
Computer Science 320

Concepts of Programming Languages

Problem Set 4: Mutable Data Objects

Out: Friday, February 10, 2006

Due: 4:59 PM on Friday, February 17, 2005

There are 5 problems in this set, each worth as indicated, for a total of 100 points. The
harder problems are marked with a single � (average diÆculty) or two �� (higher-than-
average diÆculty). For the easy points, start with the unmarked problems.

In lecture this past week, we talked about complications resulting from the use of assignments and
their side-e�ects: loss of referential transparency, unexpected results from (careless) aliasing, diÆculty
in understanding their meaning (which call for complicated semantic models, such as the environment
model). We also talked a little about their bene�ts, but an extra measure of care is necessary if we
want to avoid their pitfalls. We continue this discussion here, by considering several situations for
which programming with side-e�ects is bene�cial.

The software for this assignment is in a single directory called Scheme-code-for-PSet04. We made
a \tar" �le of this directory,1 called Scheme-code-for-PSet04.tar which can be downloaded from
the course webpage. To restore the directory Scheme-code-for-PSet04 and its contents on your local
machine, issue the following Unix command:

tar -xvf Scheme-code-for-PSet04.tar

and hit RETURN. You will need the provided software for Problems 3, 4 and 5.

1 Side-E�ects Can Be Useful

Problem 1 (20 points) Write a Scheme procedure, called \remember", which takes a single integer
as input and then returns the sum of the current input and its previous input. To do this, remember
must store its last input. Here is a possible session:

=> (remember 1)

;Value: ``First time''

=> (remember 2)

;Value: 3

=> (remember 3)

;Value: 5

Problem 2 (20 points) Write a Scheme procedure, called \delete-odd!", which deletes all the odd
numbers in a list of numbers. The procedure must alter, i.e., mutate, the input list, not return a new
list. (And this is why we call it \delete-odd!" rather than \delete-odd".) For example, executing
the following code:

1For the curious, �le Scheme-code-for-PSet04.tar was generated by issuing the following command at the Unix

prompt: \tar -cvf Scheme-code-for-PSet04.tar Scheme-code-for-PSet04".

1



(define x (list 1 2 3 4))

(set! x (delete-odd! x))

x

should return the list (2 4).

2 Tables As Mutable Data Structures

Although it is possible to represent and manipulate tables in a pure functional style { see, for example,
Section 2.4.3 in the [A&S] book, pp 179-187 { tables are generally meant to store bulky data records,
which are more eÆciently represented by mutable list structures. An implementation of a (one-
dimensional) table is in �le tables.scm in the directory Scheme-code-for-PSet04.

Problem 3 (20 points) The implementation of the procedure assoc in the �le tables.scm uses�

the prede�ned equal? to test whether two keys are equal. This is not always an appropriate test.
For instance, we may have a table with numeric keys in which we do not need an exact match to the
number we are looking up, but only a number within an approximate bound from it (below or above).

1. Write the code for a new procedure approx-assoc, which is a variation of procedure assoc in
that it takes a third argument same-key? to test whether two keys are within a given bound
from each other.

2. Adjust the code for lookup and insert! accordingly. Call the new procedures approx-lookup
and approx-insert!. In your adjustment of insert! you have to decide whether or not to
insert a new record whose key is within the given bound from a key already in the table: State
your decision clearly and write approx-insert! accordingly.

3 An Application of Tables: Memoization

Memoization is a programming technique to avoid recomputation. Many applications call for the
repeated generation of di�erent members of the same collection of objects. To do this without careful
consideration of the required resources may not be computationally feasible.

This problem is encountered with the Fibonacci function (see, for example, Handout 10). In
the case of Fibonacci, the obvious implementation is not practically feasible and cannot be used on
input values much larger than 20 or 25. A more clever (but less transparent) implementation will
terminate and return an output on an input reaching 5000 or more. In lecture, our implementation of
fast-fib used memoization; it was a somewhat ad-hoc approach to memoization, which worked only
for Fibonacci, based on our understanding of the function.

In the problem below, a systematic approach to memoization is developed, which can be applied
to any one-argument function, including Fibonacci.

Problem 4 (20 points) Do Exercise 3.27 in the [A&S] text, on page 272. At the end of the exercise,��

on page 273, there are three parts: Ignore the �rst part (\Draw an environment diagram � � � "), and
only do the two last parts:

1. Explain why memo-fib computes the nth Fibonacci number in a number of steps proportional
to n.

2



2. Would the scheme still workif we had simply de�ned memo-fib to be (memoize fib)?

The code for this problem is provided in the three �les tables.scm, memoize.scm and memo-fib.scm,
all in the directory Scheme-code-for-PSet04.

4 Message-Passing Style

In �le bank.scm in the directory Scheme-code-for-PSet04, you will �nd the code of the procedure
make-account to \create banking accounts" on page 223 of the [A&S] book. (The same code is also
reproduced in Handout 12.) In the next problem you need to modify the code of make-account.

Problem 5 (20 points)�

1. Exercise 3.3, page 225, in [A&S].

2. Exercise 3.4, page 225, in [A&S].

3


