
The value of R determines how quickly the application runs. The application always acheives R

barriers every 2R� 1 quanta. For shorthand we will use L for 2R� 1.

The complete solution to the recurrence is then:

t

n

=

�

n

L

�

R+

(

nmodL

2

+ 1 if n mod L even

(nmodL)+1

2

Q if n mod L odd

In this expression, the �rst term represents the progress made by fully repeated patterns of R

barriers, and the second term represents the additional progress made since the last time the

thread groups reversed their roles.

This function is not directly invertible. However we can observe that

lim

n!1

t

n

=n = R=L;

since the second term of the solution goes to zero in the limit. This allows us to invert the function

in an approximate manner:

t

n

=

R

L

n;

so:

n =

L

R

t

n

and:

n =

2

l

1

Q�1

m

� 1

l

1

Q�1

m

t

n

:

This function describes the behavior seen in �gure 2. Here t

n

is equal to 500. As Q decreases

from 2 to 1, the value of R = d1=(Q�1)e increases in steps. The frequency of change increases as Q

approaches 1, since d1=(Q�1)e is changingmore often. Since R is increasing, (2R�1)=R is increasing

also, asymptotically towards the value 2. When Q reaches 1, (the interbarrier computation time

exactly equals the quantum length) the term (2R� 1)=R is exactly equal to 2, which means that

n = 2t

n

; so the application passes through one barrier every 2 quanta.

19



2. reaches a barrier that is one past the last barrier acheived by the pre-empted group. In this

case, the current group spins for the the remainder of its quantum.

Based on this observation, we can model the progress of the computation for thread group A

as:

t

A;n

= min(bt

B;n�1

c+ 1; t

A;n�2

+Q):

bt

B;n�1

c is the last barrier that thread group B reached in its quantum. Adding 1 to bt

B;n�1

c gives

the limit imposed by the barriers on thread group A's progress. t

A;n�2

+ Q is the limit imposed

by quantum expiration. The min function reects the rule that thread group A computes for the

entire quantum unless it is stopped at the barrier.

The initial conditions are: t

A;0

= 1:0; because A is assumed to go �rst, and it hits the �rst barrier

during its quantum; and t

B;1

= Q; because group B passes through the barrier (now completed)

which A stopped at and then runs to the end of the quantum.

This model can be recast as the recurrence relation:

t

n

= min(bt

n�1

c+ 1; t

n�2

+Q);

where t

n

= max(t

A;n

; t

B;n

), with initial conditions t

0

= 1:0, t

1

= Q. This recurrence relation

describes the same computation as the formula using t

A;n

because the thread groups make progress

in strict alternation.

9

Solving the general recurrence for t

n

will give us a formula for how many barriers can be

completed in n quanta. Of course, what is actually measured in experiments such as shown in

�gure 1 is the running time of an application with a �xed number of barriers. That is, �gure 1

shows a plot of the function:

f(Q) = y j t

y

= 500:

f(Q) is the inversion of the function t

n

. Although the solution to the recurrence is not directly

invertible, it can be approximated, allowing us some insight into the complex step-function nature

observed in the �gure.

The recurrence behaves as follows, for 1 < Q < 2. The recurrence forms a repetition of a

pattern of successive increments. The �rst thread group acheives a barrier, then the second thread

group achieves the same barrier and runs on to the end of the quantum. It thus performs some

extra computation. The �rst time this happens, the extra computation is Q � 1. It is thus Q� 1

\ahead" of the �rst thread set. The �rst thread set then runs to the next barrier. The second

thread set then runs past the same barrier and uses up its quantum. It is then ahead by 2(Q� 1):

When eventually the Q� 1 terms add up to 1, the second thread set acheives a barrier, and stops.

The thread sets' roles are then reversed, and the same pattern repeats. The number of barriers

completed during one repetition of this pattern is

R =

�

1

Q� 1

�

9

This recurrence agrees with �gure 1 for Q > 2 also. Figure 1 shows that when Q > 2; the running time of the

application is the product only of the number of barriers and the length of the quantum in seconds; the application

passes through exactly one barrier each quantum. The recurrence agrees with the �gure because when Q > 2; bt

n�1

c

is always less than t

n�2

+Q; so the recurrence reduces to t

n

= t

n�1

+ 1 = n+ 1:

18



Appendix

This appendix considers the running time of a barrier-synchronizing application that has more

threads than processors. In particular, we consider the case where T threads are run on P pro-

cessors, such that T=2 � P < T . In this case, each processor runs either one or two threads, and

at least one processor has two threads. The analysis presented here could be extended to the case

where even fewer processors are used; the e�ect would be to increase the maximum number of

threads on a processor. The barriers are centralized, and threads spin when they wait at a barrier.

For the purposes of analysis we assume that the barrier code takes no time to execute, so that all

we are concerned with is computation time and time spent waiting at the barrier.

8

We model a

thread as an execution of this code:

for (j = 0 ; j < NUM_PHASES; j++) {

for (i = 0 ; i < DELAY ; i++)

; /* this step models computation time */

barrier();

}

The threads can be separated into two groups, A and B, where group A executes during odd

quanta and group B executes during even quanta. Because the threads spin at a barrier, context

switching only occurs due to quantum expiration. We assume for clarity of discussion that quanta

expire at the same time on each processor; however relaxing this assumption would not change

the results. In the �rst quantum, all the threads of group A are run; in the next quantum all the

threads of group B are run; this continues in an alternating manner. All threads within a group

advance identically, so we can refer simply to the advancement of a thread group. To quantify the

progress of a group's computation, we de�ne the function

t

A

= j+ (i=DELAY)

where i and j are the values of the variables in any thread of thread groupA. We de�ne the function

t

B

similarly. The t function measures the progress of a thread group in units of \interbarrier times."

That is, if t

A

= x; where x is an integral value, then thread group A has just completed barrier

number x. Additionally we de�ne t

A;n

to be the value of t

A

at the end of quantum number n.

