
[26] J. Zahorjan and C. McCann. \Processor Scheduling in Shared Memory Multiproces-

sors". In Proceedings of the 1990 ACM SIGMETRICS Conference on Measurements

and Modeling of Computer Systems, pages 214{225, May 1990.

20



[14] S.-P. Lo and V.D. Gligor. \A Comparative Analysis of Multiprocessor Scheduling Algo-

rithms". In Proceedings of the 7th International Conference on Distributed Computing

Systems, pages 205{222, September 1987.

[15] E. Markatos, M. Crovella, P. Das, C. Dubnicki, and T. LeBlanc. \The Performance

of Scalable Barriers in the Presence of Multiprogramming". Technical Report 380,

University of Rochester, Computer Science Department, May 1991.

[16] C. McCann, R. Vaswani, and J. Zahorjan. \A Dynamic Processor Allocation Policy

for Multiprogrammed Shared Memory Multiprocessors". Technical Report 90-03-02,

Department of of Computer Science and Engineering, University of Washington, March

1990 (Revised February 1991).

[17] J. K. Ousterhout. \Scheduling techniques for Concurrent Systems". In 1982 Dis-

tributed Computing Systems, pages 22{30, October 18-22, 1982.

[18] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. \Evolution of an Operating System

for Large-Scale Shared-Memory Multiprocessors". Technical Report 309, University of

Rochester Computer Science Department, March 1989.

[19] M.L. Scott, T.J. LeBlanc, and B.D. Marsh. \Multi-Model Parallel Programming in

Psyche". In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, Mar 1990.

[20] M. S. Squillante. \Issues in Shared-Memory Multiprocessor Scheduling: A Performance

Evaluation". Technical Report 90-10-04, Department of of Computer Science and

Engineering, University of Washington, October 1990.

[21] M. S. Squillante and E. D. Lazowska. \Using Processor-Cache a�nity Information in

Shared-Memory Multiprocessor Scheduling". Technical Report 89-06-01, Department

of of Computer Science and Engineering, University of Washington, February 1990.

[22] R.H. Thomas and W. Crowther. \The Uniform System: An Approach to Runtime Sup-

port for Large Scale Shared Memory Parallel Processors". In Proc. 1987 International

Conference on Parallel Processing, pages 245{254, August 1987.

[23] A. Tucker and A. Gupta. \Process Control and Scheduling Issues for Multiprogrammed

Shared-Memory Multiprocessors". In Proceedings of the 12th Symposiun on Operating

Systems Principles, pages 159{166, Litch�eld, AZ, Dec 1989.

[24] P.-C. Yew, N.-F. Tzeng, and D.H. Lawrie. \Distributing Hot-spot Addressing in Large-

Scale Multiprocessors". IEEE Transactions on Computers, C-36(4):388{395, April

1987.

[25] J. Zahorjan, E. D. Lazowska, and D. L. Eager. \The E�ect of Scheduling Discipline

on Spin Overhead in Shared Memory Parallel Processors". Technical Report 89-07-03,

Department of of Computer Science and Engineering, University of Washington, July

1989. to appear, IEEE Transactions on Parallel and Distributed Systems.

19



References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. \Scheduler Ac-

tivations: E�ective Kernel Support for the User-Level Management of Parallelism".

Technical Report 90-04-02, Department of of Computer Science and Engineering, Uni-

versity of Washington, Seattle, WA, October 1990.

[2] W.C. Athas and C.L. Seitz. \Multicomputers: Message-Passing Concurrent Comput-

ers". IEEE Computer, 21(8):9{24, August 1988.

[3] D. L. Black. \Scheduling Support for Concurrency and Parallelism in the Mach Oper-

ating System". IEEE Computer, 23(5):35{43, May 1990.

[4] D.G.Feitelson and Larry Rudolph. \Distributed Hierarchical Control for Parallel Pro-

cessing". IEEE Computer, 23(5):65{77, May 1990.

[5] T. W. Doeppner Jr. \Threads: A System for the Support of Concurrent Program-

ming". Technical report, Department of Computer Science, Brown University, 1987.

[6] D. L. Eager, E.D. Lazowska, and J. Zahorjan. \The limited Performance Bene�ts

of Migrating Active Processes for Load Sharing". In Proceedings of the 1988 ACM

SIGMETRICS Conference on Measurements and Modeling of Computer Systems, pages

63{72, May 24-27 1988.

[7] J. Edler, J. Lipkis, and E. Schonberg. \Process Management for Highly Parallel UNIX

Systems". Technical Report Ultracomputer Note 136, Ultracomputer Research Labo-

ratory, New York University, Apr 1988.

[8] R. Goldman and R. P. Gabriel. \Qlisp: Parallel Processing in Lisp". IEEE Software,

6(4):51{59, July 1989.

[9] A. Gupta, A. Tucker, and S. Urushibara. \The Impact of Operating System Scheduling

Policies and Synchronization Methods on the Performance of Parallel Applications".

In Proceedings of the 1991 ACM SIGMETRICS Conference on Measurements and

Modeling of Computer Systems, May 1991.

[10] R. H. Halstead Jr. \Multilisp: A Language for Concurrent Symbolic Computation".

ACM Transactions on Programming Languages and Systems, 7(4):501{538, October

1985.

[11] BBN Advanced Computers Inc. Chrysalis Programmers Manual. Cambridge, MA, Feb

1988. BBN multiprocessor.

[12] S. Leutenegger. Issues in multiprogrammed multiprocessor scheduling. PhD thesis,

University of Wisconsin/Madison, August 1990. Technical Report 954.

[13] S.-P. Lo and V.D. Gligor. \Properties of Multiprocessor Scheduling Algorithms". In

Proceedings of the International Conference on Parallel Processing, August 1987.

