
Computer Science 320 (Spring Term, 2006)

Concepts of Programming Languages

Problem Set 2: Higher-Order Functions

Out: Friday, January 27. 2006
Due: 5:00 PM on Friday, February 3, 2006

There are 5 problems in this set, each worth as noted. The total number of points
is 100. The harder problems are marked with a single � (average diÆculty) or two
�� (higher-than-average diÆculty).

A hallmark of functional programming is the ease with which it allows the processing of higher-
order functions. A higher-order function, sometimes called a functional, is a function which
takes a function as argument and/or returns a function as result. This concept is similar to
callbacks in C/C++ or re
ection in Java.

Even if you did not call them by this name, you most cetainly encountered higher-order
functions already. Examples of higher-order functions abound in calculus; e.g., the di�erential
operator is a higher-order function which takes a function as argument and returns another
function (the derivative) as result. The Scheme procedure map is an example of a higher-order
function because its �rst argument is itself a function.

It is relatively simple, in functional programming, to make higher-order functions �rst-class.
First-class elements in a programming language are those that may be:

� named by variables,

� passed as arguments to procedures,

� returned as the results of procedures, and

� included in data structures.

In an imperative language such as Fortran or C or Pascal, we take for granted that integer and
boolean values, among others, are so manipulated. However, whatever else these languages are
convenient for, they do not make it easy on programmers to use higher-order functions in the
same way.

In this assignment you will practice programming with higher-order functions and learn some
of their advantages, in particular, their suitability for producing transparent code for relatively
complex computational tasks.

Problem 1 (30 points) The composition of two functions f after g results in a function
(f Æg)(x) = f(g(x)). We may de�ne a procedure compose that implements function composition
as the folowing:

(define (compose f g) (lambda (x) (f (g x))))

So, for example, if inc is a procedure that adds 1 to its argument, and square is a procedure
that returns x2 for an argument x, then ((compose square inc) 6) would evaluate to 49.

Please do the following exercises from the book in three parts.



1. Provide a procedure double as described in exercise 1.41, page 77, in the [A&S] book;
write double in terms of compose.

2. Implement a procedure repeated as described in exercise 1.43, page 77, in the [A&S] book.

3. Exercise 1.44, page 77, in the [A&S] book. Note that procedure smooth should take two
arguments in the following order: the function being smoothed and dx. The procedure
implementing n-fold smoothed function should be called n-smooth and should take three
arguments in the following order: the function being smoothed, dx, and a number of times
the function is smoothed.

Problem 2 (20 points) Many useful list operators such as map, append, length, and reverse�

can be implemented in terms of two primitives, fold-right and fold-left. Please do the
following exercises from the book in two parts.

1. Exercise 2.33, page 119, in the [A&S] book.

2. Exercise 2.39, page 122, in the [A&S] book.

Note that fold-right is also called accumulate in the book.

Injective, surjective, bijective

For later problems in this assignment, we recall some standard notions about functions.

Let N be the set of natural numbers (the non-negative integers). We restrict attention to unary
(one-argument) total functions from some subset A � N (the domain) to some subset B � N

(the range). The subsets A and B are not necessarily proper. A function f : A ! B is said to
be injective (or also one-one) if it satis�es the condition that f(x1) = f(x2) implies x1 = x2,
for all x1; x2 2 A. For every injective function f : A ! B, there is another function g : B ! A

(not necessarily unique), called the inverse of f such that g(f(x)) = x for every x 2 A. If g is
unique, it is typically denoted f�1.

If f : A ! B is an injective function and g : B ! A is an inverse of f , it is not necessarily the
case that f(g(y)) = y for every y 2 B unless f is surjective (or also onto) which means that for
every y 2 B there is x 2 A such that f(x) = y. If f is both injective and surjective, its inverse
g is uniquely de�ned and can be denoted f�1.

A function f : A! B which is both injective and surjective is called bijective.

Representing sets with functions

There are di�erent ways of representing sets in programming. Three di�erent ways are discussed
in Section 2.3.3 in the [A&S] book (unordered lists, ordered lists, and binary trees). Another
altogether di�erent way of representing a set A is by means of its characteristic function, which
is a function � : A! ftrue; falseg such that:

�(x) =

(
true if x 2 A;

false if x 62 A:

The characteristic function of the set f10; 12; 14g can be programmed in Scheme as:



(lambda (x) (or (= x 10) (= x 12) (= x 14)))

The characteristic function of all even natural numbers can be implemented as:

(lambda (x) (= (remainder x 2) 0))

Another way of representing a set A is by means of a generating function g : N ! A which must
be surjective and, if at all useful, programmable. The generating function of all even natural
numbers can be programmed as:

(lambda (x) (* 2 x))

Other useful sets for which we can program generating functions include the set of all prime
numbers, the set of Fibonacci numbers, and many others. For the set of prime numbers, its
generating function must satisfy:

primes : N ! fall primes > 2g such that

primes(0) = 2; primes(1) = 3; primes(2) = 5; primes(3) = 7; etc.

Curried and uncurried

We can program the addition function which consumes a pair of numbers and returns their sum
as follows:

(define add-uncurried

(lambda (x y) (+ x y)))

We call it \uncurried" in contrast to the following implementation:

(define add-curried

(lambda (x)

(lambda (y) (+ x y))))

The curried version of addition can be fed each of its 2 arguments separately. For example,
(add-curried 5) is perfectly valid, whereas (add-uncurried 5) will cause an error. Note that
the evaluation of (add-curried 5) returns a function, namely (lambda (y) (+ 5 y)).

Problem 3 (10 points) In two parts:

1. De�ne a Scheme procedure curry which consumes an uncurried function f and returns its
curried version. Assume f takes a pair of arguments, i.e., f is invoked on arguments x and
y by writing (f x y).

2. De�ne a Scheme procedure uncurry which consumes a curried function g and returns its
uncurried version. Assume that g takes two arguments in sequence, i.e., to invoke g on
argument x and then on argument y we write ((g x) y).

Problem 4 (20 points) In two parts:�



1. De�ne a Scheme procedure from-char-to-gen which consumes the characteristic function
f of some set and returns the generating function of the same set. Assume f is the
characteristic function of an in�nite A � N . The desired generating function of A is
surjective from N to A.

2. De�ne a Scheme procedure from-gen-to-char which consumes the generating function g

of some set and returns the characteristic function of the same set. Assume g generates
an in�nite set of natural numbers in strictly increasing order.

Problem 5 (20 points) De�ne a Scheme procedure inv which takes 3 arguments: a bijective��

function f: A! B, where A;B � N , together with the characteristic function dom of the domain
A and the characteristic function ran of the range B. Evaluation of (inv f dom ran) should
return the inverse function of f. The sets A and B can be �nite or in�nite (and, because f is a
bijection, they must have the same cardinality).


