COMPUTER SCIENCE 320
CONCEPTS OF PROGRAMMING LANGUAGES

Problem Set 6: A Small Interpreter (Part 1)

OuT: FRIDAY, FEBRUARY 24, 2006
DUE: 4:59 PM ON FRIDAY, MARCH 4, 2006

There are 5 problems in this set, each worth 20 points. The harder problems are marked with a single *
(average difficulty) or two ** (higher-than-average difficulty). For the easy points, start with the unmarked
problems.

Problem 4| (From Problem Set 5 — 20 points) Extend the definition of subst insubst . scmto correctly
perform substitutionsinto valid expressionsin INTEX augmented with si gra.

Problem 5| (FromProblem Set 5—20 points) Extendthedefinitionof subst - eval insubst - eval . scm
to correctly evaluate valid expressionsin INTEX augmented with si gna.

1 Getting Familiar With INTEX+bind

We provide you with several Scheme files in the directory Schene- code- f or - | NTEX+bi nd. You will
also need the filesin the directory Scheme-uti li ti es, aready provided with Problem Set 5. For easy
downloading, we made a “tar” file of this directory, which can be restored to its original contents by issuing
following Unix command:

tar -xvf Scheme-code-for-| NTEX+bi nd. t ar

To run and test some of the programs we provide you, we suggest that you open an Emacs window under the
directory Scheme- code- f or - | NTEX+bi nd. After launching your Scheme interpreter, within the Emacs
window, you can experiment with the INTEX+bind interpreter by executing the following Scheme code:

;; Load several exanples of environnents and expressions.
(1 oad "exanpl es")

;; Load several exanples of programs witten in | NTEX+bi nd.
(1 oad "i nt ex+bi nd- exanpl es")

exp2

(free-vars exp2)

(bi ndi ng-vars exp2)
(bound-vars exp2)

(renane exp2 (free-vars exp2))
envl

(subst envl exp2)

7, Performa substitution in an expression.
(subst (env-make '(a c)
(map nmake-literal (3 5)))
"(bind ¢ (+ ab) (* cd))

Make sure you understand how the functions “r enane” and “subst ” work. Proceed further by executing
the following:

i 4 different nodes of eval uation
cal c

(subst-run-cbv calc "(2 3))
(subst-run-cbn calc "(2 3))
(env-run-chbv calc '(2 3))

(env-run-cbn calc '(2 3))

2 De-Sugaring

We want to extend INTEX+bi nd with two new binding mechanisms, bi ndseq and bi ndpar . The syntax
of bi ndseq hastheform:

(bindseq ((var_1 defn_1)
(var_2 defn_2)

(var_n defn_n)) body)

The syntax of bi ndpar isidentica to the previous one, except that keyword “bi ndpar ” is substituted for
“bi ndseq”:

(bindpar ((var_1 defn_1)
(var_2 defn_2)

(var_n defn_n)) body)

The semantics of bi ndseq and bi ndpar are similar to the semantics of | et * and | et , respectively, in
Scheme.
In the case of bi ndseq, the n bindings are carried out in sequence, which allows defn 2 to depend on
var_1, then defn_& to depend on var_1 and var_2, then defn_j to depend on var_1, var_2 and var_3, €tc.
By contrast, in the case of bi ndpar , the n bindings are carried out in parallel, so that defn 2 cannot
depend on var_1, nor can defn_3 depend on var_I and var_2, nor can defn_4 depend on var_1, var_2 and
var_3, etc.

There aretwo approachesto extending our interpreter for INTEX+bi nd toincludebi ndseq and bi nd-
par . Thefirst approach isto make appropriate changesin each of the modules of the INTEX+bi nd system.

The second approach is to write “pre-processing” functions to de-sugar every bi ndseq expression and
every bi ndpar expression into expressions that only use bi nd. This approach also requires to add a case
for each of bi ndseq and bi ndpar inthe packageabst ract - synt ax. scm

(20 points) Extend abst r act - synt ax. scmfor the language INTEX+bi nd so that pro-
grams now containing bi ndseq and bi ndpar are also recognized as valid.

Note that you have to define an appropriate constructor and appropriate selectors for each of bi ndseq
and bi ndpar . Inthe case of bi ndseq, for example, you have to define:

(make-bindseq names defns body),
which returnsabi ndseq node (in the abstract syntax tree of an expression).

(bindseq-names bindseg-node),
which returns the list of namesin bindseg-node.

(bindseq-defns bindseq-node)
which returnsthe list of definitionsin bindseq-node.

(bindseq-body bindseq-node)
which returns the body of bindseg-node.

(bindseq? node)
which returns#t if node isabi ndseq node, and #f otherwise.

* |Problem 7.| (20 points) Write a de-sugaring function for programs written in INTEX+bi nd+bi ndseq.
The structure of your function should be as shown below.

(define desugar-program

(I'anbda (pgm
(make- program (programformal s pgm

(desugar (program body pgm))))

(defi ne desugar
(1 anbda (exp)
(cond
;; case-anal ysis of kernel expressions

((literal? exp) exp)

;; case-anal ysis of bindseq expressions:
((bi ndseq? exp)

)

(el se (error "DESUGAR unrecogni zed expression -- " exp)))))

Having appropriately adjusted abst r act - synt ax. scmin Problem 6, and written the de-sugaring function
in Problem 7, there is one more change to be made in each of the files: subst - r un- cbv, subst - r un-
cbn, env-run-cbv and env-run- cbn. Namely, in the case of subst - r un- cbv for example (and
similarly in the 3 other files), it should now read:

(define subst-run-chbv
(lanbda (pgmints)
(literal -val ue
(subst-eval -cbv (subst* (map nake-literal ints)
(programformals pgm

(desugar (programbody pgm))))))

* %k (20 points) Repeat Problem 7 for programswritteninin INTEX+bi nd+bi ndseq+bi ndpar .
You need to extend the function desugar to handle the case of bi ndpar expressions. Hint: The case of
bi ndpar is more subtle than the case of bi ndseq. You will need to do some renaming of binding and
bound variable-occurrencesin general.

