
CS320 Handout 31

A Fragment of SML

Assaf Kfoury

8 November 2005 (revised: 26 November 2005)

We de�ne a (very small) fragment of SML, which we call mini-ML, and an appropriate type system for it. Our

presentation follows a standard approach in de�ning strongly-typed programming languages. We present:

1. the syntax of the (untyped) underlying programming language,

2. the syntax of types,

3. a formal mechanism to combine the underlying language in (1) with the types in (2), here by means of what

are called typing rules.

For ease of exposition, we will present the syntax of types in two parts:

2.1 the syntax of monomorphic types,

2.2 the syntax of polymorphic types.

The monomorphic types are in fact a subset of the polymorphic types; we present them separately because they are

easier to understand and manipulate. Accordingly, the typing rules are also in two parts, with the monomorphic

rules being a subset of the polymorphic rules.

1 Syntax of mini-ML

We present the syntax of mini-ML in a so-called extended BNF style. The syntax of mini-ML contains 4

separate categories of atomic (or primitive) expressions: int, bool, op and var. The �rst 3 of these contain all

the reserved names (or keywords) of mini-ML and the 4-th of these contains all the user-de�ned names. A 5-th

syntactic category, exp, is de�ned inductively starting from the 4 atomic categories as the basis of the induction.

i; j; k 2 int ::= � � � j~3 j~2 j~1 j 0 j 1 j 2 j � � �

b 2 bool ::= true j false

� 2 op ::= (op +) j (op *) j (op =) j hd j tl j (op ::) j � � �

x; y; z 2 var ::= � � � j a j b j � � � j temp j new j � � �

M;N;P 2 exp ::= i j b j x j � atom

j MN application

j fnx => M abstraction

j if M then N else P conditional

j [M1; : : : ;Mn] list, n > 0

j (M1;M2) pair

j #1M j #2M projection

j let val x1 = M1 and � � � and xn = Mn in N end let-val, n > 1

j let fun x1(y1) = M1 and � � � and xn(yn) = Mn in N end let-fun, n > 1

1

Remark 1 : mini-ML is obtained from the syntax of SML by imposing several restrictions. In particular:

1. mini-ML includes parallel, but not sequential, versions of let-val and let-fun | note the keyword

\and".

2. mini-ML excludes tuples of the form (M1; : : : ;Mn) with arbitrarily many entries, n > 0. It only allows

pairs (M1;M2), together with the �rst and second projections, #1M and #2M .

3. Every variable binding in mini-ML consists of exactly one variable, not a tuple of variables, e.g., none of

the following expressions is legal in mini-ML:

fn (x1; : : : ; xn) => M where n > 2 or n = 0

let fun x(y1; : : : ; yn) = M in N end where n > 2 or n = 0

where M and N are valid mini-ML expressions.

Remark 2 : There is exactly one expression in mini-ML, namely the empty list [], which is an atom without

being in any of the atomic categories: int, bool, op and var. That is, [] is a legal expression by itself, not depending

on any previously de�ned expressions. It is possible to put [] in a separate atomic category, but it is simpler, as

in our presentation above, to make it a special case of lists in general with n = 0 entries.

Exercise 3 : In the two parts below, assume that M1; : : : ;Mn and N are valid mini-ML expressions.

1. Show that an SML expression using a sequential let-val of the form:

let val x1 = M1

val x2 = M2

� � �

val xn = Mn

in N end

can be de-sugared into an equivalent expression of mini-ML.

2. Show that an SML expression using a sequential let-fun of the form:

let fun x1(y1) = M1

fun x2(y2) = M2

� � �

fun xn(yn) = Mn

in N end

can be de-sugared into an equivalent expression of mini-ML.

Exercise 4 : Let M1; : : : ;M4 and N be valid mini-ML expressions. Show that an SML expression of the form:

let fun x1(y1) = M1

fun x2(y2) = M2

val x3 = M3

val x4 = M4

in N end

can be de-sugared into an equivalent expression of mini-ML.