18



In summary, time-slicing introduces preemption, which can have enormous impact on

a program, particularly programs that use barriers. Programs that don't use barriers, or

synchronize infrequently are immune to the e�ects of time-slicing. Coscheduling has a cheap

implementation and can remove the overhead due to preemption. Unfortunately, it has a

built-in e�ectiveness of 80% or so, and performs poorly with unbalanced computations.

Hardware partitions can be created fairly quickly, even when migration is required, and

introduce minimal overhead due to context switching within a partition. Most important,

hardware partitions allow an application to optimize its implementation for the percentage

of the machine it is allocated. For this reason, hardware partitions are preferable to the

other forms of multiprogramming.

6 Conclusions

There are many potential sources of overhead associated with multiprogramming, and the

amount of overhead from any single source depends on the structure of applications. Given

the e�cient implementation of context switching in user space, and the relatively infrequent

context switching required by the kernel, the overhead due to context switching is not a

serious consideration. Preemption during synchronization is of considerable concern, and

has serious consequences for applications that are time-sliced. This overhead can be avoided

using coscheduling or hardware partitions.

There has not been much experimental evidence showing the relative importance of

overhead due to processor-sharing, in particular with respect to coscheduling. Our results

show that processor-sharing in the context of coscheduling performs signi�cantly worse than

dedicated hardware partitions wherein no processor-sharing occurs. In general, there are

several reasons why this will be true: (1) coscheduling results in cache corruption, whereas

hardware partitions do not; (2) there are fewer remote references and less contention when

fewer processors are used; (3) there is less imbalance in the computation when the total

amount of work is divided among fewer processors. These factors are signi�cant enough to

more than compensate for the costs of migration and the additional overhead of blocking

synchronization (rather than busy-waiting) required within a hardware partition when the

number of threads exceeds the number of available processors. Based on our experiences,

we believe the best choice for multiprogramming on a large-scale machine is to use hardware

partitions.

17



We see that, once again, the measured slowdown is much less than 2. In fact, in the

case of coarse-grain threads with barrier synchronization, the slowdown is only 1.47, due to

imbalance in the computation.

5.4 Comparison

A comparison between the three scheduling policies for each version of the gauss program

is presented in �gure 2. Each graph contains the execution time of the program for each

policy in the presence of a background application.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Coarse grain-threads, barrier synch

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Coarse grain-threads, condition synch

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fine grain-threads, barrier synch

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fine grain-threads, condition synch

hardware partitions

coscheduling

time-slicing

Figure 2: Relative Slowdown Introduced by a Multiprogramming Level of 2 for Di�erent

Scheduling Policies and Di�erent Programming Models

It is evident from these graphs that in most cases time-slicing results in slowdown much

higher than the expected factor of 2. Coscheduling's slowdown is uniformly slightly higher

than 2. Hardware partitions incur slowdown which is better, sometimes substantially so,

than 2.

16



shown in �gure 1, the time required to execute the program with 16 threads on 8 processors

is less than double the time used on 16 processors. These same results were observed for

the program that uses condition synchronization. One reason for the better than expected

performance on 8 processors is that there is signi�cant contention for the pivot row on

16 processors, and much less on 8. Another reason is due to a slight imbalance in the

computation, due to tail e�ects in the division of work in the matrix. In general, the

applications can utilize 8 processors better than 16 processors because the speedup of the

application is typically sublinear.

These experiments do not include the costs of migration. For those applications that

cannot easily adapt the number of virtual processors in use, we must migrate threads when

the hardware partition changes. To measure the e�ects of dynamic hardware partitions, we

started the gauss program on 16 processors and then immediately introduced a background

application. The arrival of the second application causes the operating system to divide

the machine into two 8-processor partitions. The gauss application migrates 8 threads from

the larger partition into the new smaller partition. To isolate the costs of migration, no

computation was performed by gauss while holding 16 processors. The completion times of

the application (in seconds) are shown below.

standalone

with

background

application

slowdown

coarse-grain

threads,

barrier synch

18.7 36.9 1.97

coarse-grain

threads,

condition synch

18.1 35.5 1.96

These results show that even with the one-time cost of migration, and the recurring cost

of multiplexing threads on a virtual processor, a hardware partition of 8 processors takes

less than twice as long as a 16 processor partition. Clearly the lack of linear speedup in

the application dominates the other sources of multiprogramming overhead. Therefore, the

bene�ts of using hardware partitions can be expected to exceed the costs in most cases.

In the case of �ne-grain threads, no migration or thread multiplexing is necessary. In-

stead, currently running threads (if any) are allowed to �nish execution before removing

a processor from a partition. The completion times of the application (in seconds) under

dynamic hardware partitions for this case is presented below.

standalone

with

background

application

slowdown

�ne-grain threads,

barrier synch

38 56 1.47

�ne-grain threads,

condition synch

25 45 1.8

15



0

20

40

60

80

100

120

140

160

180

200

Number of Processors

Completion

Time

(in seconds)

24816 24816

measured time

expected time

Figure 1: Gauss with 16 Threads and Barriers on Hardware Partitions

Next we considered whether unused slots in the processor-time matrix are of any use.

That is, when an application is given extra cycles for one of its threads during a time when

the other threads are not coscheduled, does this improve the running time of the application?

To answer this question, we ran the gauss program with a background application that only

used half the processors. This creates a timeslice during which the gauss program runs half

its threads, followed by a timeslice in which all its threads run. The running time of the

application in this case was 19.4 sec, as compared to 19.6 sec when sharing the machine

with an application that uses all the processors during its quantum. This small di�erence

suggests that unused slots do not contribute much to system throughput in the presence

of synchronization. Ousterhout's simulations [17] show that coscheduling is typically 80%

e�ective (measured in terms of the percent of processor time spent coscheduled); our result

suggests that the e�ectiveness isn't improved by utilization of empty slots in the scheduling

matrix.