We measure the quantum length Q in the same units. Thus if Q = 1; there is one barrier

per quantum. If Q = 2; there are two barriers per quantum, etc. The complex portion of an

application's behavior occurs when Q lies between 1 and 2, as can be seen from �gure 1.

The overall computation proceeds as follows. During each quantum, the currently executing

thread group moves past the currently pre-empted group. Thus if group A was executing during

quantum n, then t

A;n

> t

B;n

. Since group B made no progress during quantum n, we can addi-

tionally say that t

A;n

> t

B;n�1

. The amount of progress that the current group makes depends on

the progress that the pre-empted group made in the last quantum. The current group either:

1. runs to the end of its quantum, or

8

The e�ect of this assumption can be seen in the di�erence between the simulation and the execution experiments

for this situation. As shown in Figures 1 and 2, the overall behavior of the application does not change qualitatively

as a result of this assumption.

17



[Mellor-Crummey and Scott, 1991] J. M. Mellor-Crummey and M. L. Scott, \Algorithms for Scal-

able Synchronization on Shared-Memory Multiprocessors," ACM Transactions on Computer

Systems, 9(1), 1991, (to appear), Earlier version published as TR 342, University of Rochester,

Computer Science Department, April 1990.

[Mogul and Borg, 1991] J.C. Mogul and A. Borg, \The E�ect of Context Switches on Cache Per-

formance," In Proceedings of the 4th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 75{84, Santa Clara, CA, Apr 1991.

[Ousterhout, 1982] J. K. Ousterhout, \Scheduling Techniques for Concurrent Systems," In Pro-

ceedings of the 1982 Conference on Distributed Computing Systems, pages 22{30, October 1982.

[Scott et al., 1990] M.L. Scott, T.J. LeBlanc, B.D. Marsh, T.G. Becker, C. Dubnicki, E. Markatos,

and N. Smithline, \Implementation Issues for the Psyche Multiprocessor Operating System,"

Computing Systems, 3(1):101{137, Winter 1990.

[Squillante and Lazowska, 1990] M. S. Squillante and Eward D. Lazowska, \Using Processor-Cache

A�nity Information in Shared-Memory Multiprocessor Scheduling," Technical Report 89-06-01,

Computer Science Department, University of Washington, February 1990.

[Tucker and Gupta, 1989] A. Tucker and A. Gupta, \Process Control and Scheduling Issues for

Multiprogrammed Shared-Memory Multiprocessors," Proceedings of the 12th Symposium on

Operating Systems Principles, pages 159{166, December 1989.

[Yew et al., 1987] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie, \Distributing Hot-Spot Addressing

in Large-Scale Multiprocessors," IEEE Transactions on Computers, 36(4):388{395, April 1987.

[Zahorjan et al., 1988] J. Zahorjan, E. D. Lazowska, and D. L. Eager, \Spinning Versus Blocking in

Parallel Systems with Uncertainty," Technical Report 88-03-01, Computer Science Department,

University of Washington, March 1988.

[Zahorjan et al., 1989] J. Zahorjan, E.D. Lazowska, and D.L. Eager, \The E�ect of Scheduling

Discipline on Spin Overhead in Shared Memory Parallel Processors," Technical Report 89-07-

03, Computer Science Department, University of Washington, July 1989.

[Zahorjan and McCann, 1990] J. Zahorjan and C. McCann, \Processor Scheduling in Shared Mem-

ory Multiprocessors," In Proceedings of the 1990 ACM SIGMETRICS Conference on Measure-

ments and Modeling of Computer Systems, pages 214{225, May 1990.

16



References

[Axelrod, 1986] T. S. Axelrod, \E�ects of Synchronization Barriers on Multiprocessor Perfor-

mance," Parallel Computing, 3:129{140, 1986.

[Black, 1990a] D. L. Black, Scheduling and Resource Management Techniques for Multiprocessors,

PhD thesis, Carnegie Mellon University, July 1990.

[Black, 1990b] D. L. Black, \Scheduling Support for Concurrency and Parallelism in the Mach

Operating System," IEEE Computer, 23(5):35{43, May 1990.

[Brooks, 1986] E. D. Brooks, \The Buttery Barrier," International Journal of Parallel Program-

ming, 15(4):295{307, 1986.

[Crovella et al., 1991] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc, and E. Markatos, \Multipro-

gramming on Multiprocessors," submitted for publication, 1991.

[Gupta et al., 1991] A. Gupta, A. Tucker, and S. Urushibara, \The Impact of Operating System

Scheduling Policies and Synchronization Methods on the Performance of Parallel Applications,"

In Proceedings of the 1991 ACM SIGMETRICS Conference on Measurements and Modeling of

Computer Systems, May 1991, to appear.

[Gupta and Hill, 1989] R. Gupta and C. R. Hill, \A Scalable Implementation of Barrier Synchro-

nization Using An Adaptive Combining Tree," International Journal of Parallel Programming,

18(3):161{180, June 1989.

[Hensgen et al., 1988a] D. Hensgen, R. Finkel, and U. Manber, \Two Algorithms for Barrier Syn-

chronization," International Journal of Parallel Programming, 17(1):1{17, 1988.

[Hensgen et al., 1988b] Debra Hensgen, Raphael Finkel, and Udi Manber, \Two Algorithms for

Barrier Synchronization," International Journal of Parallel Programming, 17(1):1{17, 1988.

[Leutenegger, 1990] S. T. Leutenegger, Issues in Multiprogrammed Multiprocessor Scheduling, PhD

thesis, University of Wisconsin-Madison, August 1990.

[Leutenegger and Vernon, 1990] S. T. Leutenegger and M. K. Vernon, \The Performance of Mul-

tiprogrammed Multiprocessor Scheduling Policies," In Proceedings of the 1990 ACM SIGMET-

RICS Conference on Measurements and Modeling of Computer Systems, pages 226{236, May

1990.

[Lubachevsky, 1989] B. Lubachevsky, \Synchronization Barrier and Related Tools for Shared Mem-

ory Parallel Programming," In Proceedings of the 1989 International Conference on Parallel

Processing, pages II:175{179, August 1989.