2

Exercise 5 : mini-ML does not allow arbitrary tuples of the form (M1; : : : ;Mn) where n 6= 2. In the case

n > 3, however, we can consider such a tuple to be syntactic sugar for the following valid mini-ML expression:

(M1; (M2; (M3; � � � (Mn�1;Mn) � � �)))

assuming that M1; : : : ;Mn are also valid mini-ML expressions. Show that the corresponding projections

#1M; #2M; #3M; : : : ; #nM can be de-sugared into equivalent mini-ML expressions.

Exercise 6 : Show that an SML expression of the form:

let fun x(y1; : : : ; yn) = M in N end where n > 2 or n = 0

can be de-sugared into an equivalent mini-ML expression. Assume M is a valid mini-ML expression that may

mention y1; : : : ; yn but not x; and assume N is a valid mini-ML expression except that if x occurs in N , then it

occurs as x(M1; : : : ;Mn) for some valid mini-ML expressions M1; : : : ;Mn. Hint : Consider separately the two

cases, n = 0 and n > 2, and use the result of the preceding exercise.

2 Syntax of Monomorphic Types

We present the syntax of monomorphic types using an extended BNF style, with 3 syntactic categories: tcons,

tvar and mono.

tcons ::= int j bool type constant

� 2 tvar ::= 'a j 'b j 'c j � � � type variable

� 2 mono ::= int j bool j � atom

j �1 -> �2 function type

j � list list type

j �1 * �2 pair type

Note we have included type variables in the syntax of monomorphic types. Type variables will play an important

role when they can be instantiated to other types. So far, we do not have a precise formal mechanism to carry

out such an instantiation. For now, we think of type variables as just \frozen" place holders for unknown types.

You should recognize that every monomorphic type of mini-ML, as here de�ned, is a legal type of SML, but

not the other way around. The syntax of types in SML is far richer.

3 Monomorphic Typing Rules

The typing rules are used to combine the syntax of the (untyped) programming language and the syntax of types.

Each typing rule consists of:

1. Finitely many (possibly zero) premisses.

2. Exactly one conclusion.

The conclusion of a typing rule, as well as some (if not all) of its premisses, are called (typing) judgments. A

judgment is of the form:

x1 : �1; : : : ; xn : �n ` M : �

for some �1; : : : ; �n; � 2 mono and some expression M of mini-ML. The set fx1; : : : ; xng includes at least all

the program variables occurring free in M . Each pair x : � on the left of \`" is called a type assumption, and

the order in which type assumptions are listed is not important, i.e., we think of the list on the left of \`" as the

3

set fx1 : �1; : : : ; xn : �ng. We use the letter A to denote such a set of type assumptions, which is called a type

environment, and the only requirement we impose on A is that it does not mention a program variable more than

once. (Put di�erently, we can view A as a partial function from tvar to mono.) The above judgment can be read

in English as follows:

Relative to the environment x1 : �1; : : : ; xn : �n the expression M type-checks and its �nal type is � .

Every atom of mini-ML which is not a programming variable is assigned a �xed type | or more than one, if

the atom is overloaded, such as (op =) which is assigned two di�erent types and [] which is assigned in�nitely

many types. Here is a partial list of types assigned to non-variable atoms:

i : int integers

b : bool booleans

(op +) : int * int -> int integer addition

(op *) : int * int -> int integer multiplication

(op =) : int * int -> bool integer equality

(op =) : bool * bool -> bool boolean equality

[] : int list empty list of integers

hd : int list -> int head of integer lists

tl : int list -> int list tail of integer lists

(op ::) : int * int list -> int list cons of integer lists

[] : bool list empty list of booleans

hd : bool list -> bool head of boolean lists

tl : bool list -> bool list tail of boolean lists

(op ::) : bool * bool list -> bool list cons of boolean lists

...
...