5.3 Hardware Partitions

Our main concern in these experiments is the overhead introduced by multiplexing several

threads on a single virtual processor and the cost of migration. To measure the overhead of

multiplexing threads, we ran the gauss program for a 512�512 matrix with 16 coarse-grain

threads and barrier synchronization on 16,8,4, and 2 processors. We observed the slowdown

due to having fewer processors than threads; the results are shown in �gure 1.

We would expect the execution time of the program on 8 processors to be at least double

the time on 16 processors. The additional overhead of multiplexing threads should make

the time on 8 processors even more than double the time on 16 processors. Nonetheless, as

14



We �rst note that thread creation time dominates in our �ne-grain thread implementa-

tion. In addition, the communication costs associated with the �ne-grain implementation

are much higher than in the coarse-grain implementation. The barrier program experiences

a slowdown of 2.5 in this case, compared with 3.4 earlier. The reason for this apparent

improvement is that both programs have the same number of barriers (and hence the same

opportunities for problems with preemption), but the duration of the �ne-grain thread

program is greater. As a result, there are three barriers per quantum in the coarse-grain

program, and fewer than 1.5 barriers per quantum in the �ne-grain program. It is the

frequency of barriers in the coarse-grain program that produces the di�erence in slowdown.

Under condition synchronization both the execution time and the slowdown of the two

versions are comparable. In the case of �ne-grain threads, we see once again that condition

synchronization is not frequent enough in our programs for preemption to signi�cantly a�ect

the execution time.

However, none of these versions of gauss synchronize extremely often because the �nest

grain implementation still must eliminate an element between synchronization points, and

that takes several milliseconds. As a result, the barrier version only executes a barrier about

once every 50 ms. Much worse cases of slowdown are possible with smaller matrices. In

particular, a 256�256 matrix problem slows down by a factor of 8 in the presence of one

background application.

We used our implementation of odd-even sort to measure the e�ect of multiprogramming

on programs that synchronize very frequently. On a dedicated machine, sorting an array

of 512 elements takes 286 ms. The same program run with a job in the background takes

103 seconds, a slowdown factor of 366! The problem is caused by a combination of barriers,

frequent synchronization (every 500 �s), and preemption. If we modify the implementation

of barriers to yield the processor to another application rather than spin, giving up the rest

of the quantum but receiving the next quantum sooner, we see a slowdown of 540; yielding

the processor ensures that almost no barrier is ever completed within a quantum.

5.2 Coscheduling

In order to measure the costs of coscheduling, we ran the coarse-grained gauss programs

with varying levels of processor sharing. The program used a 256�256 matrix, and was run

on four processors. Processor-sharing was introduced by injecting background applications

that consisted of four coscheduled threads each. The results are shown below.

Number of Running Slowdown

Processes Time

(secs.)

1 9.8 1.00

2 19.6 2.01

3 29.5 3.01

4 39.3 4.01

This table shows that as the degree of multiprogramming rises, the execution time of

a single application rises linearly, despite its need for synchronization. This behavior is in

contrast to the case of time-slicing.

13



5 Experiments

We ran the four di�erent versions of the gauss program on a 16 processor BBN Buttery

in order to show how a particular programming model performs under di�erent multipro-

gramming policies, and to see if there is a single multiprogramming policy that behaves

best in most cases.

For each scheduling policy, we ran the programs under two di�erent scenarios: (1) under

ideal conditions where only one application is in the system, and (2) under multiprogram-

ming, with another applications in the background. Our multiprogramming experiments

incorporate a compute-bound application in the background that consumes any cycles it is

given. Our experimental results focus on the execution time of the parallel portion of an

application; the serial portion of program loading and creation of virtual processors has not

been included.

5.1 Time-Slicing

Our main concern in these experiments is the overhead introduced by preemption. We �rst

ran the two implementations of gauss that use coarse-grain threads on a 512�512 matrix

under a time-slicing policy. Our results for 16 processors are:

standalone

with

background

application

slowdown

coarse-grain threads,

barrier synch

18.70 64.19 3.43

coarse-grain threads,

condition synch

18.10 39.10 2.16

We would expect an application to take twice as long when the machine is shared with

another application. In fact, a multiprogramming level of 2 introduces a slowdown of 3.43

on the program with barrier synchronization. Barrier programs are very sensitive to the

e�ects of preemption, since the preemption of any one thread delays all threads.

The program based on condition synchronization was not adversely a�ected by multi-

programming. With a multiprogramming level of two, it experienced a slowdown factor of

2.16, very close to the expected. The reason that preemption does not distort this execu-

tion is that a thread does not depend on every other thread making progress during a short

interval of time, as is true with barriers. Only the thread computing the next pivot row can

delay other threads when preempted.

The results of our experiments for the �ne-grain thread models are:

standalone

with

background

application

slowdown

�ne-grain threads,

barrier synch

38.4 97.3 2.53

�ne-grain threads,

condition synch

24.35 49.1 2.01

12



of the thread is moved to a processor in the smaller partition, and the thread is placed on

the ready queue of a virtual processor in that partition.

Several system calls were added to the kernel to support hardware partitions. The

register and unregister system calls are used to request and release processor partitions.

A parameter to the register call indicates whether or not the application (or programming

model) is prepared to adapt the number of processes in use if a smaller partition is provided.