[Majumdar, 1988] S. Majumdar, Processor Scheduling in Multiprogrammed Parallel Systems, PhD

thesis, University of Saskatchewan, 1988.

[Massalin and Pu, 1989] H. Massalin and C. Pu, \Threads and Input/Output in the Synthesis

Kernel," In Proceedings of the Twelfth Symposium on Operating Systems Principles, pages 191{

201, Litch�eld Park, AZ, December 1989.

15



5 Conclusions

We investigated the performance of coarse-grain parallel applications that synchronize frequently

using barriers, under the assumption that an application is given fewer processors than it needs.

We evaluated the overhead present in alternative implementations of barriers, and found that if

an appropriate implementation is used (combination barriers in particular), applications need not

su�er a signi�cant performance penalty if they are given fewer processors than they have threads.

More speci�cally we showed that:

� Spinning centralized barriers often outperform spinning tree barriers in the presence of mul-

tiprogramming, even though tree barriers are clearly preferable on a dedicated machine. In

general, when several threads from the same application share a processor, di�erent imple-

mentations of barrier synchronization result in a wide variation in performance.

� Tree barriers in the presence of multiprogramming may incur overhead proportional to the

number of levels in the tree. Barriers with more than one synchronization point in their

implementation may introduce a context switch at every synchronization point.

� The completion time of a barrier program depends on the maximum number of threads assigned

to any one processor. When processors are redistributed among applications, the scheduler

should not blindly remove one processor from an application, since it may be possible to

remove several more without a�ecting the completion time of the program. Also, to minimize

completion time, the number of processors need not evenly divide the number of threads.

� Dedicating processors to an application is an e�ective scheduling policy even for inexible

programs that synchronize frequently using barrier synchronization. It is possible to achieve

reasonable performance without thread migration and without dynamically adjusting the

number of threads to match the number of processors. As long as threads use appropriate

blocking barriers, and assuming that the time between barriers is more than four times larger

than the context switch time (which is almost always true), no signi�cant performance penalty

must be paid as a result of multiplexing the threads of an application on a processor.

Although we have not considered coscheduling in our experiments, our results indicate that

even programs that synchronize frequently using a barrier will not su�er a signi�cant performance

penalty if they are not coscheduled. Unless the context switch cost is very high, or the frequency

of synchronization extremely high, coscheduling is not necessary. Given that coscheduling has

an expected e�ciency of around 80% [Ousterhout, 1982], there seem to be few situations where

coscheduling would be preferred over hardware partitioning.

Finally, although our experimental work used a NUMA multiprocessor, which has very high

migration costs, we believe many of our results also apply to UMA multiprocessors. Recent work

has shown that migration should not be considered free in an UMA machine because the cache

reload costs can be high [Mogul and Borg, 1991; Squillante and Lazowska, 1990]. The processor-

local ready queues used in our experiments on a NUMA machine can also be used to avoid cache

reload costs on an UMA machine, avoiding migration for short-term scheduling in both cases.

14



0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

Average

completion

time of

a barrier

(in ms)

number of processors given to the application

optimized tree blocking barriers

optimized centralized blocking barriers

b

b

b

b

b

b

b

b

b

b b b

b

b

Figure 6: E�ect of the number of processors on completion time (16 threads).

threads.

6

This intuition is not entirely correct however. In the absence of migration, the completion

time of an application changes only when the maximum number of threads on any processor changes.

Figure 6 shows there is a change in completion time for both types of barriers when the number

of processors given to an application changes from 16 to 15, from 8 to 7, from 6 to 5, from 4 to 3,

from 3 to 2, and from 2 to 1. This result can be phrased as follows:

If P processors are to be given to an application that has M threads that are never

migrated, then the completion time of the application would be the same if it was

given P

M

processors where P

M

is the smallest integer less than or equal to P such that

dM=P

M

e = dM=Pe.

This result suggests a need for close cooperation between the kernel and user-level thread

management software in order to minimize the completion time of an application.

7

The kernel

should give processors to applications that can use them, and should not take away processors

from applications that really need them. Figure 6 states that if an application has 16 threads on 3

processors, an additional processor would improve completion time by 33%. The same application

on 8 processors would not be helped by 7 additional processors. Given that the kernel may not be

aware of thread creation and destruction, some form of cooperation between the thread library and

the kernel is needed to match the number of processors allocated to an application with the needs

of the application.

6

Zahorjan, Lazowska, and Eager [1988] suggest that the number of processors given to an application that uses

spinning barriers evenly divide the number of threads in the application, so as to eliminate spinning. However,

perfect balance across processors only eliminates spinning when the time between two successive barriers is equal to

the quantum size, and in any case, does not minimize completion time.

7

Zahorjan, Lazowska, and Eager [1989] call for the same degree of cooperation to minimize spinning time.

13



0

5

10

15

20

25

30

35

40

0 5 10 15 20

Synchronization

overhead

(percentage)

Time between two succesive barriers (in multiples of context switch time)

Figure 5: Measured overhead of blocking combination barriers for 16 threads on 8 processors.

use combination barriers, and the time between two successive barriers is more than 3 times the cost

of a context switch, then the synchronization overhead is rather small. Therefore, we see that the

synchronization overhead for medium- and coarse-grain parallel programs, which represent the ma-

jority of current parallel applications, is negligible. For example, a 512�512 Gaussian elimination

program (which has 512 barriers) on 16 processors synchronizes every 45 ms on a BBN Buttery

Plus, which is more than 450 times the thread context switch overhead. Applications such as Di-

jkstra's shortest path algorithm and odd-even sort synchronize every 5-10 ms on a BBN Buttery

for reasonable input sizes. Thus, it seems that although there are cases where coscheduling could

have an advantage over hardware partitions (namely, very �ne-grain synchronizing applications),

those cases are quite rare. For most applications, hardware partitions do not impose noticeable

overhead, provided that combination barriers are used.

