
CS320 Handout 31

A Fragment of SML

Assaf Kfoury

8 November 2005

We de�ne a (very small) fragment of SML | call it mini-ML. We �rst present the syntax of the (untyped)

underlying programming language, then the syntax of types, and then the rules to combine the underlying

language with the types.

1 Syntax of mini-ML

i; j; k 2 int ::= � � � j~3 j~2 j~1 j 0 j 1 j 2 j � � �

b 2 bool ::= true j false

x; y; z 2 var ::= � � � j a j b j � � � j temp j new j � � �

� 2 op ::= (op +) j (op *) j (op =) j hd j tl j (op ::) j � � �

M;N;P 2 exp ::= i j b j x j � atom

j MN application

j fnx => M abstraction

j if M then N else P conditional

j [M1; : : : ;Mn] list, n > 0

j (M1;M2) pair

j #1M j #2M projection

j let val x1 = M1 and � � � and xn = Mn in N end let-val, n > 1

j let fun x1(y1) = M1 and � � � and xn(yn) = Mn in N end let-fun, n > 1

Remark 1 : mini-ML is obtained from the syntax of SML by imposing several restrictions. In particular:

1. mini-ML includes parallel, but not sequential, versions of let-val and let-fun | note the keyword

\and".

2. mini-ML excludes tuples of the form (M1; : : : ;Mn) with arbitrarily many entries, n > 0. It only allows

pairs (M1;M2), together with the �rst and second projections, #1M and #2M .

3. Every variable binding in mini-ML consists of exactly one variable, not a tuple of variables, e.g., none of

the following expressions is legal in mini-ML:

fn (x1; : : : ; xn) => M where n > 2 or n = 0

let fun x(y1; : : : ; yn) = M in N end where n > 2 or n = 0

where M and N are valid mini-ML expressions.

1

Exercise 2 : In the two parts below, assume that M1; : : : ;Mn and N are valid mini-ML expressions.

1. Show that an SML expression using a sequential let-val of the form:

let val x1 = M1

val x2 = M2

� � �

val xn = Mn

in N end

can be de-sugared into an equivalent expression of mini-ML.

2. Show that an SML expression using a sequential let-fun of the form:

let fun x1(y1) = M1

fun x2(y2) = M2

� � �

fun xn(yn) = Mn

in N end

can be de-sugared into an equivalent expression of mini-ML.

Exercise 3 : Let M1; : : : ;M4 and N be valid mini-ML expressions. Show that an SML expression of the form:

let fun x1(y1) = M1

fun x2(y2) = M2

val x3 = M3

val x4 = M4

in N end

can be de-sugared into an equivalent expression of mini-ML.

Exercise 4 : mini-ML does not allow arbitrary tuples of the form (M1; : : : ;Mn) where n 6= 2. In the case

n > 3, however, we can consider such a tuple to be syntactic sugar for the following valid mini-ML expression:

(M1; (M2; (M3; � � � (Mn�1;Mn) � � �)))

assuming that M1; : : : ;Mn are also valid mini-ML expressions. Show that the corresponding projections

#1M; #2M; #3M; : : : ; #nM can be de-sugared into equivalent mini-ML expressions.

Exercise 5 : Show that an SML expression of the form:

let fun x(y1; : : : ; yn) = M in N end where n > 2 or n = 0

can be de-sugared into an equivalent mini-ML expression. Assume M is a valid mini-ML expression that may

mention y1; : : : ; yn but not x; and assume N is a valid mini-ML expression except that if x occurs in N , then it

occurs as x(M1; : : : ;Mn) for some valid mini-ML expressions M1; : : : ;Mn. Hint : Consider separately the two

cases, n = 0 and n > 2, and use the result of the preceding exercise.

2

2 Syntax of Types

tcons ::= int j bool type constant

� 2 tvar ::= 'a j 'b j 'c j � � � type variable

� 2 mono ::= int j bool j � atom

j �1 -> �2 function type

j � list list type

j �1 * �2 pair type

� 2 poly ::= f�1; : : : ; �ng: � polymorphic type, n > 0

In a poly type f�1; : : : ; �ng: � , we say that the type variables �1; : : : ; �n are bound (or quanti�ed). A special

case is n = 0, for which we write � instead of fg: � .

Note that � ranges over mono types, � ranges over poly types, and every mono type � is viewed as as special

case of a poly type | with the convention that � = fg: � .

Given � 2 mono, let FTV(�) denote the set of type variables occurring in � . For example, if � = �1 -> int -> �2

then FTV(�) = f�1; �2g. We use \FTV" for \free type variables", meaning that every type variable occurring in

a mono type is free.

