COMPUTER SCIENCE 320
CONCEPTS OF PROGRAMMING LANGUAGES

Problem Set 7: Pattern-Matching in SML

Out: FriDAY, MARCH 17, 2006
DuE: 4:59 PM oN FRrIDAY, MARCH 24, 2006

There are 10 problems in this set, each worth 10 points, except for the last which is
worth 20 points. The harder problems are marked with a a single * (average difficulty)
or two ** (higher-than-average difficulty). For the easy points, start with the unmarked
problems.

A major difference between Scheme and SML has to do with types. But this is only the most
obvious difference between the two languages. There are several others that are no less significant, at
least in the way programmers write their code.

One such difference is pattern-matching, which Scheme does not support. Pattern-matching is
particularly useful in the manipulation of lists. At first glance, this may not appear as a big advantage,
as most operations on lists using pattern-matching are easily re-written using cons, car, cdr and null?
in Scheme (or also using : :, hd, t1 and null in SML). For many problems, however, pattern-matching
is more convenient to use and requires far less code to write. Experienced SML programmers know how
to exploit this feature, so that the writing of code becomes less error-prone and easier to document.

In all solutions for this assignment, you are not allowed to use the SML primitive
operators t1 and hd. And you have to use pattern-matching as much as possible. See
handouts HD21.1list-ops.sml and HD22.list-ops—again.sml for several examples.

Problem 1| The standard recursive definition of Euclid’s Algorithm for the greatest common divisor
(ged) in SML can be written as:

fun gecd (m,n) =
if m = O then n else gcd(n mod m, m);

Write a new definition of gcd using pattern-matching and no conditional (i.e., if...then...else...).
(The gcd function is discussed on page 48 of Paulson’s book — henceforth referred to as just [Paulson].)

Problem 2| The function duplicate consumes a list L and returns a list where every entry in L
is duplicated. For example, (duplicate [1,2,3]) returns the list [1,1,2,2,3,3] and (duplicate

[true,false]) returns the list [true,true,false,false]. Write a definition of duplicate using
pattern-matching, no hd and t1, and no conditional (i.e., if...then...else...).

* %k Exercise 2.19, page 53, in [Paulson|. The definition of the GCD function should use
pattern-matching as much as possible and the conditional (i.e., if...then...else...) as little as
possible. Hint 1: Try to first write the definition of GCD using conditionals and no pattern-matching,
and then eliminate conditionals (whenever possible) using pattern-matching. Hint 2: Note that one
case is missing in the specification of GCD on page 53, namely, when the first argument of GCD is odd
and the second argument of GCD is even. You will have to account for this missing case in your code.

Problem 4| The function maxList consumes a list L of strings and returns the largest string in
L — “largest” according to lexicographic ordering. For example, (maxList ["ab", "bac", "abde"])
returns "bac".

fun maxList (L: string list) =

if t1(L) = [1 (* L is a single element *)

then hd(L) (* the single element is the maximum *)

else (* assume there are at least 2 elements *)
if hd(L) > hd(t1(L)) (x the first element exceeds the second *)
then maxList(hd(L)::t1(t1(L))) (* eliminate second element *)
else maxList(t1(L)) (* eliminate first element *);

Write a new definition of maxList using pattern-matching, and no hd and t1. You may have to use
conditionals, but you will get credit for minimizing their use.

Problem 5| Consider the function prod on page 75 of [Paulson], in the last paragraph preceding
Exercise 3.1. Write a new definition of prod which uses pattern-matching, and no hd and t1.

Problem 6| Exercise 4.1, page 126, in [Paulson]. You first need to read pages 124-126 preceding
the exercise.

Problem 7| Exercise 4.2, page 126, in [Paulson]. You first need to read pages 124-126 preceding
the exercise.

Problem 8| Consider the following definition in SML:

fun foo [] =[]
| foo (x :: xs) =
let val s = foo xs
in

(map (fn e => (x :: e)) s) @s
end;

Given a list L as input, what does (foo L) return as output? Justify in a couple of lines.

* |Problem 9| (20 points) Suppose we represent sets by lists, where an entry occurs at most once.
Use pattern-matching, and no hd and t1, to define the following in SML:

1. The function member consumes a pair (x,S) and returns true if x is a member of the set
represented by the list S, and false otherwise.

2. The function delete consumes a pair (x,S) and returns a list representing the set S — {x}, i.e.,
the element x is deleted from S. Remember you may assume that x appears at most once in S.

3. The function insert consumes a pair (x,S) and returns a list representing the set S U {x}.
Remember there cannot be two occurrences of x in a list representing a set.

You will get credit for minimizing the use of conditionals. Assume that two members of the set
represented by the list S can be compared using “=", i.e., they belong to one of the so-called equality
types: integer, boolean, character, and string.