If � is a primitive operator, let type(�) be the set of all its assigned types. For example,

type((op =)) = fint * int -> bool; bool * bool -> boolg:

We start with the typing rules for atoms that are not variables:

NIL
� 2 mono

A ` [] : � list
INT

A ` i : int
BOOL

A ` b : bool
OP

� 2 type(�)

A ` � : �

The rule for variables is:

VAR
� 2 mono

A; x : � ` x : �
(A does not mention x.)

The typing rules for non-atom expressions in mini-ML are:

APP
A ` M : �1 -> �2 A ` N : �1

A ` MN : �2
ABS

A; x : �1 ` M : �2
A ` fnx => M : �1 -> �2

IF
A ` M : bool A ` N : � A ` P : �

A ` ifM then N else P : �
LIST

A ` Mp : � 1 6 p 6 n

A ` [M1; : : : ;Mn] : � list

PAIR
A ` M1 : �1 A ` M2 : �2
A ` (M1;M2) : �1 * �2

PROJ 1
A ` M : �1 * �2

A ` #1M : �1
PROJ 2

A ` M : �1 * �2

A ` #2M : �2

4

The most complicated typing rules are for let-val and let-fun expressions:

LET-VAL
A; x1 : �1; : : : ; xn : �n ` N : � A ` Mp : �p 1 6 p 6 n

A ` let val x1 = M1 and � � � and xn = Mn in N end : �

A; x1 : �1 -> �
0

1
; : : : ; xn : �n -> � 0

n
` N : �

LET-FUN
A; x1 : �1 -> � 0

1
; : : : ; xn : �n -> � 0

n
; yp : �p ` Mp : �

0

p
1 6 p 6 n

A ` let fun x1(y1) = M1 and � � � and xn(yn) = Mn in N end : �

Remark 7 : When we use the typing rules to produce a typing derivation for an expression M , we assume that

every variable in M has at most one binding occurrence. Thus, we do not allow an expression of the form, say,

fn a => (fn a => a) a | to take a silly example. But this is a mild restriction, because we can always rename

bound variable occurrences without changing the meaning of an expression. For the previous (silly) example, an

equivalent expression is: fn a => (fn b => b) a. For an explanation of what goes wrong if we lift this restriction,

see Exercise 13.

Example 8 : Consider the following expression M of mini-ML: fn f => f 5. This is also a SML expression.

The SML interpreter returns the following type for M :

(int -> 'a) -> 'a

Below is a typing derivation, which con�rms M type-checks, by assigning the type (int -> 'a) -> 'a to M :

1. f: int -> 'a |- f : int -> 'a VAR

2. f: int -> 'a |- 5 : int INT

3. f: int -> 'a |- f 5: 'a APP, from 1 and 2

4. |- fn f => f 5: (int -> 'a) -> 'a ABS, from 3

(We have written the typing derivation in ASCII to illustrate what we expect to be turned in for some of the

exercises below.) Note, for each line of the derivation, we mention on the right-hand side:

� The name of the typing rule according to which the judgment, on the same line, is derived.

� The premises (if any) on preceding lines which are used by the typing rule.

Exercise 9 : Consider the following expressionM ofmini-ML: fn f => fn x => f (f x). Write a typing derivation,

similar to that in Example 8, which con�rms M type-checks and assigns the same type to M as the type obtained

by running the SML interpreter.

Exercise 10 : Consider the following expression M of mini-ML: fn f => fn x => f (f ((op +) (x; 3))). Write a

typing derivation that con�rms M type-checks and assigns the same type to M as the SML interpreter.

Exercise 11 : Consider the following expression M of mini-ML: (f f). It is legal according to the syntax

presented in Section 1. Show that (f f) is not typeable according to the monomorphic typing rules in this section,

i.e., there is no environment A and no type � such that A ` (f f) : � .

Exercise 12 : The typing rules presented above are for an implicitly typed version of mini-ML. It is implictly

typed in the sense that, if an expression M of mini-ML type-checks according to the above rules, then no type

annotations are inserted in M and only a �nal type is derived for the whole of M .