4.2 The E�ect of the Number of Processors

Our results so far are based on the assumption that a program is allocated one fewer processor

than it needs. This assumption results in the worst case situation where all processors except one

are idle, either spinning or waiting. We now consider what happens as we vary the number of

processors allocated to an application.

Since we do not allow migration, we do not expect the completion time of an application to be

a smooth function of the number of processors allocated to it. For example, the completion time of

an application with 16 threads running on 15 processors is about the same as the completion time

of the same application running on 8 processors. Figure 6 shows the measured completion time

(per barrier) as a function of the number of processors given to the application, for both blocking

centralized barriers and blocking tree barriers.

Intuition suggests that the completion time of the application does not vary as we vary the

number of processors allocated to the application between two successive divisors of the number of

12



0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200

Overhead

(percentage)

Time between two succesive barriers (in multiples of context switch time)

execution

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b

b b

b

b

b

b b

b

b

b

b

simulation

10% overhead

Figure 4: Measured overhead of blocking tree barriers for 16 threads on 8 processors.

Combination Barriers

The overhead introduced by blocking tree barriers is proportional to the number of levels in the

tree since, in the worst case, a context switch may be required at each level. As we saw in �gure 4,

if synchronization is very frequent, or if the cost of a context switch is high, the overhead incurred

due to context switching can be quite high, as much as 158% in extreme cases. Centralized barriers

induce fewer context switches, but su�er from overhead introduced by contention. Combination

barriers o�er a compromise solution, without the contention problems of centralized barriers, or

the additional context switching of tree barriers.

To measure the overhead of context switching with combination barriers, we again ran our

example program with 16 threads on 16 processors and then on 8 processors, this time using

combination barriers. As in �gure 4, we plotted the percentage di�erence in the completion time

of the application on 8 processors and 16 processors. The results are shown in �gure 5.

The results are similar to those in �gure 4, but the scale is quite di�erent. Since combination

barriers have many fewer context switches than tree barriers (in the worst case), the synchroniza-

tion overhead of combination barriers is much smaller than the synchronization overhead for tree

barriers. In fact, the overhead of combination barriers drops very quickly towards zero as the

frequency of synchronization decreases. Figure 5 shows that if the time between two successive

barriers is as little as 4 times the cost of a context switch, then the synchronization overhead is still

less than 10%. If the time between two successive barriers is 20 times the cost of a context switch,

then the synchronization overhead is practically zero. In contrast, the overhead of tree barriers is

10% when the time between barriers is 20 times the cost of a context switch, and 39% when the

time between barriers is only 4 times the cost of a context switch.

Figures 4 and 5 allow us to draw some conclusions about the bene�ts of coscheduling, particu-

larly in comparison to hardware partitions. In �gure 5 we see that if the time between two successive

barriers is less than the time to perform a context switch, then the overhead due to synchronization

can be as high as 30%. In such cases coscheduling may be preferable to hardware partitions. If we

11



0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45

Average

completion

time of

a barrier

(in ms)

Time between two succesive barriers (in ms)

spinning tree barriers 15 processors / 16 threads

b

b b b b b b b b b b

b b b b b b b b b b

b b

optimized blocking tree barriers 15 processors / 16 threads

Figure 3: Measured execution time of spinning versus blocking tree barriers.

[Zahorjan and McCann, 1990] or more, depending on many factors, such as whether or not a kernel

trap is required, queue manipulation overhead, the cost of saving and restoring registers, and the

speed of the processors. If a single context switch is expensive, and an application synchronizes

frequently, then the overhead introduced by processor deprivation could be high.

To quantify the importance of context switch overhead for blocking barriers, we ran our example

program with 16 threads on 16 processors and then on 8 processors (the results for 4, 2 and 1

processor are similar). On 16 processors, no context switch overhead is incurred. On 8 processors,

there is a context switch at every barrier. Absent context switch overhead, we would expect 8

processors to take twice as long as 16 processors to complete the program.

5

Any additional time

can be attributed to context switch overhead. Figure 4 shows the percentage of the application's

completion time attributed to synchronization overhead. The overhead is plotted as a function of

the time between two successive barriers, expressed in multiples of the context switch time.

We see from �gure 4 that, as expected, the overhead of synchronization is inversely proportional

to the computation time between barriers (i.e., the frequency of synchronization). More precisely,

the overhead is proportional to the number of barriers a program has, the number of levels in

the barrier tree, and the context switch cost. As shown in �gure 4, when the time between two

successive barriers is more than 20 times the cost of a context switch, the overhead incurred by

context switching within blocking barriers is less than 10% of the total execution time of the

program. For a typical thread package with a context switch overhead of 100�s or less, this means

that the time between two successive barriers has to be less than 2 ms for the overhead to be more

than 10%.

5

Our program exhibits linear speedup, and does not adjust the number of processes (or threads) to match the

number of processors.

10



to the next barrier within the same quantum. After the �rst quantum of execution, a barrier is

completed every quantum.

When the time between two successive barriers is more than half the quantum, the function

that describes the average completion time of a barrier is more complicated. Let Q denote the

quantum length, T the compute time between barriers, and let R =

l

1

(Q=T )�1

m

: When the time

between two successive centralized barriers is more than half the quantum, the completion time

of a program with N barriers is closely approximated by NT

(2R�1)

R

: The observed step-function is

due to the integer ceiling function used to de�ne R. (Details of the derivation of this formula can

be found in the appendix.)

Figure 1 shows that tree barriers are better than centralized barriers when the time between

two successive barriers is a little less than a multiple of the quantum size. In our simulation

results, shown in �gure 2, tree barriers are never better than centralized barriers, but the di�erence

in performance is close to zero when the time between two successive barriers is a multiple of

the quantum size. Our simulation results do not completely agree with our experimental results

because the simulator does not model two important factors in the implementation of centralized

barriers:

1. The time to complete a centralized barrier is assumed to be zero in the simulation. Thus, the

simulation does not accurately model the linear-time complexity of centralized barriers.