This information is used by the kernel when processors are allocated. The kernel tries to

assign each application a fair share of processors, but no more than requested. In addition,

if an application is unable to dynamically adjust the number of virtual processors in use,

and the kernel cannot provide all the processors requested, then an attempt is made to

balance the work across a partition. In particular, if at most x processors are available to

satisfy a request for y processors, then z processors are allocated, where z is the smallest

integer less than or equal to x such that: dy=ze = dy=xe. In this way, the ready queues on

the processors in a partition remain roughly in balance even when the application cannot

adjust the number of virtual processors in use [citation omitted].

A partition system call returns the identity of the processors currently assigned to an

application. When a thread package receives a signal from the kernel that the processor

partition has changed, it uses this call to determine whether the executing processor is still

in the partition. If not, it can migrate its thread to another processor in the partition.

A migrate system call allows for the migration of a memory object to a speci�ed pro-

cessor. The object is locked during migration, causing processors that access the object to

fault, and wait until the end of the migration operation. Only thread state is ever migrated;

code is replicated among the nodes in the partition, and isn't removed from a node until the

associated program terminates. Also, migration can proceed in parallel on several nodes.

For example, if a partition shrinks from 16 processors to 8, 8 threads can be migrated

simultaneously to the remaining processors in the partition.

We currently migrate a minimum of one memory object (8K bytes) during migration.

Each migration operation takes about 25 ms per memory object, which includes the cost

of copying the memory object containing the state of the thread, unmapping the object in

one address space and mapping it into another. In the worst case scenario we measured, we

saw the cost of dynamically changing a system during execution from one 16-processor par-

tition to two 8-processor partitions to be about 700 ms, where each process to be migrated

contained 24K bytes of data.

Migration is fairly expensive in any system, and our implementation is no di�erent. For

simplicity, our implementation uses already existing kernel code to move memory objects;

this code does not know that thread migration is taking place, and therefore does not realize

that some operations, such as unmapping, are unnecessary. In addition, migration intro-

duces enormous switch contention. Our implementation is su�cient for our experiments

however, since (a) migration to a new partition only occurs when an application arrives

or departs the system, a relatively infrequent occurrence, and (b) even relatively e�cient

migration is generally not helpful for short-term scheduling decisions [6].

11



the time-slicing system. However, if a coscheduled process blocks for communication which

completes before its quantum is up, that same process will receive the rest of its quantum

automatically, since the coscheduled priority range is higher than the background priority

range.

Coscheduling requires that the processors in the multiprocessor be synchronized. All

processors in our implementation use the same quantum duration, 100 ms, but we must

also ensure that all processors begin a new quantum simultaneously. To implement this

synchronization, we embed a tree barrier [24] in the clock handler of each processor. Our

implementation uses a 4-way tree to combine the noti�cation of arrivals to the barrier. Each

processor is represented by a node in the tree. Each interior node waits for all its children

to arrive at the barrier, and then informs its parent that it has also arrived at the barrier.

When the root is so informed, it releases its children, and these in turn release their children,

until all the leaves are released. Our combining tree is a 4-way tree because each processor

can pack the information about its four children in one word, and with one comparison can

determine if all four children have reached the barrier. The releasing tree is a binary tree.

The time required to synchronize 16 processors using this tree barrier is about 200 �s;

the additional time required to make a scheduling decision using coscheduling is between

50 and 200 �s, depending on the number of applications. Without coscheduling the clock

handler normally consumes about 200 �s each quantum, including the time to save state and

make a scheduling decision. Our revised clock handler takes about 500 �s each quantum,

or 0.5% of the quantum.

We also added two system calls to the kernel interface to support coscheduling. The �rst

call reserves some number of slots in the coscheduling matrix for processes that are soon

to be created. This call returns a handle for the application, so that when processes are

created they can be added to the appropriate row of the coscheduling matrix. The second

call creates a new process and places it in the coscheduling matrix in the given row.

4.3 Hardware Partitions

Our implementation of dynamic hardware partitions is similar to that described in [23],

except that ours, being on a NUMA multiprocessor, also supports explicit migration. Our

implementation requires cooperation between the operating system kernel and the library

packages that implement the various programming models. The allocation of processors to

applications is done in the kernel. Migration, which must occur when a partition grows or

shrinks due to the departure or arrival of a new application, is implemented by the library

package.

When a new application arrives or departs the system, the kernel noti�es each appli-

cation about changes in its hardware partition using a signal mechanism. If the partition

shrinks so as to exclude a processor, the runtime library on that node may choose to either

suspend the currently executing virtual processor and migrate the corresponding thread,

or �nish the thread and not allocate another to the virtual processor. The latter option is

used in conjunction with the task queue model; explicit migration is used in all other cases.

If a thread is migrated, the underlying virtual processor is suspended, the memory object

10



4.1 Time-Slicing

Our operating system on the Buttery implements a straightforward extension of unipro-

cessor time-slicing. Users may create processes (represented by kernel processes) and bind

them to physical processors. The kernel time-slices among the processes on a processor.

Processes are never migrated.

Each processor has a ready queue that is sorted by process priority. Within a priority

level, processes are served in a round-robin fashion. Each process gets a fair share of the

processor; as in Unix, a user with many processes can get more cycles than a user with few

processes.

4.2 Coscheduling Implementation

We implemented coscheduling using an adaptation of Ousterhout's matrix algorithm [17]

and the time-slicing kernel described above. We chose this approach for simplicity, and

to address two speci�c problems that arise when coscheduling is used in a system with

priorities and blocking processes.

Kernel processes block for a variety of reasons, including while waiting for I/O or for

communication with another kernel process. When a kernel process blocks, the alternate

selection mechanism used to �ll unused slots in the scheduling matrix could be invoked to

select another user-level process to execute the remainder of the quantum. However, if the

blocked process is unblocked during the same coscheduled quantum, we would like to return

the processor to that process, without overly complicating the scheduler.