An expression ofmini-ML is (fully) explicitly typed if an appropriate type annotation is inserted next to every

binding occurrence of a variable. This is just as in SML. We want to adjust the typing rules so that they produce

explicitly typed expressions. The only rules that need to be adjusted are ABS, LET-VAL and LET-FUN. The

adjusted rule ABS is called ABS0 and reads as follows:

ABS0
A; x : �1 ` M : �2

A ` fnx : �1 => M : �1 -> �2

Similar adjustments need to be made in rules LET-VAL and LET-FUN, now called LET-VAL0 and LET-FUN0.

5

1. Write rule LET-VAL0.

2. Write rule LET-FUN0.

Exercise 13 : In Remark 7 we imposed a restriction on mini-ML expressions, by requiring that every variable

has at most one binding occurrence in an expression.

1. What goes wrong with the typing rules, if this restriction is lifted? Hint : Consider a \typing derivation"

for the expression fn a => (fn a => a) a, and compare it with a typing derivation for fn a => (fn b => b) a.

2. Suggest a change in the de�nition of the set of type assumptions in a judgment, i.e., the set appearing on

the left of \`", so that this restriction can be lifted safely. Hint : Test your proposed change on a \typing

derivation" for fn a => (fn a => a) a,

4 Syntax of Polymorphic Types

Every monomorphic type is also a polymorphic type. This implies that a presentation of the syntax of polymorphic

types in an extended BNF style is identical to that of monomorphic types | except that now it includes additional

syntactic categories. Here, we take polymorphic types to include only one extra syntactic category, namely poly.

� 2 poly ::= f�1; : : : ; �ng: � polymorphic type, n > 0

In a poly type f�1; : : : ; �ng: � , we say that the type variables �1; : : : ; �n are bound (or quanti�ed). A special

case is n = 0, for which we write � instead of fg: � for simplicity.

Note that � ranges over mono types, � ranges over poly types, and every mono type � is viewed as as special

case of a poly type | with the convention that � = fg: � .

Given � 2 mono, let FTV(�) denote the set of type variables occurring in � . For example, if � = �1 -> int -> �2

then FTV(�) = f�1; �2g. We use \FTV" for \free type variables." In a mono type � all type variables are free,

but not necessarily so in a poly type �.

Given � = f�1; : : : ; �ng: � 2 poly, we de�ne FTV(�) as FTV(�)�f�1; : : : ; �ng. For example, if � = f�1; �3g: �

where � = �1 -> int -> �2, then FTV(�) = f�2g. A type � is said to be closed if FTV(�) = ?.

De�nition 14 (Type Instantiation) : Let � = f�1; : : : ; �ng: � be an arbitrary poly type, and � 0 an arbitrary

mono type. We say that � 0 is an instance of �, written as � 4 � 0, i� there exist mono types �1; : : : ; �n such that:

� 0 = � [�1 := �1; : : : ; �n := �n]

The notation \� [�1 := �1; : : : ; �n := �n]" refers to the substitution of �1; : : : ; �n for �1; : : : ; �n, respectively, in

� . Note we can only substitute mono types �1; : : : ; �n for �1; : : : ; �n; we are not allowed to substitute poly types

for �1; : : : ; �n.

Remark 15 : Is every poly type of mini-ML also a legal type of SML? Strictly speaking, it is obviously not.

For example, the SML user never sees the following poly type �:

� = f�1; �3g: �1 -> int -> �2

Nevertheless, we can still view poly types with a slightly di�erent notation to be part of the type system for SML.

For example, the following is excerpted from a session of the SML interpreter:

- fun f x y = x + 1;

> val 'a f = fn : int -> 'a -> int

The interpreter infers the type int -> 'a -> int for the function f. We can take this type to be the same, in

our notation, to the poly type f'ag: int -> 'a -> int, indicating that f can be safely used as having any type

of the form int -> � -> int where � is an arbitrary mono type. For example, in the same session of the SML

interpreter, we can apply f to 5 and 15, and again apply f to 5 and (fn z => z), in both cases safely:

6

- val x = f 5 15;

> val x = 6 : int

- val y = f 5 (fn z => z);

> val y = 6 : int

In the �rst case, 'a is instantiated to the mono type int (the built-in type of 5); in the second case, 'a is

instantiated to the mono type 'b -> 'b (the inferred type of (fn z => z), not directly visible to the user).

