions made by acc1 will not a�ect acc2, and

vice-versa. In the second case, acc2 refers to the same thing as acc1, i.e., acc1 and acc2 are said to be aliases

because they refer to the same thing.

5 Mutable List Structures

Section 3.3 in the [A&S] text gives several examples of compound data which are more conveniently represented

by mutable list structures. In a pure functional style, compound data is created using constructors (e.g., the

primitive cons) and dissected using selectors (e.g., the primitives car and cdr). With mutable list structures,

we use not only constructors and selectors, but also mutators. The role of mutators is to modify and update

compound data. There are primitive mutators set-car! and set-cdr!, and you can also de�ne your own

mutators according to need. The following examples are taken from the [A&S] text.

(define x (list (list 'a 'b) 'c 'd)) ;; [A&S] page 252

(define y (list 'e 'f))

(set-car! x y)

x ;; ((e f) c d)

(define z (cons y (cdr x))) ;; [A&S] page 253

z ;; ((e f) c d)

(define x (list (list 'a 'b) 'c 'd)) ;; [A&S] page 253

(define y (list 'e 'f))

(set-cdr! x y)

x ;; ((a b) e f)

(define x (list 'a 'b)) ;; [A&S] page 257

(define z1 (cons x x))

(define z2 (cons (list 'a 'b) (list 'a 'b)))

(define (set-to-wow! x) ;; [A&S] page 258

(set-car! (car x) 'wow)

x)

z1 ;; ((a b) a b)

(set-to-wow! z1) ;; ((wow b) wow b)

z2 ;; ((a b) a b)

(set-to-wow! z2) ;; ((wow b) a b)

7


