
Case Study in KSR Programming:

Finding Outliers by the Minimum Volume

Ellipsoid Method

Donna Bergmark,

Cornell Theory Center

and

Mark Crovella,

University of Rochester

28 September 1992

Theory Center Technical Report

CTC92TR107

Abstract

This case study describes the enablement of a parallel application

on Cornell Theory Center's KSR1, a highly parallel machine from

Kendall Square Research. The application is from statistics, and ex-

poses some interesting facets of the KSR as well as some parallel pro-

gramming tools and techniques. Statistics is a novel application area

for supercomputing, at least at the Cornell Theory Center. First we

describe the application itself, then the approaches to parallelizing it,

and �nally present some results.

1

Contents

1 The Problem: Finding Outliers 3

2 Minimum Volume Ellipsoid Method 3

3 The Program 4

3.1 General Characteristics : 5

3.2 Major Data Structures : 5

3.3 Call Graph : 6

4 Porting Preliminaries 7

4.1 Execution Timing : 7

4.2 Getting the Right Results : 7

5 Parallelization Strategy 8

5.1 The Main Loop : 8

5.2 A Parallel Random Number Generator : : : : : : : : : : : : : 9

5.3 calib : 10

6 Results 10

6.1 The E�ect of I/O : 10

6.2 Private vs. Replicated Arrays : : : : : : : : : : : : : : : : : : 13

6.3 Speedup : 14

6.4 Granularity : 15

7 Enlarging the Application 16

8 Comments on Tools 17

9 Comments on the KSR 18

10 Acknowledgements 19

2

1 e ro le : in in tliers

At �rst, it may seem surprising that we are trying to solve a statistics problem

on the Kendall Square Research's machine (KSR1), a large parallel super-

computer. Usually such highly parallel machines are reserved for simulations

of physical phenomena and other computationally intensive problems. How-

ever, there are some problems in statistics that cannot be solved by direct

methods, and solution strategies similar to those used for optimization in

scienti�c modelling and simulation are needed. One example is the use of

resampling methods to provide robust estimates of certain sample statistics,

such as mean and covariances.

The program we are porting deals with outlier detection

1

by calculating

Mahalanobis distances (roughly, the distance of a point from the population

average). Points with very large distances are presumed to be outliers. The

problem with this is that the means and covariance used in calculating the

distance are themselves partly determined by the outliers. The more out-

liers in the data, the greater this e�ect. If there are many outliers in the

multivariate data set, then distance measures may fail to reveal any of them.

The solution is to use robust estimates for the means and covariances.

or example, we might look for samples of the data which exclude outliers

and use these to estimate the mean and covariance. The problem, of course,

is to �nd the right data subsets.

ini ol e lli soi et o

Minimum volume ellipsoids are one way to exclude outliers from samples

used to estimate means and variances. The idea is to �nd mean and variance

estimates that lead to a minimumvolume ellipsoid containing half the data[6].

This program uses the M E technique as described by Atkinson et al. [2, 3].

The algorithm used to solve this problem starts with a randomly selected

set of observations, with one more observation than there are variables. Next,

1

e ec ers s r e . e se ser s ,

c ser s re \ ers" - .e. err e s r s . r e e,

se e s res e c r c er s cs e e s re e s r e c e s c s s

s ze, e , c r e. e re s rs e res e e

e er e , e e ec ese s e ers.

3

one calculates statistics for that set, and then calculates the distance from

this set of each point in the data.

Take the points with the shortest distances, and make a starting set one

larger than before. Repeat this until the starting set is the entire dataset.

At each step, until one gets to the very end, the outliers tend not to be very

close to the set in question. Thus they have larger distances and are excluded

from the earlier sets. Thus any outliers, so the theory goes, are added last.

If there are lots of outliers in the data set, a single run can miss the

outliers because some outliers mask the presence of others. The magnitude

of the risk depends on the \shape" of the data, i.e. the ellipsoid that contains

the data. y using several random initial sets, and by normalizing distances

by an estimated ellipsoid size, this risk is greatly reduced, and the method

leads to a clear identi�cation of outliers. In this application, 100 di�erent

randomly chosen starting sets are used.

