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This expression is well-formed in mini-ML and, therefore, in SML. This is confirmed by running
the SML interpreter on the expression.

A skeleton for a typing derivation for M , with unknown (mono) types inserted, can be built incre-

mentally in top-down fashion.
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3. f : τ1, x : τ2 ⊢ f x : τ3 τ1 = τ2 -> τ3 APP(1,2)

4. f : τ1, x : τ2 ⊢ f : τ1 VAR

5. f : τ1, x : τ2 ⊢ f (f x) : τ4 τ1 = τ3 -> τ4 APP(3,4)

6. f : τ1 ⊢ fn x => f (f x) : τ2 -> τ4 ABS(5)

7. ⊢ fn f => fn x => f (f x) : τ1 -> τ2 -> τ4 ABS(6)

This is just a skeleton, which becomes a valid typing derivation once the constraints are satisfied.



Solving Constraints Using Unification: We collect all the constraints in a sequence (in the order
in which they are generated), which is then used as a stack.1 We process the first constraint in the

stack (the “top constraint”), which gives rise to one of three possible actions:

(A) Definition of a “small” substitution and elimination of the top constraint.

(B) Simplification of the top constraint into additional “simpler” constraints, which are then placed

back on top of the stack.

(C) Contradiction – which blocks any further processing of the constraints.

After action (A) or (B), but not (C), we continue to process each of the remaining constraints in the
stack. This procedure is bound to terminate, with one of two possible outcomes at the end:

• a contradiction, as in (C), indicating the constraints cannot be solved, or

• an empty stack of constraints, indicating the constraints can be solved.

We illustrate this procedure, called Unification, with the constraints generated in Example 1.

1A queue will work just as well here.
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From the top (and only) constraint in (4), we define the small substitution:

τ3 := τ4

and apply it to obtain the empty sequence:

(5) ∅

With no constraint left to process, we conclude there is a solution.
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But we don’t really need the full typing derivation for M — that was only to explain

the theory of type-checking, type-inference and unification.

From the programmer’s point of view, we are interested in the final type assigned to M , which can
be obtained by simply applying S to the final type expression τ1 -> τ2 -> τ4 in the skeleton for M :

(α -> α) -> α -> α

which is precisely the type returned by the SML interpreter for M .
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The initial sequence of constraints for N is therefore:
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Define small substitution τ1 := τ2 -> τ3 and apply to remaining constraints.
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Simplify.

(3) τ2 = τ3, τ3 = τ4, (τ2 -> τ3) -> τ2 -> τ4 = (int * int -> int) -> τ5

Define small substitution τ2 := τ3 and apply to remaining constraints.
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Define small substitution τ3 := τ4 and apply to remaining constraints.
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Simplify.
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Simplify.
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Define small substitution τ4 := int * int and apply to remaining constraints.

(8) int * int = int, int * int -> int * int = τ5

Contradiction: the top constraint int * int = int cannot be satisfied.
There is no solution and N is not typable.