We would also like to maintain the system of priorities used to implement kernel pro-

cesses. Priorities are used in many operating systems to implement a fair allocation of

resources and to ensure that critical operations, such as I/O, proceed immediately. We

need to integrate priority scheduling and coscheduling in the same implementation.

Previous algorithms for coscheduling [17, 4] did not consider the e�ects of priorities

or blocking kernel processes. For example, in Ousterhout's matrix algorithm, there is no

e�cient way to implement priorities without scanning the entire matrix on each scheduling

decision. Similarly, there is no notion of whether a process is runnable or not, so the concept

of yielding the processor to a runnable process is di�cult to implement. For this reason,

we adapted the priority-queue implementation of time-slicing to include coscheduling.

The priority range implemented in the kernel is separated into immediate, coscheduled,

and background ranges. The highest priority processes are in the immediate range, and are

assigned to kernel processes that implement I/O handlers. At any one time, the coscheduled

priority range is occupied by at most one process on each processor. The background range

implements a round-robin set of runnable applications.

At each quantum boundary, a single process on each processor is elevated to the cosched-

uled range, while the previously coscheduled process is demoted to the background range. In

addition, a matrix is maintained of all jobs in the system, just as in traditional coscheduling.

This matrix does not determine which processes run however, it only directs the promo-

tion of processes to the coscheduled priority range. All processes occupy some place in the

matrix, so no process will starve. Both priorities and process blocking are handled as in

9



We implemented four di�erent versions of gauss, representing di�erent parallelizations of

row elimination. The �rst implementation uses stateless threads and condition (neighbor)

synchronization. The main program distributes the problem matrix among the memories of

the machine, creates one virtual processor per physical processor, and then creates a global

queue of threads, which are assigned to virtual processors. Each thread eliminates some

number of entries in the matrix. Before eliminating an entry, the thread checks to see if the

condition ags associated with the pivot row and the entry are set. If so, the two rows are

copied into the local memory, the computation is performed, and the result is copied back

into the original matrix. When a thread terminates, a virtual processor is assigned a new

thread. This program is analogous to the task queue model.

The second implementation is similar to the �rst, except that it uses barrier synchro-

nization. The threads that eliminate entries in a single column of the matrix synchronize

using a barrier upon completion. Then, a new set of threads is generated for the next

column. The copy costs are the same in both versions.

The third implementation uses coarse-grain threads and condition synchronization. The

main program creates one virtual processor per physical processor, and assigns a singe

thread to each virtual processor. The rows of the matrix are distributed among the threads

in a round-robin fashion. Each thread eliminates all the entries in several rows. There is less

synchronization than in the earlier version based on condition synchronization, since only

synchronization with the pivot row is necessary. In addition, there is unlikely to be much

spinning, since the pivot row is the �rst computation performed in each phase of execution.

Most important, there are many fewer row copy operations performed with coarse-grain

threads; O(N

2

) instead of O(N

3

).

The �nal implementation of gauss uses coarse-grain threads with barriers. Each thread

eliminates some elements in a single column of the matrix, synchronizes with the other

threads using a barrier, and then proceeds to the next column.

The sort program creates one virtual processor per physical processor, and assigns one

thread to each virtual processor. The array to be sorted is divided among the virtual

processors in the application. Each thread performs N/P/2 comparisons in each phase, and

then synchronizes with the other threads using a barrier. The length of a phase is a few

milliseconds for an array of several thousand elements on 16 nodes.

In the following section we describe the results of our experiments that use these pro-

grams to compare three multiprogramming policies.

4 Multiprogramming Implementation

We implemented our multiprogramming experiments on a BBN Buttery multiprocessor.

We modi�ed an existing operating system for time-slicing among applications to implement

coscheduling and hardware partitions.

8



Coarse-grain threads do not share these characteristics. Once a coarse-grain thread

creates its state on a processor, it cannot be easily moved to another one. If such a thread

is executing when preemption occurs, there are few options to avoid the overhead associated

with preemption in the presence of synchronization. If a repartition of the physical machine

is required, the cost of migration will be high.

3.3 Synchronization

One important source of overhead in multiprogrammed systems is due to preemption in the

presence of synchronization. There are several di�erent kinds of synchronization however,

and each type of synchronization has several implementations. The overhead introduced

by preemption varies both with the type of synchronization used and the implementation.

For example, peemption of programs that use spin locks could seriously a�ect performance,

whereas preemption might not signi�cantly a�ect programs that use blocking semaphores.

Similarly, preemption has less impact on programs that use centralized barriers instead of

tree barriers [15]; there is only one synchronization point in a centralized implementation,

whereas there are two or more synchronization points in a tree barrier implementation.

The amount of overhead due to synchronization also depends greatly on the frequency

of synchronization. In the worst case, an application may require a scheduling decision at

every synchronization point in the program because of multiprogramming.

There are three classes of synchronization: mutual exclusion, condition synchronization,

and barriers. We do not consider mutual exclusion in our experiments; it has been shown

that for small critical sections that are not already a bottleneck, preemption does not impose

undue overhead [25]. Nearly all programs that use spin locks have small critical sections

with low utilization. In addition, blocking, or spinning for a short interval and then blocking

if necessary, reduces the cycles lost to spinning while waiting for a preempted thread, and

performs as well as pure spinning in the absence of preemption.

Our primitive for condition synchronization uses 2-phase blocking [13], where a process

spins for a short while and then blocks if the condition is not satis�ed, yielding the processor

to another thread in the same application. This primitive has most of the performance

advantages of spinning, but su�ers much less in the presence of preemption. We use a

tree barrier implementation that yields the processor to another thread on the same virtual

processor if it exists, and spins otherwise. Although both of these primitives work well with

an arbitrary number of threads, they can waste cycles spinning when applications share a

processor.

