
Computer Science 320

Concepts of Programming Languages

Problem Set 11: Streams and Lazy Evaluation

Out: Friday, April 14, 2006

Due: 4:59 PM on Friday, April 21, 2006

There are 6 problems in this set, each worth as marked, for a total of 100 points. The
harder problems are marked with a single � (average diÆculty) or two �� (higher-than-
average diÆculty). For the easy points, start with the unmarked problems.

Potentially in�nite lists are usually called \streams". This is what Scheme programmers call them,
as in the Abelson-Sussman book, for example. But a stream in ML also refers to an input/output
channel. So, we will call them \sequences" instead, throughout this assignment. More precisely, a
sequence is a countable list of elements all of the same type; \countable" means the elements can be
put in a 1-1 correspondence with an initial segment of the natural numbers 0; 1; 2; : : : ; n (in which
case the sequence is �nite) or with the whole set of natural numbers 0; 1; 2; : : : (in which case the
sequence is in�nite). In Problems 1 to 4 { but not Problems 5 and 6 { the type of sequences is given
by the following declaration:

datatype 'a seq = Nil | Cons of 'a * (unit -> 'a seq);

which means that a sequence is either empty (in which case it is represented by \Nil") or non-empty
(in which case it is represented by the constructor \Cons" applied to a pair of the form \(x,xf)"
where \x" is the head and \xf" is a function to compute the tail).

Problem 1 (15 points) Write the SML code for the following 3 functions on sequences:

1. null

2. drop

3. toList

Declare \null" and \drop" in analogy with the versions of these functions on lists, which you can
�nd in the library structure List. The function \toList" should convert a �nite sequence into a list,
with the same entries and in the same order.

Problem 2 (15 points) De�ne SML functions repeatEach: 'a seq * int -> 'a seq and�

addAdjacent: int seq -> int seq which behave as follows:

1. Given a sequence xq whose entries are x0; x1; x2; : : : and a positive integer k, repeatEach (xq,k)

returns a sequence whose entries are:

x0; : : : ; x0
| {z }

k times

; x1; : : : ; x1
| {z }

k times

; x2; : : : ; x2
| {z }

k times

; : : :

2. Given an in�nite sequence xq of integers n0; n1; n2; n3; : : : , addAdjacent (xq) returns an integer
sequence whose entries are:

n0 + n1; n2 + n3; n4 + n5; : : :

1



Problem 3 (15 points) The function allOnes takes no input and is declared with the following
code:

fun allOnes () = Cons (1, fn () => allOnes ());

The in�nite sequence of all 1's is returned by evaluating \allOnes ()".

1. Consider the following declaration:

fun foo (xq : int seq) = Cons(1, fn () => add (foo xq, foo xq));

What is the sequence returned by foo (allOnes ())? Describe the elements in the sequence
precisely, preferably with a mathematical formula. Two lines will suÆce.

2. Write a function mult of type int seq * int seq -> int seq, analogous to the function add,
which multiplies the corresponding elements of its two input sequences.

3. Complete the following declaration�

fun facts (xq : int seq) = Cons (1, fn () => mult (<???>, <???>));

so that the evaluation of facts (from 0) returns the sequence whose n-th entry (starting from
0) is the factorial of n.

Problem 4 (15 points) Consider the de�nition of the datatype intTree in Handout 34, which
represents potentially in�nite binary trees where internal nodes are labelled with integers.

1. Write a datatype declaration for 'a tree, which is the polymorphic version of intTree repre-
senting potentially in�nite binary trees where labels are items of type 'a.

2. Write a function fromTreeToSeq: 'a tree -> 'a seq, which builds a sequence consisting of�

all the labels in a given binary tree. The order of the labels in the output sequence must be the
result of a breadth-�rst traversal of the input tree (left-to-right, top-to-bottom).

Problem 5 (20 points) Exercise 5.25, page 194, in [P].�

Problem 6 (20 points) Exercise 5.26, page 194, in [P].��

2



(* Useful SML code for PSet 11 -- most of it from Handout 34 *)

(* A datatype of sequences: *)
datatype 'a seq = Nil | Cons of 'a * (unit -> 'a seq);

(* The head, tail, and cons functions for sequences: *)
exception Empty;
fun hd Nil = raise Empty
| hd (Cons(x,xf)) = x;

fun tl Nil = raise Empty
| tl (Cons(x,xf)) = xf ();

fun cons (x,xq) = Cons(x, fn () => xq);

(* Converting a list to a sequence: *)
fun fromList l = List.foldr cons Nil l;

(* The increasing sequence of integers starting from k: *)
fun from k = Cons (k, fn () => from (k+1));

(* The sequence of all 1's is produced with "allOnes()": *)
fun allOnes () = Cons (1, fn () => allOnes ());

(* Calling "take(xq,n)" returns the first n elements of xq as a list: *)
fun take (xq, 0) = []
| take (Nil, n) = raise Subscript
| take (Cons(x,xf), n) = x :: take (xf (), n-1);

(* Appending two sequences: *)
fun append (Nil, yq) = yq
| append (Cons(x,xf),yq) = Cons(x, fn () => append(xf (),yq));

(* Interleaving two sequences: *)
fun interleave (Nil,yq) = yq
| interleave (Cons(x,xf),yq) = Cons(x, fn () => interleave(yq, xf()) );

(* The "map" function for sequences is: *)
fun map f Nil = Nil
| map f (Cons (x,xf)) = Cons(f x, fn () => map f (xf ()) );

(* The "filter" function for sequences is: *)
fun filter pred Nil = Nil
| filter pred (Cons (x,xf)) =

if pred x then Cons(x, fn () => filter pred (xf ()) )
else filter pred (xf ());

(* The function "iterates" generates an infinite sequence of the form
x, f(x), f(f(x)), f(f(f(x))), ...: *)

fun iterates f x = Cons(x, fn () => iterates f (f x)) ;

(* The functions "squares" and "add" are examples of arithmetical functions
on sequences of type "int seq": *)

fun squares Nil : int seq = Nil
| squares (Cons(x,xf)) = Cons(x*x, fn () => squares (xf ()));

fun add (Cons(x,xf), Cons(y,yf)) = Cons(x+y, fn () => add (xf (), yf ()))
| add _ : int seq = Nil;

3


