COMPUTER SCIENCE 320
CONCEPTS OF PROGRAMMING LANGUAGES

Problem Set 11: Streams and Lazy Evaluation

Out: FriDAY, APRIL 14, 2006
DuEe: 4:59 PM onN FripAY, APRIL 21, 2006

There are 6 problems in this set, each worth as marked, for a total of 100 points. The
harder problems are marked with a single * (average difficulty) or two ** (higher-than-
average difficulty). For the easy points, start with the unmarked problems.

Potentially infinite lists are usually called “streams”. This is what Scheme programmers call them,
as in the Abelson-Sussman book, for example. But a stream in ML also refers to an input/output
channel. So, we will call them “sequences” instead, throughout this assignment. More precisely, a
sequence is a countable list of elements all of the same type; “countable” means the elements can be
put in a 1-1 correspondence with an initial segment of the natural numbers 0,1,2,... ,n (in which
case the sequence is finite) or with the whole set of natural numbers 0,1,2,... (in which case the
sequence is infinite). In Problems 1 to 4 — but not Problems 5 and 6 — the type of sequences is given
by the following declaration:

datatype ’a seq = Nil | Cons of ’a * (unit -> ’a seq);

which means that a sequence is either empty (in which case it is represented by “Nil”) or non-empty

in which case it is represented by the constructor “Cons” applied to a pair of the form “(x,xf)”
P y PP p

where “x” is the head and “xf” is a function to compute the tail).

Problem 1| (15 points) Write the SML code for the following 3 functions on sequences:

1. null
2. drop

3. toList

Declare “null” and “drop” in analogy with the versions of these functions on lists, which you can
find in the library structure List. The function “toList” should convert a finite sequence into a list,
with the same entries and in the same order.

Problem 2| (15 points) Define SML functions repeatEach: ’a seq * int -> ’a seq and
addAdjacent: int seq -> int seq which behave as follows:
1. Given a sequence xq whose entries are g, 1, Z2, . . . and a positive integer k, repeatEach (xq,k)

returns a sequence whose entries are:

TOy-vr y L0y TLye-+ y L1y L2y e y L2y
NS A A N

s

TV WV WV
k times k times k times

2. Given an infinite sequence xq of integers ng, n1, n2, n3, ..., addAdjacent (xq) returns an integer
sequence whose entries are:

no +ni, n2 +n3, na +ns, ...

Problem 3| (15 points) The function allOnes takes no input and is declared with the following
code:

fun allOnes () = Cons (1, fn () => allOnes ());
The infinite sequence of all 1’s is returned by evaluating “allOnes ()”.

1. Counsider the following declaration:
fun foo (xq : int seq) = Cons(1l, fn () => add (foo xq, foo xq));

What is the sequence returned by foo (allOnes ())?7 Describe the elements in the sequence
precisely, preferably with a mathematical formula. Two lines will suffice.

2. Write a function mult of type int seq * int seq -> int seq, analogous to the function add,
which multiplies the corresponding elements of its two input sequences.

* 3. Complete the following declaration
fun facts (xq : int seq) = Cons (1, fn () => mult (777>, <777>));

so that the evaluation of facts (from 0) returns the sequence whose n-th entry (starting from
0) is the factorial of n.

Problem 4| (15 points) Consider the definition of the datatype intTree in Handout 34, which
represents potentially infinite binary trees where internal nodes are labelled with integers.

1. Write a datatype declaration for ’a tree, which is the polymorphic version of intTree repre-
senting potentially infinite binary trees where labels are items of type ’a.

X 2. Write a function fromTreeToSeq: ’a tree —> ’a seq, which builds a sequence consisting of
all the labels in a given binary tree. The order of the labels in the output sequence must be the
result of a breadth-first traversal of the input tree (left-to-right, top-to-bottom).

* |Problem 5| (20 points) Exercise 5.25, page 194, in [P].
% |Problem 6| (20 points) Exercise 5.26, page 194, in [P].

(* Useful SML code for PSet 11 —— most of it from Handout 34

(* A datatype of sequences:
datatype ’a seq = Nil | Cons of ’a * (unit -> ’a seq);

(* The head, tail, and cons functions for sequences:
exception Empty;

fun hd Nil

| hd (Cons(x,xf))

fun t1 Nil

| t1 (Cons(x,xf))
fun cons (x,xq) = Cons(x, fn () => xq);

raise Empty

X5

raise Empty
xf O;

(* Converting a list to a sequence:
fun fromList 1 = List.foldr cons Nil 1;

(* The increasing sequence of integers starting from k:
fun from k = Cons (k, fn () => from (k+1));

(x The sequence of all 1’s is produced with "allOnes()":
fun allOnes () = Cons (1, fn () => allOnes ());

(* Calling "take(xq,n)" returns the first n elements of xq as a list:
fun take (xq, 0)
| take (Nil, n)
| take (Cons(x,xf), n)

= [

= raise Su

(* Appending two sequences:

fun append (Nil, yq) =

yaq

| append (Cons(x,xf),yq)

x :: tak

= Cons(x

(* Interleaving two sequences:
fun interleave (Nil,yq)

| interleave (Cons(x,xf),yq)

=¥yq
Co

bscript
e (xf O, n-1);

, fn () => append(xf (),yq));

ns(x, fn () => interleave(yq, x£f()));

(* The "map" function for sequences is:
fun map f Nil

| map £ (Cons (x,xf))

=N
Cons(f x, fn () => map £ (xf ()));

il

(* The "filter" function for sequences is:
fun filter pred Nil
| filter pred (Comns (x,xf)) =

if pred x then Cons(x, fn () => filter pred (xf ()))
else filter pred (xf ());

= Nil

(* The function "iterates" generates an infinite sequence of the form
x, £(x), £(£(x)), £(£(E)),

fun iterates f x = Cons(x, fn () => iterates f (f x)) ;

(* The functions "squares" and "add" are examples of arithmetical functions

fun squares Nil :

on sequences of type "int seq":

| squares (Cons(x,xf))
fun add (Cons(x,xf), Cons(y,yf)) =

add _

int seq

int seq

Nil
Cons (x*

x, fn () => squares (xf ()));
Cons(x+y, fn () => add (xf O, yf ()))
Nil;

*)

*)

*)

*)

*)

*)

*)

*)

