
Computer Science 320

Concepts of Programming Languages

Problem Set 9: Mutable Storage in SML

Out: Friday Mar 31 2006

Due: 4:59 PM on Friday, April 7, 2006

There are 5 problems in this set, each worth as indicated, for a total of 100 points.
The harder parts are marked with a single � (average diÆculty) or two �� (higher-than-
average diÆculty). For the easy points, start with the unmarked parts.

Problem 1 (50 points) Consider the following SML code. The function imp rev reverses a list
imperatively: It uses one reference to scan down the input list and another to accumulate the elements
in reverse.

fun imp_rev lst =

let val right = ref []

and left = ref lst

in while not (null (!left)) do

(right := hd (!left) :: !right;

left := tl (!left));

!right

end;

1. The implementation of imp rev uses a while-do, the general form of which in SML is:

while hE1i do hE2i

where hE1i is a valid SML expression of type bool and hE2i is a valid SML expression of type
unit. Show that a while-do expression, as just described, can be de-sugared into an equivalent
SML expression not containing any while-do. (No actual SML coding is necessary here, give
your answer in pseudo-code with a precise English explanation { no more than 2-3 lines.)

2. Based on your answer in part 1, write the SML code of imp rev again, where the while-do

expression is now de-sugared.

3. Consider the code of the SML library function rev. (It is the same code as that of function��

reverse in Handout 22.) Give a precise reason for why imp rev is more eÆcient than rev. Your
answer need not take more than 3-5 lines of type-written text. Hint : Execute by hand each of
\rev [5,6,7]" and \imp rev [5,6,7]", and compare the two executions.

4. Write the SML code of the function imp filter, with polymorphic type�

('a -> bool) -> 'a list -> 'a list

by making as few changes to imp rev as possible. The function imp filter on input arguments
pred and lst, each of the appropriate type, �lters out all elements in lst not satisfying the
predicate pred, i.e., imp filter is the imperative version of the applicative (or functional)
filter.

1

For the next 4 problems, you need to read carefully Section 8.5 in [P], pp 331-334. Your answers will
be relatively short.

Problem 2 (15 points) Exercise 8.14, page 334 in [P].

Problem 3 (10 points) Exercise 8.15, page 334 in [P].

Problem 4 (10 points) Exercise 8.16, page 334 in [P].�

Problem 5 (15 points) Exercise 8.17, page 334 in [P].�

2

