
Computer Science 320

Concepts of Programming Languages

Continuation-Passing Style in Scheme
December 3, 2005

The original factorial function is:

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

This is a recursive procedure (it contains a recursive call) and its evaluation on

some non-negative integer exhibits a linear recursive process, as explained in
Section 1.2 of the [A&S] book. For example, its evaluation on input 3 produces

the following sequence:

(fact 3)

(* 3 (fact 2))

(* 3 (* 2 (fact 1)))

(* 3 (* 2 (* 1 (fact 0))))

(* 3 (* 2 (* 1 1)))

6

In Section 1.2 of [A&S], di�erent approaches are proposed to recast the fac-

torial procedure into another (equivalent) tail-recursive procedure. Recall a

procedure is tail-recursive if, whenever it calls itself, the result returned by the

called function becomes immediately the result of the calling function. One
such tail-recursive implementation is given at the top of page 34 in [A&S];

another one is given in footnote 29 on page 33. Another is the following:

(define (fact1 n)

(fact-iter n 1))

(define (fact-iter n answer)

(if (= n 0)

answer

(fact-iter (- n 1) (* n answer))))



The evaluation of any of these tail-recursive procedures exhibits a linear iter-

ative process, in the sense explained in Section 1.2 of [A&S]. For example, the

evaluation of the preceding procedure on input 3 produces the sequence:

(fact1 3)

(fact-iter 3 1)

(fact-iter 2 3)

(fact-iter 1 6)

(fact-iter 0 6)

6

Another very di�erent implementation of the factorial is written imperatively

(i.e., with side-e�ects) and can be found on page 235 in [A&S]. This imple-

mentation is not strictly speaking \tail-recursive", which is more appropri-
ately reserved to qualify the form of functional (i.e., applicative) programs.

Nevertheless, the evaluation of the imperative program on page 235 on a non-

negative integer exhibits a linear iterative process, in the sense explained in

the last paragraph on page 34.

Transforming a procedure into continuation-passing style (CPS) is another

di�erent way of obtaining a tail-recursive implementation. There is a vast

literature on CPS, with many important applications to programming. The

rest of this handout is restricted to a few examples and gives you enough of a
general technique that will enable you to transform many common procedures

into CPS.

Returning to the factorial procedure at the very beginning of this handout,

and its evaluation on input 3, we can say that at every recursive call to fact,

there is a context specifying what needs to be done to complete the evaluation.

For example, the context

(* 3 (* 2 ))

speci�es what needs to be done to complete the evaluation after the call (fact

1) returns a value. We can call this context the continuation of (fact 1) in

the evaluation of (fact 3). Expressing this continuation in the language of

Scheme, we can write:

(lambda (v) (* 3 (* 2 v)))



If this Scheme expression is k, i.e.,

k = (lambda (v) (* 3 (* 2 v)))

then the application (k (fact 1)) produces

(* 3 (* 2 (fact 1)))

Generalizing the preceding argument, suppose we run fact on input 20 and

suppose the continuation of, say, (fact 13) in the evaluation of (fact 20)

is k. Then the continuation of the preceding recursive call to fact, i.e. (fact

12), is

(lambda (v) (k (* 13 v)))

The preceding suggests that a CPS transformation of fact is

(define (fact-cps n k)

(if (= n 0)

(k 1)

(fact-cps (- n 1) (lambda (v) (k (* n v))))))

fact-cps is tail-recursive and its evaluation on input 3 and initial continuation

(lambda (v) v) produces:

(fact-cps 3 (lambda (v) v))

(fact-cps 2 (lambda (v) (* 3 v)))

(fact-cps 1 (lambda (v) (* 3 (* 2 v))))

(fact-cps 0 (lambda (v) (* 3 (* 2 (* 1 v)))))

((lambda (v) (* 3 (* 2 (* 1 v)))) 1)

6

There are di�erent ways of CPS transforming the same procedure! Here is

another CPS transformation of fact:

(define (fact-cps-1 n k)

(if (= n 0)

(k 1)

(fact-cps-1 (- n 1) (lambda (v) (* n (k v))))))

In the substitution model, we have:



(fact-cps-1 3 (lambda (v) v))

(fact-cps-1 2 (lambda (v) (* 3 v)))

(fact-cps-1 1 (lambda (v) (* 2 (* 3 v))))

(fact-cps-1 0 (lambda (v) (* 1 (* 2 (* 3 v)))))

((lambda (v) (* 1 (* 2 (* 3 v)))) 1)

6



Another Easy Example

We used the procedure length several times in the past:

(define (length lst)

(if (null? lst)

0

(+ (length (cdr lst)) 1)))

Based on what we did for the factorial function, here is a CPS-transformation

of length:

(define (length lst) (length-cps lst (lambda (v) v)))