3.4 Example Programs

Our experiments were performed using two di�erent applications: gaussian elimination and

sorting. We chose gaussian elimination because it has several di�erent decompositions that

allow us to measure the impact of the programming model and multiprogramming on the

same basic application. We chose odd-even sort because it uses very frequent synchroniza-

tion.

7



processor.

2

No two virtual processors from the same program need share a processor,

although processors might have to be shared with other applications. Once execution begins,

these programs cannot easily adapt to fewer virtual processors, since to do so may require

migration of threads from one virtual processor to another, and multiplexing of threads on

a single virtual processor.

Some applications can adapt the number of virtual processors in use dynamically during

execution, without requiring that we multiplex threads on a single virtual processor. For

example, the task queue model used in Multilisp [10], Qlisp [8], and BBN's Uniform System

[22], and employed by applications that use packages such as Brown's thread package [5],

does not depend on the number of available virtual processors. Parallelism in an application

is represented by tasks in the queue, which can be mapped to any number of virtual pro-

cessors. The number of virtual processors can vary during execution, so long as no virtual

processor is halted while executing a task.

Each class of application may exist simultaneously within a multiprogrammed multi-

processor, and will be a�ected to di�erent degrees by the multiprogramming policy. Appli-

cations that can easily adapt the number of virtual processors in use may prefer dedicated

processors over processor-sharing, so as to remove all multiprogramming overhead. Appli-

cations that cannot easily adapt the number of virtual processors in use, and are forced

to multiplex threads on a single virtual processor, may prefer coscheduling or time-slicing

over dedicated processors, so as to avoid excessive thread context switching that might arise

in a small partition. The total overhead introduced by multiprogramming depends on the

extent to which the a�ected applications are well-matched to the policy in place.

3.2 Threads

We assume that virtual processors are scheduled by the system and are subject to multi-

programming; threads are created and managed in user space by a thread package, and

therefore are not directly under control of the operating system. Nonetheless, the number

and type of thread used in an application can have an impact on multiprogramming. In

particular, the costs of moving threads from one partition to another depend in part on the

type of thread used in an application. In addition, the lifetime of a thread determines how

easily we can adapt the number of virtual processors in use.

Fine-grain threads, which are typically used to represent the natural grain of parallel

activity in an application, are short-lived and relatively stateless. Coarse-grain threads, on

the other hand, execute longer and build up state in the cache and the local memory. As a

result, a program based on �ne-grain threads o�ers more opportunities for adaptation in a

multiprogrammed environment.

Fine-grain threads come and go frequently, so any virtual processor that must give up its

physical processor (either due to preemption or partition) can wait for a thread to terminate

before doing so. The existence of such a clean point greatly simpli�es multiprogramming

with dynamic hardware partitions [23], and can be used to minimize the overhead caused

by preemption during synchronization.

2

Since virtual processors correspond to kernel processes, there is nontrivial overhead associated with their

creation, and little reason to create more than one per physical processor.

6



3 User-Level Programming Models

There are many di�erent parallel programming models in use today. Our goal is to explore

the interactions between the programming model employed by an application and the mul-

tiprogramming policy implemented by the operating system. Rather than attempt to cover

all parallel programming languages and packages, we focus on a set of general attributes

shared by many models currently in use.

We assume an application consists of a relatively large number of threads that are

mapped to a relatively small number of virtual processors. Threads represent potential

concurrency, while virtual processors are intended to represent true parallelism. An ap-

plication has control over the number of threads used. We assume that an application

creates at most one virtual processor per physical processor, but a single virtual proces-

sor may execute many threads concurrently

1

. Depending on the mapping between threads

and virtual processors, threads may each have their own address space (heavyweight pro-

cesses), share a single address space (lightweight processes or threads), or operate within

overlapping address spaces. We assume that a context switch between threads in the same

application is implemented in user space by the runtime environment of the programming

model, and therefore is reasonably e�cient. Context switching between virtual processors

is implemented by the kernel.

The attributes of an application most directly related to multiprogramming are the

ability of virtual processors to adapt in number, the number and type of threads used, and

the frequency and type of synchronization.

3.1 Virtual Processors

Virtual processors are scheduled by the kernel. They may correspond one-to-one with phys-

ical processors, as is required in Tucker and Gupta's multiprogramming solution [23]. Alter-

natively, there be many more virtual processors than physical processors, as in coscheduling

and time-slicing for example, wherein virtual processors from di�erent applications share

a physical processor. Some form of processor-sharing is required anytime the number of

virtual processors in the system exceeds the number of physical processors.

In some applications the number of virtual processors required for execution is �xed

at the time the program is written. Static parallelism is normally used to represent the

functional parallelism in a program. Typically, the granularity of functional parallelism is

high, and the number of virtual processors required to represent functional parallelism in a

program is small. These programs are not included in our comparison.

Most applications are capable of adapting to the multiprocessor environment at the time

the program begins execution. In this case the operating system can tell the application how

many processors are available, and the program can create one virtual processor per physical

1

We could multiplex several virtual processors from a single application on one physical processor, but

to do so would introduce unnecessary context switching in the kernel. Because of this assumption, our

measurements of the overhead of multiprogramming are conservative.