More formally, given dataset , where is the of observations on

a -variate normal population, observations are used to calulate basic

statistics of the data (i.e. the mean, �, and the covariance matrix S). The

algorithm uses these estimates to compute Mahalanobis distances. If the

initial observations include no outliers, then outliers will give rise to some

large Mahlanobis distances. These can be shown on a stalactite chart [3].

Now use those 1 observations having the smallest distances as a

starting set and calculate new estimates of the mean and covariances. Since

outliers will usually be further from a given set than other points, they tend

to be excluded in the earlier, smaller sets. Only as approaches , the

number of observations, will outliers be included, and \stalactites" of points

with large distances will terminate.

e ro r

In this section, we give a qualitative description of the M E program as we

received it from the author. The section after this discusses our approach to

2

ce e e r er, s s es, e s ces e rre r er ,

e r rs c c es e ec e s ces r s e ; ese s e

s ces re se r ze e s ces e er r e re . s

r z e es e r s s s ces c c e r s

s se s e .

4

parallelizing it.

.

The original ortran program is modularly constructed and contains no com-

mon areas. All values are passed as parameters to subroutines. esides the

main program, there are 12 subroutines including several from the Numerical

Recipes library. The program was about 600 lines long.

.

The data is read into . In the current program, the user chooses which

of two data sets to read in. The number of observations is stored in ,

and , the number of variables, is stored in . The estimated volumes

for various sample sizes, based on random data, are stored in the

array. The calculated Mahalanobis distances are stored in the dism array.

The distances are sorted by size and kept in the array, and

keeps track of their original position. All four arrays are indexed by 1::: .

The loop index starts at 2 and runs up to it is the cur-

rent sample size. A characteristic membership function is used to represent

samples array is 1 if the -th point is in the current subset, with

1 .

An abbreviated symbol table is included as Appendix A, and the organi-

zation of the program is shown in the next section.

5

.

ai

Read data.

Initialize.

calib

.1

DO 11 NSTALAC 1,100

1.

i i i

.

DO I OR nvar 2,nexp

1.

utput stalactite

and volume

i i

.

The call graph shown above depicts the main parts of the program. irst,

the data is read in. Then alib is called. It estimates expected distances

for variously sized samples, based on randomly generated datapoints. The

running time of calib depends on both and and turns out to take

48.1 of the overall runtime to generate expected volumes.

The main program then does 100 runs, producing one stalactite plot

per run. This loop is the most time consuming portion of the program,

accounting for more than half the serial runtime.

or each of the 100 runs, the program selects a random starting set

then it computes the Mahalanobis distances for all the data points it sorts

the points and then it selects a new starting set (one larger) from the points

having the least distances in the preceding set. This repeats until the starting

set equals the whole set. The iterative set-expanding loop (DO I OR) does

the bulk of the work.

See Appendix for the static call graph and loop listing of the original

program.

6

ortin reli in ries

The �rst job in porting a program to a new machine is to get a feeling for

the compute time of the program, and also verify that the results are right.

Often one also optimizes the serial program �rst, simply in the course of

looking it over for parallelism, but we did not do this.

.

On the sample dataset, the original ortran program runs for 11.5 min-

uts on the KSR. or timing, we used orge from Applied Parallel Research

and user seconds() from KSR. The former is used to instrument the orig-

inal source code, and the latter is used to provide seconds to microsecond

accuracy. The original program was instrumented and run on the KSR the

resulting pro�le is included as Appendix C. Some of these percentages were

shown on the call graph in the preceding section.

.

The compiler on the Kendall Square machine at the time of this writing was at

an early stage of development and often had trouble with optimization. The

initial run at optimization level 2 failed to give the correct results. Running

with no optimization produced the correct answers.

The standard operating procedure in this case is a binary elimination

to �nd out which (hopefully, single) routine fails to compile correctly with

optimization turned on. It took six runs to accomplish this step for our

example program of 13 routines, which is close to optimal. e found that

all but one routine in the program can be optimized (i). Unfortunately,

that routine is also the most computationally intensive one. See Appendix

D for details.