2. The simulator does not model memory contention, which is much greater in the case of

centralized barriers than with tree barriers.

Both of these factors cause centralized barriers to perform worse in our experiments than in our

simulation.

Blocking Barriers

Blocking barriers can be used to avoid the unpredictable performance of spinning barriers in a

multiprogrammed environment. With blocking barriers, a thread that waits at a barrier yields

the processor to another thread of the same application. In our version of blocking barriers, a

thread yields the processor only if there is another thread of the same application on the processor;

otherwise, the thread spins. Blocking barriers are known to signi�cantly reduce spinning time in the

presence of multiprogramming [Zahorjan et al., 1988], improving the percentage of time processors

perform useful work, but not necessarily reducing the completion time of a program that frequently

yields the processor. However, when used in combination with a hardware partitioning policy,

blocking barriers can improve the completion time of a program, since the processor is always given

to another thread in the same application.

Figure 3 shows the results of running our test program with 16 threads on 15 processors using

blocking tree barriers. Unlike spinning barriers, the performance of blocking barriers is a smooth

function of the frequency of synchronization. This �gure quanti�es the expected superiority of

blocking over spinning under processor deprivation.

It is not surprising that blocking barriers perform much better than spinning barriers under pro-

cessor deprivation. However, blocking barriers introduce overhead in the form of context switching.

The context switch overhead may vary from as little as 11 �s [Massalin and Pu, 1989] to 750 �s

9



0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

Average

completion

time of

a barrier

(in ms)

Time between two succesive barriers (in ms)

tree barriers

b

b b b b b b b b b b

b b b b b b b b b b

b b

centralized barriers

Figure 1: Measured execution time of tree ver-

sus centralized spinning barriers; 16 threads

on 15 processors; quantum size = 20 ms.

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

Time between two succesive barriers (in ms)

tree barriers

b

b b b b b b b b b b

b b b b b b b b b b

b b

centralized barriers

Figure 2: Simulation of tree versus centralized

spinning barriers; 16 threads on 15 processors;

quantum size = 20 ms.

which must be completed before a node higher up in the tree can be noti�ed. If a process within the

tree is not running due to processor deprivation, no other process on the path up to the root can

participate in the barrier. Processes close to the root may have to spin while waiting for processes

lower in the tree to receive a quantum. This delay, which could be as much as a whole quantum,

can be introduced between every level in the tree.

3

Since we use a 4-way tree to pass information

upwards, there are three levels in the tree used for our 16 thread application, and therefore two

context switches can occur between levels. Figure 1 shows that even if the computation time

between two successive barriers is very small, the time to complete a tree barrier is still 40 ms

(two quanta). When the time between two successive barriers is less than the quantum size, most

of the quantum is spent spinning. If we slightly increase the amount of useful work done between

two successive barriers, then less time is spent spinning, but the completion time of the program

(in terms of quanta needed) is the same. In general, if the quantum is Q and the time between

barriers is T, it takes P processes dlog

4

Pe �

l

T

Q

m

quanta to complete a tree barrier.

4

A centralized barrier, on the other hand, takes only 20ms (one quantum) to complete when the

computation time between two successive barriers is less than half the quantum. Since a centralized

barrier contains only one synchronization point, the last process to reach a barrier can continue on

3

Adaptive tree barriers [Gupta and Hill, 1989] do not introduce a delay at every level in the tree because all

processes reside at the leaf nodes. The implementation of adaptive tree barriers in [Gupta and Hill, 1989] would not

be e�cient on a NUMA machine however, since it involves excessive locking and remote spinning.

4

In the case of 16 threads on 15 processors, the particular assignment of threads to processors is not important,

since at most two context switches will be required to release at least one of the threads sharing a processor. However,

if more threads or fewer processors are involved, the assignment of threads to processors can a�ect the number of

context switches per barrier. To minimize context switching, interior nodes (or nodes close to the root of the tree)

should not share a processor.

8



4.1 The E�ects of the Frequency of Synchronization

Barrier programs with very frequent synchronization are natural candidates for coscheduling or a

dedicated machine policy. If such a program is given fewer processors than it has processes, then

every barrier will incur overhead in the form of spinning or context switching. Here, we quantify

that overhead for the di�erent implementations of barriers.

In order to investigate the additional overhead introduced by processor deprivation, we con-

structed an arti�cial program that createsM threads on top of P (M > P ) processors and schedules

them according to a round-robin policy with local ready queues. All threads compute for the same

amount of time, synchronize through a barrier, and then repeat the process. The code fragment

for a thread is:

for (int i = NUM_BARRIERS ; i>0 ; i--) {

for (int j = MAX_DELAY ; j>0 ; j--) ; // compute

barrier_synchronization() ; // synchronize

}

We vary the MAX DELAY variable to change the frequency of synchronization. We vary the imple-

mentation of the barrier synchronization function to reect the di�erent types of barriers.

We chose to have all the threads compute for the same time between successive barriers because

balanced computations of this form are a worst-case scenario for a hardware partition scheduler

(when compared to coscheduling). While balance in parallel programs is usually preferred, programs

with imbalance in the computation can overlap computation with synchronization, reducing the

e�ects of processor deprivation.

In all of our experiments, an application creates 16 threads. These applications are then run

on fewer than 16 processors to measure the e�ects of processor deprivation.

Spinning Barriers

Figures 1 and 2 plot the performance of an application with 16 threads on 15 processors for both tree

and centralized spinning barriers. The data for �gure 1 were produced by parallel execution of our

example program on the Buttery; the data for �gure 2 were obtained by simulation. In each �gure,

the vertical axis shows the average completion time of a barrier (i.e, the average time to execute the

spin loop that simulates computation in our sample program plus the time to synchronize through

one barrier). We use this normalized measure of running time because it does not depend on the

number of barriers a program has, but only on the frequency of synchronization and the type of

barrier used. The horizontal axis shows the computation time between barriers (i.e, the time to

execute the spin loop that simulates computation in our sample program).

