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Problem 1. Higher-Order Functions.

Part (a) [4 points] Define a function curry that takes as input a function f of two simultaneous argu-
ments. The expression (((curry f) x) y) should evaluate to the same value as (f x y). For exam-
ple, (((curry +) 7) 5) should evaluate to 12.

(define (curry f) (lambda (x) (lambda (y) (f x y))))

Part (b) [4 points] Define a function double which takes as input a function f of one argument, and returns
as output a function that applies f twice. For example, if inc is a function that adds 1 to an integer input,
then (double inc) should be a function that adds 2.

(define (double f) (lambda (x) (f (f x))))

For parts (c), (d) and (e), consider the procedure:

(define (f g) (g 2))

Part (c) [4 points] What value is returned by evaluating (f square)?

4
Part (d) [4 points] What value is returned by evaluating (f (lambda (z) (* z (+ z 1))))?

6
Part (e) [4 points] What happens if we evaluate (f f)? Explain precisely.

The function f takes its argument g and applies it to 2. So, if we evaluate (f f), i.e., the argument f is
now substituted for g in the expression (g 2), this means that 2 (the argument of g) will be applied to
2. But this will cause an error, because (2 2) cannot be evaluated.

Problem 2. Recursion on Lists. The procedure remove consumes two arguments: a symbol s and a list
of symbols los. It returns the list obtained from los by removing all occurrences of s, if any. For example,

(remove ’aa ’(b aa ab aa bb)) returns (b ab bb).

A definition of remove follows:

(define (remove s los)
(if (null? los)

’()
(if (eq? (car los) s)

(remove s (cdr los))
(cons (car los) (remove s (cdr los))))))
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Part (a) [5 points] In the definition of remove, if the inner if’s two alternative are switched — equivalently,
if the inner if’s test is changed to (not (eq? (car los) s)) — what function does the resulting
procedure computes? Give your answer in no more than 2 sentences.

The resulting procedure returns the list obtained from los by removing all occurrences of symbols not
equal to s. For example, using the altered remove, (remove ’aa ’(b aa ab aa bb)) returns
(aa aa).

Part (b) [5 points] In the definition of remove, if the inner if’s second alternative (cons (car los)
(remove s (cdr los))) is replaced by (remove s (cdr los)), what function does the resulting
procedure computes? Give your answer in no more than 2 sentences.

The resulting procedure returns the empty list ().

Part (c) [10 points] Define another procedure remove-first by making the smallest possible change in
the definition of remove. The function computed by remove-first is similar to the function computed
by remove except that it only removes the first occurrence of s in los.
For example, (remove-first ’aa ’(b aa ab aa bb)) returns (b ab aa bb)).

(define (remove-first s los)
(if (null? los)

’()
(if (eq? (car los) s)

(cdr los)
(cons (car los) (remove-first s (cdr los))))))

Problem 3. Abstract Data Types. [20 points] Suppose we want to define the abstract data type (ADT) of
natural numbers (the non-negative integers), based on the following representation of the natural numbers:

0 represented by () (the empty list)
1 represented by (#t) (the list with one occurrence of #t)
2 represented by (#t #t) (the list with two occurrences of #t)
3 represented by (#t #t #t) (the list with three occurrences of #t)
etc.

Part (1) [10 points] For this representation of the natural numbers, define the constant zero, the one-argument
predicate iszero? (which tests whether the input argument is zero), and the one-argument procedures succ
(which returns the successor of its argument) and pred (which returns the predecessor of its argument, if this
argument is not zero, and is not specified to return anything, if this argument is zero):

(define zero ’())
(define iszero? null?)
(define succ (lambda (x) (cons #t x)))
(define pred (lambda (x) (cdr x)))

Part (2) [10 points] Based on these definitions we implement the two-argument procedure plus as follows:

(define plus
(lambda (x y)

(if (iszero? x)
y
(succ (plus (pred x) y)))))
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In the same style in which plus is defined above, give a Scheme implementation of the two-argument proce-
dure mult on the natural numbers, which multiplies its two input arguments and returns the value resulting
from the multiplication. You can use any of zero, iszero?, succ and pred, as well as plus:

(define mult
(lambda (x y)

(if (iszero? x)
zero
(plus y (mult (pred x) y)))))

Problem 4. Side Effects [20 points] Here is the transcript of a Scheme session. Fill in the blanks saying
what values are returned.

1 ]=> (define (last-pair x)
(if (null? (cdr x))

x
(last-pair (cdr x))))

;Value: last-pair
1 ]=> (define (append! x y)

(begin (set-cdr! (last-pair x) y)
x))

;Value: append!
1 ]=> (define x (list ’a ’b))
;Value: x
1 ]=> (define y (list ’c ’d))
;Value: y
1 ]=> (append x y)

;Value: (a b c d)

1 ]=> (reverse x)

;Value: (b a)

1 ]=> (append! x y)

;Value: (a b c d)

1 ]=> (reverse x)

;Value: (d c b a)

1 ]=> (append! x y)

;Value: (a b c d c d c d c d c d c d c d : : : forever.

Problem 5. Call-by-value versus Call-by-name. Consider the following program, where bindpar is the
“parallel binding” construct, just as the let in Scheme:

;; test program written in INTEX+bind
(program (a b)
(bindpar ( (a (* a b))
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(b (+ a b))
(c (mod a b)) )

(bindpar ( (a (- a b))
(b (div a b)) )

(+ a b))))

We execute the above program on the arguments 3 and 5. Determine the number of times which each of the
5 binary operators +, -, *, div and mod, is performed, and also determine the final value of the program —
when using:

Part (a) [10 points] Call-by-value evaluation:

+ : 2 times.
-: 1 time.
*: 1 time.
div: 1 time.
mod: 1 times.
final value: 8

Part (b) [10 points] Call-by-name evaluation:

+ : 3 times.
-: 1 time.
*: 2 times.
div: 1 time.
mod: 0 times.
final value: 8
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