As of the �nal version of this report, we had received ersion 1.0.5 of the

system and this �xed the optimization problem. However, we continued to

run unoptimized code for most of the numbers reported here.

s se , e r , c s s s e r es c r c er z e c s

c ers .

7

r lleli tion tr te

It is tempting to run calib in parallel with the loop since each con-

sumes approximately 50 of the overall run time. However, this cannot be

done because calib produces estimates used by the DO 11 loop.

Our strategy is therefore to (a) parallelize calib as best we can, and

(b) run the iterations of the loop in parallel. ith 100 runs on 25

processors, we would expect the elapsed time to go down by 96 . The 100

iterations in parallel should take the same time as 4 iterations in serial.

.

A run through PAT turns up 84 data dependences in the loop, all of

which are accounted for by a few variables

ariable Dependence How to handle

de�ned and used replicate or privatize

ordered dependence replicate or privatize

output dependence ignore

def-use dependence replicate or privatize

multiple assignment private

multiple assignment replicate

random seed, ordered use a special generator

This was the usual dependence where minimum volume depends on the order in

which the volumes are examined, which here does not matter.

The second column gives the reason that the variable prevents the 100

iterations from running properly in parallel, and the third column indicates

our response. In addition PAT lists a number of private variables for the loop

and .

The local arrays need to be replicated or put into a partially shared common

(see below) because of language restrictions.

The most critical dependence involves , the seed for random number

generation. Random number generator seeds almost always show up as data

dependences, because a seed used in one loop iteration is often used in next

r e z ss s , r e r ec , s escr e .

8

to generate a new number. e solved this by writing a new generator, as

described below, completely eliminating the dependences involving .

Initially some output dependences were listed because the author of the

original code had left some extraneous statements after the end of the DO

11 loop. Loop generated values used in these statements would have had to

be saved by the thread executing the �nal iteration. ut in conference with

the author, we discovered these statements really were not required and their

deletion simpli�ed parallelization considerably. (One additional preliminary

step for parallelization often is to make the program as simple as possible.)

To parallelize the main loop, we replicated the global data areas that were

both used and written into. The replication was in the �nal dimension, which

was made to run from 1 to 100. Thus , the set membership relation,

was expanded from to where each

run used to index into its own slice of the array run number

would use while run number would use .

Note that this strategy keeps the elements of the array continguous for

each iteration, and thus hopefully not too many cache lines will be used.

.

In serial programs, one seed is used to generate the next one. Such ordered

use of a variable would be a serial bottleneck in a parallel program. Having

each thread running its own copy of the generator is also not good because the

independent calculations would not be using independent streams of num-

bers. Percus and Kalos [5] showed that you can construct a large number

of independent random number generators by varying the additive constant

used in linear congruential generators

1; ;

rom a suitable collection of we put together a package having 511

di�erent generators where the di�erent streams have a large degree of in-

dependence. The method used provides very long, reproducible sequences.

To get a new random 64-bit oating point number one executes the ortran

statement,

9

where 1 511 indenti�es the calling thread, or some other index of the

generator desired.

.

Parallelizing calib turned out to be very similar to parallelizing the main

DO 11 loop. This is because the calib routine actually has a loop structure

that closely mirrors the main DO 11 loop. As a result, the approach to

parallelization and elimination of loop dependencies that was worked out for

the main loop was applicable to calib. All dependencies in the top level loop

of calib were eliminated in the same ways as the corresponding dependencies

in the main loop. The top level calib loop was parallelized using the same

compiler directives as the main loop. As a result, the parallelization of this

subroutine took very little e�ort.

There is a minor de�ciency in the otherwise extremely expressive set of

directives in KSR's parallel ortran. This de�ciency deals with reduction

variables. If you have an array of reduction variables (an array of counters,

say) you cannot make that a private array using partially shared commons.