Example 16 : Let � = f�1; �3g: �1 -> int -> �2. Then:

1. � 4 �1 -> int -> �2.

2. � 4 int -> int -> �2.

3. � 4 (int -> int) -> int -> �2.

4. � 4 �2 -> int -> �2.

5. � 4 (�2 -> �3) -> int -> �2.

Exercise 17 : Give an example of a poly type � for each of the following cases:

1. There exists exactly one � 2 mono such that � 4 � .

2. For all � 2 mono it holds that � 4 � .

3. For in�nitely many � 2 mono it holds that � 4 � ,

and for in�nitely many � 2 mono it does not hold that � 4 � .

5 Polymorphic Typing Rules

Much of what we presented in Section 3 regarding monomorphic typing rules carries over without change to

polymorphic typing rules. We point out the di�erences. A judgment is now of the form:

x1 : �1; : : : ; xn : �n ` M : �

for some �1; : : : ; �n 2 poly, some � 2 mono, and some expression M of mini-ML. Thus, a type environment (i.e.,

the �nite set of type assumptions appearing to the left of \`") is now a partial function from tvar to poly, rather

than from tvar to mono.

All the typing rules in Section 3 are used again without change, with two exceptions: (1) an environment A

may now contain polymorphic type assumptions of the form x : �, which includes as a special case the form x : � ,

and (2) the rules VAR and LET-VAL are generalized as follows:

VAR
� 2 poly � 2 mono � 4 �

A; x : � ` x : �
(A does not mention x.)

A; x1 : �1; : : : ; xn : �n ` N : �

LET-VAL
A ` Mp : �p �p = (FTV(�p)� FTV(A)): �p 1 6 p 6 n

A ` let val x1 = M1 and � � � and xn = Mn in N end : �

You should recognize the rules VAR and LET-VAL in Section 3 are special cases of VAR and LET-VAL here.

Keep in mind that the other rules are stated in the same exact way as in Section 3; in particular, the rule ABS,

here stated again unchanged:

ABS
A; x : �1 ` M : �2

A ` fnx => M : �1 -> �2

requires the discharged type �1 be monomorphic, even though Amay now contain polymorphic types. This implies

the presence of polymorphic types in A makes a di�erence only in relation to variables bound by LET-VAL.

7

Exercise 18 : Consider the expression M ofmini-ML, (f f), shown in Exercise 11 not to be typeable according

the monomorphic typing rules of Section 3. Show that (f f) is typeable according to the polymorphic typing

rules in this section.

Exercise 19 : Consider the following expression M of mini-ML: let val f = fn x => x in (f f) 3 end. Write a

typing derivation that con�rms M type-checks and assigns the same type to M as the SML interpreter.

Exercise 20 : The following is an expression of mini-ML | call it M :

let val inc = fn x => (op +) (x,1)

and double = fn f => fn y => f (f y)

in (double inc 3, double not true)

end

The following is also an expression of mini-ML | call it N :

let fun inc x = (op +) (x,1)

and double f = fn y => f (f y)

in (double inc 3, double not true)

end

M type-checks according to the polymorphic typing rules of mini-ML presented in this section, but N does not

according to the same rules.

1. Give a precise reason for the failure of N to type-check in mini-ML: State the typing rule that is violated

and determine the part in that typing rule which does not allow a typing derivation to be completed for N .

2. Propose a relaxation of the typing rule, stated in part 1, that will allow N to be type-checked and to return

the same value as M .

3. Write a typing derivation that con�rms N type-checks according to the adjusted typing rules, as proposed

in part 2.

8