Figure 1 suggests that centralized barriers are better than tree barriers in nearly all cases. This

result is somewhat surprising since, in the absence of processor deprivation, tree barriers perform

better than centralized barriers when more than a few processors are involved [Mellor-Crummey

and Scott, 1991]. This anomaly can be explained by considering the implementation of tree barriers.

Tree barriers have more than one synchronization point, corresponding to the internal nodes of the

tree. Information is passed up the tree as processes arrive at a barrier, and passed down again as

processes are released from the barrier. Each node in the tree is e�ectively a barrier for its children,

7



Each thread is represented by a node in the tree. Each interior node waits for all its children to

arrive at the barrier, and then informs its parent that it has also arrived at the barrier. When the

root is so informed, it releases its children, and these in turn release their children, until all the

leaves are released. The barrier combining tree is a 4-way tree because each processor can pack

the information about its four children into one word and query the state of all four children with

a single comparison. To minimize the time to wake up threads, we use a binary tree to propagate

barrier completion information to the children.

Combination Barriers

Combination barriers [Axelrod, 1986] were originally suggested as a way to minimize the number

of locks needed in the implementation of a tree barrier. Combination barriers incorporate both

tree and centralized barriers. A centralized barrier is used for synchronization among the threads

on a single processor; a tree barrier is used for synchronization across processors. If an application

has as many processors as threads, then combination barriers behave exactly like tree barriers. If

there are more threads than processors, then all threads on the same processor participate in a

local centralized barrier. The last thread on each processor to reach the local centralized barrier

participates in a tree barrier with the other processors. After the tree barrier has been completed,

all the waiting threads on each processor are released from the local barrier.

Centralized barriers are easy to implement and are particularly e�cient in the absence of con-

tention. Access to the counter serializes execution however, and can cause signi�cant performance

degradation in the presence of contention. Tree barriers are more complicated and less e�cient for

a small number of participants, but they do not serialize execution and their performance scales

logarithmically with the number of processors [Mellor-Crummey and Scott, 1991]. Combination

barriers use the e�cient implementation of centralized barriers on a single node, where there is no

contention, and the scalable implementation of tree barriers across processors, where there is likely

to be contention.

3.4 Spinning vs. Blocking

While a thread waits for others to reach a barrier, it can either spin or block. In the case of

spinning barriers, a thread periodically checks to see if all other threads have reached the barrier.

A thread will continue to spin until all threads reach the barrier or until it is preempted because of

quantum expiration. In the case of blocking barriers, when a thread needs to wait for an event, it

yields the processor to another thread of the same application running on the same processor. As

an optimization, a thread might yield the processor only if there is another thread with which it

shares the processor, spinning otherwise. We will assume this implementation of blocking barriers

because it has all the advantages of spinning when there are as many processors as threads, and all

the advantages of blocking when there are more threads than processors.

4 Barrier Performance Under Processor Deprivation

Our goal is to quantify the e�ect on application performance of a multiprogramming policy that

allocates a barrier program fewer processors than it needs. The results depend both on the frequency

of synchronization within the program and the number of processors allocated by the scheduler.

6



In general, the Psyche kernel time-slices virtual processors from di�erent applications onto a

physical processor, while the thread package time-slices threads from a single application onto a

virtual processor. Under hardware partitioning however, the kernel scheduler has little work to

do, since no two applications share a processor. Nearly all scheduling decisions are made by the

thread package, which resembles a traditional time-slicing environment. Thus, although our exper-

iments employ a thread package and a user-level preemptive scheduler, our results apply equally

well to programs that are implemented by more traditional heavyweight processes and preemptive

scheduling by the kernel

2

. We will, therefore, use the terms thread and process interchangeably.

Our applications employ long-running user-level threads created and managed by the thread

package. Each thread is assigned to a single virtual processor and is never migrated, unless a

physical processor (and the corresponding virtual processor) is taken away from the application by

the multiprogramming scheduler. We do not use thread migration for short-term load balancing

because the cost of migration on NUMA machines is very high (on the order of milliseconds),

even for lightweight threads. Since we assume frequent barrier synchronization (every several

milliseconds or so), migration would be needed at each synchronization point to achieve short-term

load balancing. Frequent migration would be quite costly and unlikely to be of much bene�t.

All of our example applications create some number of threads that compute and periodically

synchronize using a barrier. In our experiments, we vary both the frequency of synchronization and

the type of barrier used. Each application is given fewer processors than it has threads, so more

than one thread is forced to share a processor.

3.3 Barrier Types

Our study is based on application programs that synchronize using barriers. There are many

di�erent implementations of barriers however, and our experience has shown that the speci�c barrier

used can a�ect performance. For this reason, we consider both centralized and tree barriers, and

spinning and blocking implementations of each.

Centralized barriers

Centralized barriers use a global counter. Each thread that arrives at the barrier increments the

counter, and waits for the other threads to reach the barrier. When the counter is equal to the

number of threads that participate in the barrier, all threads are free to proceed.

Tree barriers

Tree barriers are representative of a large class of barriers whose completion time is logarithmic in

the number of participants. This class includes tree barriers [Yew et al., 1987; Mellor-Crummey

and Scott, 1991], tournament barriers [Hensgen et al., 1988a; Lubachevsky, 1989], and buttery

barriers [Brooks, 1986; Hensgen et al., 1988b]. Tree barriers use a combining tree to record the

arrival and departure of threads. Our implementation, based on work by Mellor-Crummey and

Scott [Mellor-Crummey and Scott, 1991], uses a 4-way tree to combine the noti�cation of arrivals.

2

To ensure that our conclusions do not depend on a particular implementation of threads or context switching,

several of our results are presented as a function of the context switch time.

5



general solution to the question of how to multiprogram a multiprocessor, and therefore we focus

on the sources of overhead present under this particular multiprogramming policy. We argue that

hardware partitioning is a reasonable solution by showing that even those programs most sensitive

to multiprogramming (namely, programs with barriers that do not adjust the number of processes

to match the number of processors) need not su�er serious performance degradation due to frequent

synchronization under hardware partitioning.

