
COMPUTER SCIENCE 320
CONCEPTS OF PROGRAMMING LANGUAGES

Problem Set 6: A Small Interpreter (Part II)

OUT: FRIDAY, FEBRUARY 24, 2006
DUE: 4:59 PM ON FRIDAY, MARCH 4, 2006

There are 5 problems in this set, each worth 20 points. The harder problems are marked with a single �
(average difficulty) or two �� (higher-than-average difficulty). For the easy points, start with the unmarked
problems.

Problem 4 (From Problem Set 5 – 20 points) Extend the definition of subst in subst.scm to correctly�

perform substitutions into valid expressions in INTEX augmented with sigma.

Problem 5 (From Problem Set 5 – 20 points) Extend the definition of subst-eval in subst-eval.scm
to correctly evaluate valid expressions in INTEX augmented with sigma.

1 Getting Familiar With INTEX+bind

We provide you with several Scheme files in the directory Scheme-code-for-INTEX+bind. You will
also need the files in the directory Scheme-utilities, already provided with Problem Set 5. For easy
downloading, we made a “tar” file of this directory, which can be restored to its original contents by issuing
following Unix command:

tar -xvf Scheme-code-for-INTEX+bind.tar

To run and test some of the programs we provide you, we suggest that you open an Emacs window under the
directory Scheme-code-for-INTEX+bind. After launching your Scheme interpreter, within the Emacs
window, you can experiment with the INTEX+bind interpreter by executing the following Scheme code:

;; Load several examples of environments and expressions.
(load "examples")

;; Load several examples of programs written in INTEX+bind.
(load "intex+bind-examples")

exp2

(free-vars exp2)

(binding-vars exp2)

(bound-vars exp2)

(rename exp2 (free-vars exp2))

env1

(subst env1 exp2)

1

;; Perform a substitution in an expression.
(subst (env-make ’(a c)

(map make-literal ’(3 5)))
’(bind c (+ a b) (* c d)))

Make sure you understand how the functions “rename” and “subst” work. Proceed further by executing
the following:

;; 4 different modes of evaluation
calc

(subst-run-cbv calc ’(2 3))

(subst-run-cbn calc ’(2 3))

(env-run-cbv calc ’(2 3))

(env-run-cbn calc ’(2 3))

2 De-Sugaring

We want to extend INTEX+bind with two new binding mechanisms, bindseq and bindpar. The syntax
of bindseq has the form:

(bindseq ((var 1 defn 1)

(var 2 defn 2)

� � �

(var n defn n)) body)

The syntax of bindpar is identical to the previous one, except that keyword “bindpar” is substituted for
“bindseq”:

(bindpar ((var 1 defn 1)

(var 2 defn 2)

� � �

(var n defn n)) body)

The semantics of bindseq and bindpar are similar to the semantics of let* and let, respectively, in
Scheme.

In the case of bindseq, the n bindings are carried out in sequence, which allows defn 2 to depend on
var 1 , then defn 3 to depend on var 1 and var 2 , then defn 4 to depend on var 1 , var 2 and var 3 , etc.

By contrast, in the case of bindpar, the n bindings are carried out in parallel, so that defn 2 cannot
depend on var 1 , nor can defn 3 depend on var 1 and var 2 , nor can defn 4 depend on var 1 , var 2 and
var 3 , etc.

2

There are two approaches to extending our interpreter for INTEX+bind to include bindseq and bind-
par. The first approach is to make appropriate changes in each of the modules of the INTEX+bind system.

The second approach is to write “pre-processing” functions to de-sugar every bindseq expression and
every bindpar expression into expressions that only use bind. This approach also requires to add a case
for each of bindseq and bindpar in the package abstract-syntax.scm.

Problem 6. (20 points) Extend abstract-syntax.scm for the language INTEX+bind so that pro-
grams now containing bindseq and bindpar are also recognized as valid.

Note that you have to define an appropriate constructor and appropriate selectors for each of bindseq
and bindpar. In the case of bindseq, for example, you have to define:

(make-bindseq names defns body),
which returns a bindseq node (in the abstract syntax tree of an expression).

(bindseq-names bindseq-node),
which returns the list of names in bindseq-node .

(bindseq-defns bindseq-node)
which returns the list of definitions in bindseq-node.

(bindseq-body bindseq-node)
which returns the body of bindseq-node.

(bindseq? node)
which returns #t if node is a bindseq node, and #f otherwise.

Problem 7. (20 points) Write a de-sugaring function for programs written in INTEX+bind+bindseq.�

The structure of your function should be as shown below.

(define desugar-program
(lambda (pgm)

(make-program (program-formals pgm)
(desugar (program-body pgm)))))

(define desugar
(lambda (exp)

(cond
;; case-analysis of kernel expressions
((literal? exp) exp)
.
.
.

;; case-analysis of bindseq expressions:
((bindseq? exp)
.
.

3

.)

(else (error "DESUGAR: unrecognized expression -- " exp)))))

Having appropriately adjusted abstract-syntax.scm in Problem 6, and written the de-sugaring function
in Problem 7, there is one more change to be made in each of the files: subst-run-cbv, subst-run-
cbn, env-run-cbv and env-run-cbn. Namely, in the case of subst-run-cbv for example (and
similarly in the 3 other files), it should now read:

(define subst-run-cbv
(lambda (pgm ints)
(literal-value
(subst-eval-cbv (subst* (map make-literal ints)

(program-formals pgm)
(desugar (program-body pgm)))))))

Problem 8. (20 points) Repeat Problem 7 for programs written in in INTEX+bind+bindseq+bindpar.��

You need to extend the function desugar to handle the case of bindpar expressions. Hint: The case of
bindpar is more subtle than the case of bindseq. You will need to do some renaming of binding and
bound variable-occurrences in general.

4