5



Tucker and Gupta [23] proposed a combination of dedicated processor scheduling and

a programming model that dynamically adjusts the number of processes in an application

to equal the number of processors in the partition. Their model, which assumes the use of

�ne-grain threads in the application, can suspend a kernel process between the execution

of two threads. Their experiments show that having one process per processor results in

signi�cant performance improvement when compared to a time-slicing policy. Subsequent

work by Gupta et al.[9] investigated the e�ects of di�erent scheduling policies and syn-

chronization primitives on an UMA multiprocessor using simulation. They showed that in

the presence of multiprogramming blocking primitives always outperform spinning primi-

tives. They also showed that coscheduling and hardware partition policies are better than

traditional round-robin prioritized polices due to their high cache hit ratio and low synchro-

nization overhead. Moreover, hardware partitions along with process control [23] typically

outperform coscheduling because hardware partitions usually achieve higher processor uti-

lization.

Unfortunately, not all applications can easily adjust the number of running processes on

demand. Some programming models encourage applications to create a static number of

processes, so as to avoid unnecessary process creation, destruction, and context switching.

Others use coarse-grain threads of control, which reduce the opportunities for dynamic

adjustment. Although the programming model used by Tucker and Gupta is widely used,

their work does not characterize the e�ects of multiprogramming on applications that do

not adhere to the model.

Zahorjan and McCann [26] simulated the performance of hardware partitions with a

workload containing programs that change their parallelism frequently. They concluded that

a dynamic hardware partition policy is the best choice, since such a policy can reallocate

unused processors immediately. Subsequent experimental work by McCann, Vaswani, and

Zahorjan [16] on a Sequent Symmetry con�rms this conclusion. The same argument may

not be valid for a NUMA multiprocessor however, since processor reallocation may be too

expensive to perform every time an application changes the amount of parallelism it employs.

In addition, applications with a �xed amount of parallelism that synchronize very frequently

may prefer coscheduling over hardware partitions, since a small hardware partitionmay force

them to incur context switch overhead on every synchronization operation.

2.4 Research Goals

Many open questions remain regarding multiprogramming on multiprocessors. Each tech-

nique described above is known to address some source of overhead, but no technique ad-

dresses all sources of overhead for all programs. Time-slicing with noti�cation of preemption

doesn't address overhead due to frequent synchronization. Coscheduling doesn't consider

the penalty incurred by processor-sharing. The costs associated with dynamic hardware

partitions have not been fully explored, including the costs of multiprogramming within a

partition and the costs of processor reallocation on a NUMA multiprocessor. Our goal is

to explore these costs for a range of programming styles using an actual implementation of

each approach.

4



Psyche either noti�es a process asynchronously when preemption is imminent [18], or sets a

ag that can be examined by a process before it enters a critical section [19]. Washington's

activations [1] pass the state of a process that is preempted in a critical section to another

processor under control of the same application.

Many operating systems support a single centralized ready queue from which processes

are dispatched according to their priority. This approach is very popular on small-scale

UMA machines. However, Squillante and Lazowska [20, 21] have shown that by ignoring

the a�nity that may have been created between a process and a processor, a centralized

ready queue can introduce a performance penalty of 99%, with 69% due to cache reload

and 30% due to increased bus tra�c and contention. Their suggested solution, local ready

queues for short-term scheduling, and a global queue for longer-term load balancing, does

not take other sources of overhead into account however.

2.2 Coscheduling

Coscheduling was originally proposed by Ousterhout [17] to address the overhead related

to synchronization. With coscheduling, the processes in an application all run at the same

time. There are two important advantages to coscheduling: no process is forced to wait for

another that has been preempted and processes may communicate without an intervening

context switch. There are also disadvantages, however. If there are several applications in

the system, the machine must cycle through each of them, during which time the caches

can be expected to lose any contents related to an earlier execution [23]. Second, utilization

may su�er if applications have a variable amount of parallelism, or if processes cannot be

evenly assigned to time-slices of the machine.

Leutenegger [12] used simulation to evaluate the performance of several di�erent policies,

including coscheduling. He showed that for programs with very frequent communication,

a policy that schedules the processes of an application to run at the same time perform

signi�cantly better than schedulers that do not have this property. This study did not

consider cache or memory a�nity, or programs with a variable amount of parallelism.

2.3 Hardware Partitions

When hardware partitions are used, no two applications share a processor. A set of pro-

cessors may be dedicated to an application for a relatively long �xed interval [3] or for

the entire duration of the application [11, 2]. Within its own hardware partition, each ap-

plication may choose to allocate one process per processor, thereby avoiding entirely the

overhead attributed to multiprogramming. However, to ensure fairness and to e�ciently

utilize the processors, the number of processors assigned to an application might have to

change when another application arrives or departs [23], or when the degree of parallelism

changes within an application [26, 16]. Unless an application can easily adjust the num-

ber of processes it employs during execution, several processes from the same application

may have to share a processor, introducing context switching and other related sources of

overhead.

3



number of processes per application, the amount of state associated with a process, and the

frequency and type of synchronization. Due to the complexity of the problem, many of the

tradeo�s inherent in multiprogramming have been examined only in the context of speci�c

architectures and programming models, and in many cases using simulations. There has

been little experimental comparison of the various solutions in the presence of applications

with varying degrees of parallelism and synchronization.

In this paper we experimentally compare the performance of three di�erent multipro-

gramming schemes: time-slicing, coscheduling, and dynamic hardware partitions. We mod-

i�ed an existing operating system to implement the three di�erent schemes, and then imple-

mented several applications that vary in degree of parallelism, and the frequency and type

of synchronization. Our experiments were performed on a NUMA multiprocessor without

caches, but most of our results apply equally well to both UMA architectures and multicom-

puters such as the Hypercube. Our results show that in most cases coscheduling is preferable

to time-slicing. Our results also show that although there are cases where coscheduling is

bene�cial, dynamic hardware partitions do no worse, and will often do better. We conclude

that under most circumstances, hardware partitioning is the best strategy for multipro-

gramming a multiprocessor, no matter how much parallelism applications employ or how

frequently synchronization occurs.