This was a problem for us in the parallelization of calib which computed

the expected mean distances for 100 di�erent-sized sets, and naturally it uses

an array of sums. e had no choice but to replicate this array.

es lts

In this section we report on various results from the parallelization e�ort,

including the speedup achieved.

.

e were interested in seeing whether writing intermediate results to a �le in

the middle of a parallel loop would serialize the loop, as happens on some

other machines. In this sample program, the main loop writes out data for

another program to use the order of the output is not important, so long as

all the output for one iteration appears together. The bulk of the output (unit

8) are the stalactites, which are graphs of zeroes and ones. ithout taking

special measures, parallelization causes the output to be scrambled, though

10

each individual record is intact. The program also sends some formatted

output to standard output.

To �nd out whether the program was in fact being serialized by I/O, we

simply commented out the entire loop I/O and compared times (see chart in

Appendix E for the speedups)

E�ect of I/O in Parallel Loop

processors
1 5 10 20 30

I/O in loop
670.94 501.04 270.58 296.88 331.00

No I/O in loop
617.58 199.8 100.82 102.54 104.26

ll times in seconds

Since running time actually decreases with additional processors, we conclude

that I/O adds overhead but does not particularly serialize the loop.

e found that it did not much matter whether formatted I/O (i.e. stan-

dard output) went to the screen or to a �le. Typical �gures are shown below

ormatted I/O

case
real time user time system time

to the screen
10 11.1 10 05.6 0.0

to a �le
10 08.9 10 05.7 0.0

e see that writing to the console rather than to a �le increases only the

clock time, not the user time. The remaining runs in this work write standard

output to a �le.

Turning to unit 8 output, we thought we could make the program run

faster by overlapping computation with I/O by using asynchronous output

(which KSR does support). The �rst requirement is that the writes be unfor-

matted (unit 8 initially was a formatted ascii �le). The second requirement is

to make sure that a variable is not being updated until asynchronous output

of it has been completed. There are various ways to ensure this one could

use a separate bu�er for each iteration, which would also solve our problem of

keeping each iteration's output together one could use i c c or i ai

to see if the previous asynchronous write by this thread is complete one

could double bu�er and block on I/O when the bu�ers are both busy, etc.

In the end, system errors prevented us from being able to replace each

formatted write with a binary write, even a synchronous one. e certainly

were unable to use asynchronous binary writes. In both cases, the system

11

gave random and confusing error messages. KSR is currently working on the

problem.

Staying with formatted synchronous output for the time being, we were

still faced with the problem of keeping the records together for each iteration.

There are several strategies one can use

(a) bu�er up all the output until the end of the run

(b) bu�er up output for each thread in a partially shared common, and

output that as a single synchronous write at the end of each iteration

(c) tag each output record with the iteration number and collate the records

in a separate pass

(d) use another process to collate the records on the y, in parallel with the

application

(e) write to separate �les, one per thread.

Since (a) would take too much time and (d) was too hard to program and

(e) was too hard to manage, we tried strategies (b) and (c). In the following,

\original" is normal synchronous, formatted output to unit 8. The results are

based on 1/10 and 1/2 normal run length (i.e. only 10 and 50 simulations,

rather than 100). It was run on 10 processors.

10 Simulations 50 Simulations

collating strategy real user system real user system

original (uncollated) 14.0 1 41 1.2 41.2 6 28 4.8

(b) bu�ered 14.7 1 46 1.4 44.6 6 59 4.7

(c) tagged 13.5 1 35 1.1 41.0 6 23 4.8

The results indicate that using the bu�ered approach costs some time,

possibly because the extra memory requirements put pressure on the sub-

cache. The bu�ered run is about 10 longer than the tagged run, but pro-

duces output that is directly usable.

Note that the I/O bu�ers for this problem are large. Roughly ags

(zeroes and ones) per iteration for drawing the stalactites are required. or

up to 100 observations, this would take 40K bytes, more than an eighth the

small cache on the machine. It would be preferable to store the data as

bits. The bottom line is that I/O can seriously complicate parallelization of

a program.

12

. .