Given � = f�1; : : : ; �ng: � 2 poly, we de�ne FTV(�) as FTV(�)�f�1; : : : ; �ng. For example, if � = f�1; �3g: �

where � = �1 -> int -> �2, then FTV(�) = f�2g. A type � is said to be closed if FTV(�) = ?.

De�nition 6 (Type Instantiation) : Let � = f�1; : : : ; �ng: � be an arbitrary poly type, and � 0 an arbitrary

mono type. We say that � 0 is an instance of �, written as � 4 � 0, i� there exist mono types �1; : : : ; �n such that:

� 0 = � [�1 := �1; : : : ; �n := �n]

i.e., � 0 is obtained from � by substituting �1; : : : ; �n for �1; : : : ; �n, respectively.

Example 7 : Let � = f�1; �3g: �1 -> int -> �2. Then:

1. � 4 �1 -> int -> �2.

2. � 4 int -> int -> �2.

3. � 4 (int -> int) -> int -> �2.

4. � 4 �2 -> int -> �2.

5. � 4 (�2 -> �3) -> int -> �2.

Exercise 8 : Give an example of a poly type � for each of the following cases:

1. There exists exactly one � 2 mono such that � 4 � .

2. For all � 2 mono it holds that � 4 � .

3. For in�nitely many � 2 mono it holds that � 4 � ,

and for in�nitely many � 2 mono it does not hold that � 4 � .

3

3 Typing Rules

The typing rules are used to combine the syntax of the (untyped) programming language and the syntax of types.

Each typing rule consists of:

1. Finitely many (possibly zero) premisses.

2. Exactly one conclusion.

The conclusion of a typing rule, as well as some (if not all) of its premisses, are called (typing) judgments. A

judgment is of the form:

x1 : �1; : : : ; xn : �n ` M : �

for some � 2 poly, some � 2 mono, and some expression M of mini-ML. The set fx1; : : : ; xng includes at least

all the program variables occurring free in M . Each pair x : � on the left of \`" is called a type assumption, and

the order in which type assumptions are listed is not important, i.e., we think of the list on the left of \`" as the

set fx1 : �1; : : : ; xn : �ng. We use the letter A to denote such a set of type assumptions, which is called a type

environment, and the only requirement we impose on A is that it does not mention a program variable more than

once. (Put di�erently, we can view A as a partial function from tvar to poly.)

Every atom which is not a variable in the (untyped) programming language is assigned a closed type. In the

case of mini-ML, the empty list [] is also an atom, and we have:

[] : f�g: � list polymorphic empty list

i : int integers

b : bool booleans

(op +) : int * int -> int integer addition

(op *) : int * int -> int integer multiplication

(op =) : f�g: � * � -> bool polymorphic equality

hd : f�g: � list -> � polymorphic head

tl : f�g: � list -> � list polymorphic tail

(op ::) : f�g: � * � list -> � list polymorphic cons

...
...

Remark 9 : In our presentation of the typing rules below, we assume that in every mini-ML expression, a

variable has at most one binding occurrence. Thus, we do not allow an expression of the form | to take a silly

example: fn a => (fn a => a) a. But this is a mild restriction, because we can always rename bound variable

occurrences without changing the meaning of an expression. For the previous (silly) example, an equivalent

expression is: fn a => (fn b => b) a.

If � is a primitive operator, let type(�) be its assigned type as shown above. We start with the typing rules

for atoms that are not variables:

NIL
� 2 mono

A ` [] : � list
INT

A ` i : int
BOOL

A ` b : bool
OP

� 2 mono type(�) 4 �

A ` � : �

The rule for variables is:

VAR
� 2 poly � 2 mono � 4 �

A; x : � ` x : �
(A does not mention x.)

4

The typing rules for non-atom expressions in mini-ML are:

APP
A ` M : �1 -> �2 A ` N : �1

A ` MN : �2
ABS

A; x : �1 ` M : �2
A ` fnx => M : �1 -> �2

IF
A ` M : bool A ` N : � A ` P : �

A ` ifM then N else P : �
LIST

A ` Mp : � 1 6 p 6 n

A ` [M1; : : : ;Mn] : � list

PAIR
A ` M1 : �1 A ` M2 : �2
A ` (M1;M2) : �1 * �2

PROJ 1
A ` M : �1 * �2

A ` #1M : �1
PROJ 2

A ` M : �1 * �2

A ` #2M : �2

The most complicated typing rules are for let-val and let-fun expressions:

A; x1 : �1; : : : ; xn : �n ` N : �

LET-VAL
A ` Mp : �p �p = (FTV(�p)� FTV(A)): �p 1 6 p 6 n

A ` let val x1 = M1 and � � � and xn = Mn in N end : �

A; x1 : �1 -> �
0

1
; : : : ; xn : �n -> � 0

n
` N : �

LET-FUN
A; x1 : �1 -> � 0

1
; : : : ; xn : �n -> � 0

n
; y1 : �1; : : : ; yn : �n ` Mp : �

0

p
1 6 p 6 n

A ` let fun x1(y1) = M1 and � � � and xn(yn) = Mn in N end : �

Example 10 : Consider the following expression M of mini-ML: fn f => f 5. This is also a SML expression.

The SML interpreter returns the following type for M :

(int -> 'a) -> 'a

Below is a typing derivation, which con�rms M type-checks, by assigning the type (int -> 'a) -> 'a to M :

1. f: int -> 'a |- f : int -> 'a VAR

2. f: int -> 'a |- 5 : int INT

3. f: int -> 'a |- f 5: 'a APP, from 1 and 2

4. |- fn f => f 5: (int -> 'a) -> 'a ABS, from 3

(We have written the typing derivation in ASCII to illustrate what we expect to be turned in for some of the

exercises below.) Note, for each line of the derivation, we mention on the right-hand side:

� The name of the typing rule according to which the judgment, on the same line, is derived.

� The premises (if any) on preceding lines which are used by the typing rule.

Exercise 11 : Consider the following expression M of mini-ML: fn f => fn x => f (f x). Write a typing

derivation that con�rms M type-checks and assigns the same type to M as the type obtained by running the

SML interpreter.

Exercise 12 : Consider the following expression M of mini-ML: fn f => fn x => f (f ((op +) (x; 3))). Write a

typing derivation that con�rms M type-checks and assigns the same type to M as the SML interpreter.

Exercise 13 : Consider the following expression M of mini-ML: let val f = fn x => x in (f f) 3 end. Write a

typing derivation that con�rms M type-checks and assigns the same type to M as the SML interpreter.

Exercise 14 : The typing rules presented above are for an implicitly typed version of mini-ML. It is implictly

typed in the sense that, if an expression M of mini-ML type-checks according to the above rules, then no type

annotations are inserted in M and only a �nal type is derived for the whole of M .

5

An expression ofmini-ML is (fully) explicitly typed if an appropriate type annotation is inserted next to every

binding occurrence of a variable. This is just as in SML. We want to adjust the typing rules so that they produce

explicitly typed expressions. The only rules that need to be adjusted are ABS, LET-VAL and LET-FUN. The

adjusted rule ABS is called ABS0 and reads as follows:

ABS0
A; x : �1 ` M : �2

A ` fnx : �1 => M : �1 -> �2

Similar adjustments need to be made in rules LET-VAL and LET-FUN, now called LET-VAL0 and LET-FUN0.

1. Write rule LET-VAL0.

2. Write rule LET-FUN0.

Exercise 15 : The following is an expression of mini-ML | call it M :

let val inc = fn x => (op +) (x,1)

and double = fn f => fn y => f (f y)

in (double inc 3, double not true)

end

The following is also an expression of mini-ML | call it N :

let fun inc x = (op +) (x,1)

and double f = fn y => f (f y)

in (double inc 3, double not true)

end

M type-checks according to the typing rules of mini-ML presented earlier in this handout, but N does not

according to the same rules.

1. Give a precise reason for the failure of N to type-check in mini-ML: State the typing rule that is violated

and determine the part in that typing rule which does not allow a typing derivation to be completed for N .

2. Propose a relaxation of the typing rule, stated in part 1, that will allow N to be type-checked and to return

the same value as M .

3. Write a typing derivation that con�rms N type-checks according to the adjusted typing rules, as proposed

in part 2.

Exercise 16 : In Remark ?? we imposed a restriction onmini-ML expressions, by requiring that every variable

has at most one binding occurrence in an expression.

1. What goes wrong with the typing rules, if this restriction is lifted? Hint : Consider a \typing derivation"

for the expression fn a => (fn a => a) a, and compare it with a typing derivation for fn a => (fn b => b) a.

2. Suggest a change in the de�nition of the set of type assumptions in a judgment, i.e., the set appearing on

the left of \`", so that this restriction can be lifted safely. Hint : Test your proposed change on a \typing

derivation" for fn a => (fn a => a) a,

6