2 Multiprogramming Techniques

Many di�erent multiprogramming schemes have been proposed or implemented on mul-

tiprocessors, but most are derived from one of three basic approaches: unsynchronized

time-sharing (time-slicing), synchronized time-sharing (coscheduling), and space-sharing

(hardware partitions).

2.1 Time-Slicing

Time-slicing a multiprocessor is a straightforward adaptation of uniprocessor time-slicing,

and is frequently employed in operating systems derived from uniprocessor systems. Each

application (process) is given a fair share of the machine (processor). At the end of a

quantum, a processor selects the next process to run from the ready queue, which may or

may not be shared with other processors. There is no coordination among the processes

of an application with respect to when they run or even where they run. In particular,

processes within an application might not all be assigned to di�erent processors, and there

is no guarantee that any two processes will ever run simultaneously.

Although a useful technique for balancing load across the applications in a system,

multiprocessor time-sharing can su�er severe performance penalties. Since there is no guar-

antee that an application's processes will run at the same time, processes may be blocked

while waiting for a preempted process or may be required to context switch after every

synchronization operation. Several studies have shown that this e�ect can lead to severe

performance degradation [12, 13, 14, 23].

Several systems incorporate a special mechanism to avoid preemption while in a critical

section. SymUnix allows a process to delay preemption until it leaves a critical section [7].

2



1 Introduction

Multiprocessors are an expensive resource that must be shared. Sharing requires a del-

icate balance between fairness and resource utilization that is usually achieved through

multiprogramming. In order to be e�ective however, multiprogramming overhead must be

minimized. There are several potential sources of overhead in a multiprogrammed multi-

processor environment, and each can signi�cantly a�ect system performance.

Context switch overhead is introduced when processes share a processor. Even though

many multiprocessor thread packages provide a user-level context switch that does not

require kernel intervention, there may still be a need for several kernel processes to share

a processor. The frequency of context switching through the kernel, and therefore the

amount of overhead, depends on the quantum size (when processes share a processor using

time-slicing) and the frequency of communication or synchronization (which may cause one

process to block and another to run).

A second source of overhead is due to preemption in multiprogrammed systems that use

time-slicing. If a process is preempted while inside a critical section or while computing

some condition on which other processes depend, then processes may waste their quantum

waiting for the preempted process to run. If processes spin while waiting, then many

processor cycles are wasted by spinning. Even if processes block during synchronization,

they must context switch and lose the remainder of their quantum.

A third source of overhead is the cost of cache reload, remote memory references, and

migration incurred when a process is moved from one processor to another. During execution

a process builds state on a processor, either in the cache of a uniform memory access (UMA)

multiprocessor, or in the local memory of a nonuniform memory access (NUMA) machine.

If the process is then assigned to another processor, it must reload the cache on an UMA,

and issue remote references or migrate the contents of memory on a NUMA. Even if a

process is not moved to a di�erent processor, other applications can corrupt the cache while

it is preempted, forcing a cache reload. If the cache miss penalty is high, the associated

overhead can have a serious impact on performance.

A fourth source of overhead, and one that has not received much attention, arises when-

ever parallel applications share processors. Every parallel program strikes a balance be-

tween the bene�ts of parallel execution and the overhead of parallelism in the absence of

processor-sharing. When a multiprogramming policy causes applications to share a proces-

sor, the overhead of parallelism remains, but the e�ective speed of the processors appears

to decrease. As a result, the balance between e�ective parallelism and overhead embodied

in a program can be upset by the multiprogramming policy, which results in ine�cient exe-

cution. In particular, an application with nonlinear speedup may prefer a small number of

dedicated processors to a larger number of shared processors, even when the processor-time

product is the same in both cases.

It is extremely di�cult to �nd a single multiprogramming policy that can maximize

processor utilization, ensure fairness, and simultaneously address all of these sources of

overhead. The costs associated with a particular policy depend on the underlying archi-

tecture: the cache miss penalty, the remote access penalty, and the cost of migration. The

performance implications of a policy depend on the characteristics of the applications: the

1



Multiprogramming on Multiprocessors

Mark Crovella Prakash Das Czarek Dubnicki

Thomas LeBlanc Evangelos Markatos

The University of Rochester

Computer Science Department

Rochester, New York 14627

Technical Report 385

February 1991

(revised May 1991)

Abstract

Several studies have shown that applications may su�er signi�cant performance degra-

dation unless the scheduling policy minimizes the overhead due to multiprogramming. This

overhead includes context switching among applications, waiting time incurred by one pro-

cess due to the preemption of another, and various migration costs associated with moving

a process from one processor to another. Many di�erent multiprogramming solutions have

been proposed, but each has limited applicability or fails to address an important source of

overhead. In addition, there has been little experimental comparison of the various solutions

in the presence of applications with varying degrees of parallelism and synchronization.

In this paper we explore the tradeo�s between di�erent approaches to multiprogramming

a multiprocessor. We modi�ed an existing operating system to implement three di�erent

multiprogramming options: time-slicing, coscheduling, and dynamic hardware partitions.

Using these three options, we implemented applications that vary in the degree of par-

allelism, and the frequency and type of synchronization. We show that in most cases

coscheduling is preferable to time-slicing. We also show that although there are cases where

coscheduling is bene�cial, dynamic hardware partitions do no worse, and will often do better.

We conclude that under most circumstances, hardware partitioning is the best strategy for

multiprogramming a multiprocessor, no matter how much parallelism applications employ

or how frequently synchronization occurs.

This work was supported in part by NSF grant CCR-9005633 and an NSF Institutional Infrastructure

Program grant CDA-8822724.