(define (length-cps lst k)

(if (null? lst)

(k 0)

(length-cps (cdr lst) (lambda (v) (k (+ v 1))))))



Another Still Easy Example

There are di�erent de�nitions of append. Here is one (see page 103 in [A&S]):

(define (append lst1 lst2)

(if (null? lst1)

lst2

(cons (car lst1) (append (cdr lst1) lst2))))

Taking the two preceding examples as a guide, here is a CPS-transformation

of append:

(define (append lst1 lst2)

(append-cps lst1 lst2 (lambda (v) v)))

(define (append-cps lst1 lst2 k)

(if (null? lst1)

(k lst2)

(append-cps (cdr lst1) lst2

(lambda (v) (k (cons (car lst1) v))) )))



A Subtle Example

The reverse procedure takes a list as input argument and returns a list of

the same elements in reverse order. Here is a possible de�nition in direct (as

opposed to continuation-passing) style. (Two other interesting alternatives

are proposed in Exercise 2.39, page 122 in [A&S].)

(define (reverse lst)

(if (null? lst)

'()

(append (reverse (cdr lst)) (list (car lst)))))

Using the preceding examples as guide, a CPS-transformation of this procedure

is:

(define (reverse lst) (reverse-cps lst (lambda (v) v)))

(define (reverse-cps lst k)

(if (null? lst)

(k '())

(reverse-cps (cdr lst)

(lambda (v)

(k (append v (list (car lst))))

))))

If you try the preceding procedure on a few examples, it works like magic, i.e.,

it works but it is diÆcult to understand why. Here is an alternative de�nition

of reverse whose CPS-transformation is perhaps easier to understand. First,
we de�ne the procedure last-pair:

(define (last-pair lst)

(if (null? (cdr lst))

lst

(last-pair (cdr lst))))

which works properly only if the input argument is a nonempty list. Note
last-pair is already tail-recursive, so we do not bother to CPS-transform it.

Second, we de�ne the procedure remove-last-pair:



(define (remove-last-pair lst)

(cond ((null? lst) '())

((null? (cdr lst)) '())

(else (cons (car lst)

(remove-last-pair (cdr lst))))))

The CPS-transformation of remove-last-pair produces:

(define (remove-last-pair-cps lst k)

(cond ((null? lst) (k '()))

((null? (cdr lst)) (k '()))

(else (remove-last-pair-cps (cdr lst)

(lambda (v) (k (cons (car lst) v)))))))

Third, we de�ne the procedure reverse based on last-pair and

remove-last-pair as follows:

(define (reverse lst)

(if (null? lst)

'()

(cons (car (last-pair lst))

(reverse (remove-last-pair lst)))))

We are ready to write a CPS-transformation of the preceding \direct-style"

implementation of reverse, namely:



(define (reverse lst) (reverse-cps-1 lst (lambda (v) v)))

(define (reverse-cps-1 lst k)

(if (null? lst)

(k '())

(reverse-cps-1

(remove-last-pair-cps lst (lambda (v) v))

(lambda (v)

(k (cons (car (last-pair lst)) v))))))

Finally, thinking directly in terms of continuations (this is subtle!), here is
one more CPS implementation of reverse:

(define (reverse lst) (reverse-cps-2 lst (lambda (v) v)))

(define (reverse-cps-2 lst k)

(if (null? lst)

(k '())

(reverse-cps-2 (cdr lst)

(lambda (v) (cons (car lst) (k v))))))



Another Example: The Fibonacci Function

A standard de�nition of the fibonacci function is:

(define (fib n)

(if (< n 2)

1

(+ (fib (- n 1)) (fib (- n 2)))))

A CPS-transformation of fib is:

(define (fib-1 n) (fib-cps-1 n (lambda (v) v)))

(define (fib-cps-1 n k)

(if (< n 2)

(k 1)

(fib-cps-1

(- n 1)

(lambda (v) (fib-cps-1

(- n 2)

(lambda (w) (k (+ v w)))))) ))

Here is another CPS transformation of fib. But is it really in tail-recursive
form? Look at the second recursive call to fib-cps-2:

(define (fib-2 n) (fib-cps-2 n (lambda (v) v)))

(define (fib-cps-2 n k)

(if (< n 2)

(k 1)

(fib-cps-2

(- n 1)

(lambda (v) (k (+ v (fib-cps-2

(- n 2)

(lambda (w) w)))))) ))



Here is yet another CPS transformation of fib. And again, is it really in

tail-recursive form?

(define (fib-3 n) (fib-cps-3 n (lambda (v) v)))

(define (fib-cps-3 n k)

(if (< n 2)

(k 1)

(fib-cps-1

(- n 1)

(lambda (v) (k (+ v (fib-3 (- n 2))))))))