3 Methodology

We will use a combination of simulation and experimentation to evaluate the e�ect of multipro-

gramming on programs that use centralized or tree barriers, either with spinning or blocking.

3.1 The Parallel Program Simulator

We built a parallel program simulator so that we could study the e�ects of scheduling policy on pro-

gram execution. We simulate both a multiprogramming scheduling policy and the synchronization

behavior of parallel programs during execution, and measure the system throughput. The simulator

takes as input descriptions of applications and their arrival times, system parameters (such as the

number of processors available), the particular scheduling policy to use, and scheduling parameters

such as quantum size. The output of the simulation is the time needed to execute all jobs and, if

requested, a graphical history of the simulated execution.

Application descriptions consist primarily of process pro�les, which contain a sequence of events

(computation and communication) for each process. Process pro�les can be automatically generated

according to a set of speci�ed parameters, or collected during the execution of a parallel program.

In our simulation studies we assume that process pro�les are independent of the scheduling policy,

which may not be true for all parallel programs.

3.2 Experimental Environment

All our experiments were carried out on a 16-node BBN Buttery multiprocessor running the

Psyche operating system [Scott et al., 1990]. Under Psyche an application may create an arbitrary

number of virtual processors (kernel processes), corresponding to the desired physical parallelism.

A virtual processor is bound to a single physical processor for its lifetime and is assigned the cpu

by the kernel according to priority; within a priority level, round-robin scheduling is used. The

kernel also implements software timers and interrupts that can be used to implement time-slicing

in user space.

In our experiments we use a thread package to allocate one virtual processor for each physical

processor in an application's partition. Within a single virtual processor, the thread package uses

software timer interrupts to schedule multiple threads of control using round-robin time-slicing.

Scheduling operations within the thread package occur as a result of software timer expiration,

or when a thread yields the processor voluntarily. In many cases, scheduling decisions caused by

synchronization are implemented entirely in user space, thereby avoiding the overhead of context

switching through the kernel.

4



than a naive centralized scheduler without process control does not imply that hardware partitions

are a good general solution to the multiprogramming problem. Moreover, the process control

scheme proposed by Tucker and Gupta requires that applications use the centralized task queue

model.

Subsequent work by Gupta et al.[1991] describes a detailed simulation of a multiprogrammed

execution of four programs on a 12-processor UMA multiprocessor under di�erent scheduling poli-

cies. The simulations show that hardware partitioning outperforms other policies most of the

time. Although these results provide evidence in favor of hardware partitions, the simulations are

based on four speci�c applications, rather than general properties of applications. In particular,

the results do not isolate the e�ect of frequent synchronization, so it is di�cult to discern what

applications, if any, are inappropriate for hardware partitions.

Leutenegger [1990] simulated several di�erent scheduling policies for a mix of applications that

synchronize using centralized barriers. He simulated a coscheduling policy [Ousterhout, 1982], a

round-robin job policy [Leutenegger and Vernon, 1990], and a hardware partition policy. He con-

cluded that both the coscheduling policy and the hardware partition policy (with a lightweight

context switch among threads in an application) perform very well. His results for the hardware

partition policy are optimistic however, since his simulations assume either no migration cost, or

that the migration cost is equal to the context switch overhead. Neither of these assumptions

is realistic, especially on NUMA machines. Moreover, the performance metric he used (average

turnaround time) is very sensitive to the fairness properties of the scheduler, and yet the coschedul-

ing policy he simulated was not fair to each application. As a result, it is di�cult to distinguish

performance e�ects caused by an unfair policy from performance e�ects due to other factors, such

as synchronization, in his simulations.

Zahorjan, Lazowska and Eager [1988; 1989] examined the e�ect of the scheduling policy on the

overhead of spinning, and compared spinning synchronization with blocking synchronization. They

simulated the performance of a multiprogramming UMA machine with a centralized scheduler

queue. They showed that spinning barriers introduce signi�cant overhead under those circum-

stances. To reduce the overhead of spinning, they proposed a modi�ed scheduler that does not

schedule spinning threads. More generally, they argued that the decisions about how to allocate

processors to jobs, and how to schedule the threads of a job on its processors, must be made

cooperatively between the system and the application.

Our work di�ers from previous work in several important ways. First, our scheduling policies

are heavily inuenced by the fact that we use a NUMA multiprocessor for our experiments. In

particular, our scheduling policies use processor-local ready queues and avoid migration, whereas

other work has assumed global ready queues and zero migration costs. Second, our use of a NUMA

machine results in a bias towards scalable synchronization primitives, while previous work on small-

scale UMA machines does not distinguish between centralized and scalable implementations of

synchronization. Third, we are particularly interested in a comparison between coscheduling and

hardware partitioning, and we believe that the frequency of synchronization is one of the domi-

nant considerations in this comparison, because coscheduling was speci�cally designed to support

frequently synchronizing programs, while hardware partitions were not. Coscheduling rus all the

threads of an application at the same time, while hardware partitions run only a subset of them

simultaneously. Therefore, we would like to quantify the synchronization overhead as a function

of the frequency of synchronization, and describe the range within which synchronization overhead

becomes signi�cant. Finally, we are interested in knowing whether hardware partitioning is a good

3



head incurred under these circumstances.

1

In particular, we would like to quantify the performance

penalty su�ered by applications that are not coscheduled, but are instead scheduled under some

other reasonable policy, and describe those situations, if any exist, where the penalty is signi�cant.

We address these questions using both simulation and experimental evaluation on a 16-processor

BBN Buttery, a NUMA (NonUniform Memory Access) multiprocessor. Although many of the

questions we have enumerated have been addressed to some extent in the literature, previous work

has assumed an UMA (Uniform Memory Access) multiprocessor. UMA machines, which typically

have only a small number of processors, have a single global memory that facilitates migration for

scheduling purposes. NUMA machines, on the other hand, scale to hundreds of processors, but

have a distributed memory organization that makes migration prohibitively expensive for short-

term scheduling. As a result of these architectural di�erences, the relative importance of migration

for scheduling and scalability for synchronization are reversed for the two classes of machine.

The next section presents a survey of related work and lists the factors that distinguish our work.

Section 3 describes our environment for experimentation and simulation. Section 4 presents our

main results regarding spinning tree barriers, spinning centralized barriers, blocking tree barriers,

and blocking centralized barriers under hardware partitioning. In particular, we show that for

applications that use a particular form of blocking barrier, the performance penalty of processor

deprivation (i.e., hardware partitions that are smaller than requested) is fairly small, even in the

absence of migration and assuming frequent synchronization. We conclude, in section 5, that

even programs that synchronize frequently with barriers do not require coscheduling, and therefore

hardware partitioning is an e�ective scheduling policy for such programs on large-scale NUMA

multiprocessors.

2 Related Work

Previous work has considered both the performance of hardware partitioning in comparison to

other policies, and the impact of multiprogramming policies on barrier synchronization.

Tucker and Gupta [1989] have shown that dedicating processors to applications is particularly

e�ective when each application is able to dynamically adjust the number of processes it requires

during execution to match the number of processors it has been allocated. They attribute the per-

formance degradation associated with time-sharing on a multiprocessor to the fact that there are

more processes (virtual processors) than physical processors, and propose as a solution a process

control system in which the number of processes always equals the number of processors. Proces-

sors are redistributed among applications periodically, and each application suspends or resumes

processes to adjust to the number of available processors. This adjustment is practical within a

programming model based on a global task queue since, in addition to its attractive load balancing

properties, applications that use the task queue model do not depend on the number of processors

available during execution.

Tucker and Gupta showed that dynamically adjusting the number of processes to equal the

number of processors greatly improves performance when compared against a traditional time-

sharing system. However the fact that hardware partitioning with process control is clearly better

1

A complete comparison between hardware partitioning and coscheduling is beyond the scope of this paper, but

is an area of active research [Gupta et al., 1991; Crovella et al., 1991]. In addition to synchronization overhead, such

a comparison would consider cache a�nity, memory a�nity, contention, and the programming model.

2



1 Introduction

For both uniprocessor and multiprocessor systems, e�cient utilization of processor resources re-

quires that applications share a machine. Many scheduling policies have been proposed and im-

plemented for multiprogramming a multiprocessor [Black, 1990a; Leutenegger, 1990; Majumdar,

1988]. One of the simplest policies is for the system to give each application a set of dedicated

processors [Black, 1990b; Tucker and Gupta, 1989; Zahorjan and McCann, 1990]. This policy,

which we will call hardware partitioning, has low overhead, provides applications with guaranteed

physical parallelism, minimizes the interactions between kernel and user-level scheduling, and pre-

serves the a�nity between processes and caches. However, this policy may require that the set of

processors given to an application vary over time as new applications arrive and depart, and that

the processes of an application share the processors dedicated to that application.

Since most performance studies of parallel applications assume a dedicated machine, there

is little understanding of the performance impact of multiprogramming, even within hardware

partitions. In this paper we investigate how parallel programs behave under a hardware partition

policy, with an emphasis on programs that are likely to su�er performance degradation under such

a policy. We consider programs that employ coarse-grain parallelism and barrier synchronization.

Programs with coarse-grain parallelism o�er few opportunities to adjust the number of processes

during execution, and so are less able to adapt to a change in the number of processors within

a partition. Barriers are a common form of synchronization that are particularly sensitive to

multiprogramming [Zahorjan et al., 1988].

Given a system scheduler that assigns each application its own hardware partition, we consider

the following questions:

� Within a hardware partition, what type of barrier should be used? Is a scalable implementa-

tion preferable to a centralized implementation? Should processes spin or block?

� What barrier implementations are sensitive to the fact that the number of processors given

to an application may change over time? Are there barrier implementations that are not

particularly sensitive to such changes?

� What is the relationship between the frequency of synchronization and the overhead incurred

as a result of multiprogramming with hardware partitions? Do programs that synchronize

very frequently su�er disproportionately?

� If the scheduler has to take processors away from an application in order to allocate them to

a new application, how many processors should be taken away?

These speci�c questions are part of the broader issue of how to multiprogram large-scale multi-

processors. Two of the best known scheduling policies are hardware partitioning and coscheduling.

In comparison to hardware partitioning, the primary advantage of coscheduling is that all processes

of an application execute simultaneously, eliminating context switch overhead in the presence of

synchronization and communication. With hardware partitioning, an application that cannot dy-

namically adjust the number of processes it employs may be forced to multiplex several processes on

a single processor within a small partition. Our focus in this paper is on the synchronization over-

1



The E�ects of Multiprogramming

on Barrier Synchronization

y

Evangelos Markatos Mark Crovella Prakash Das

Cezary Dubnicki Tom LeBlanc

fmarkatos, crovella, prakash, dubnicki, leblancg@cs.rochester.edu

The University of Rochester

Computer Science Department

Rochester, New York 14627

Technical Report 380

August 1991

Abstract

One of the most common ways to share a multiprocessor among several applications is to give

each application a set of dedicated processors. To ensure fairness, an application may receive fewer

processors than it has processes. Unless an application can easily adjust the number of processes

it employs during execution, several processes from the same application may have to share a pro-

cessor. In this paper we quantify the performance penalty that arises when more than one process

from the same application runs on a single processor of a NUMA (NonUniform Memory Access)

multiprocessor. We consider programs that use coarse-grain parallelism and barrier synchroniza-

tion because they are particularly sensitive to multiprogramming. We quantify the impact on the

performance of an application of quantum size, frequency of synchronization, and the type of bar-

rier used. We conclude that dedicating processors to an application, even without migration or

dynamic adjustment of the number of processes, is an e�ective scheduling policy even for programs

that synchronize frequently using barriers.

y

This work was supported in part by NSF grant number CCR-9005633 and an NSF Institutional Infrastructure

Program grant number CDA-8822724.