There were a number of variables in this program that would cause data

dependences were the program run in parallel. The two solutions to the

problem are to (1) replicate the arrays so that each run would use its own

area of the array and (2) put the array into a special common and declare

that common to be partially shared. (or scalar variables, the choices are

similar.) hen replicating, it is crucial to replicate on the �nal dimension,

so that one iteration's values are not in the same cache line as another's.

hich produces the lowest overhead They really both are doing the

same thing data winds up in di�erent processors. In the �rst case only the

-th thread refers to the -th column of the array so that data winds up in the

cache of the processor running that thread. In the second case the system

puts a private copy of the array into the cache of each processor. This might

organize the data more e ciently. (ewer data needs to be allocated in the

case of several iterations being run by a single thread, because the private

array for that thread can be reused.)

Making the arrays private simpli�es parallelizing the program since all

subscript expressions remain unchanged. That means that one could do a

completely serial run since all the directives would be treated as comments.

One does, however, have to build a common area and then declare it to be

partially shared.

The table below shows the relative runtimes for the two alternatives.

There does not seem to be much di�erence between them, so all things being

equal it is better to use a private common since that has slightly lower runtime

and is easier to code. Aligning to subpage had no a�ect.

13

Comparison of Private and Replicated Arrays

common

replicated private private

replicated private private

replicated replicated private

real T

1

10 49 10 47 10 46

user T

1

10 47 10 46 10 44

system T

1

6.5 6.5 6.5

real T 56.9 56.6 55.6

user T 23 43 23 34 23 09

system T 14.6 14.5 14.3

ll run times are given as min secs.tenths. T

1

is a

single processor run, and T is a -processor run.

.

Turning to parallelization results, we compare the running time on the KSR1

of various formulations of this program. irst, we get some baseline �gures

for single processor runs

1. unoptimized, unparallelized version. This is the baseline value for

speedup results.

2. optimized (all except i) but not parallelized

3. single processor, unoptimized, DO 11 and calib parallelized, using

replicated arrays.

Comparisons of Single Processor Runs

experiment
real time user time system time

number
(secs) (secs) (secs)

1
10 10.7 10 09.8 0.0

2
10 08.9 10 05.7 0.0

3
10 52.2 10 48.8 6.7

Comparing rows 1 and 2, we see the e�ects of optimization only a few per

cent for this code. That is because i , the one routine that could not be

14

optimized, is also computationally the most intensive one. The parallelized

code in run 3 took longer because of parallel overhead. (Note the increase

in system time.) However, we are encouraged that the overhead appears to

be quite small. The serial runtime is roughly equivalent to the one-processor

parallel runtime.

ith the single processor run-times in hand, we then turned to �nd out

how much we could speed up the program. Parallelizing calib and the

loop resulted initially only in a speedup of 7 no matter how many more

processors we applied. The speedup steadily increased with the number of

processors, but peaked at a speedup of 7 in the range of 7 8 processors.

(Again, refer to Appendix E.) However, the parallelized portions account for

almost all the program cycles, so more speedup should have been observed.

This raised lots of questions

communication between processors no - we made all iterations inde-

pendent.

synchronization No, we use the slice strategy to chunk up the itera-

tions ahead of time.

serial overhead of loop parallelization ell, high, but not enough to

account for 1/7 of the program .

data transfer that is not communication That is, sending data between

caches One scenario is complete cache thrashing once you get up to 7

processors. ut this is not likely, since most of the data should �t into

the small cache (which is 256 Kbytes in size for data).

The answer turned out to be an environment variable, l l ,

which controls the granularity of work assigned to threads.

.

The default setting of l l is 16, which meant that each thread

would execute 16 iterations or more. Thus the 100 runs could not be run on

e re c es r re z s e er e s e ec , e s s e

s se e re r e e e. ere s e c c erc e

r e er e e se e er s s e re e c e se .

15

25 threads, but only 100 divided by 16 which equals 6.25. Thus adding more

processors could not a�ect the runtime Setting this variable to 1 allocated

one iteration to each thread. This got us quite di�erent results the \knee" in

the curve moved all the way to the right to 26 processors, where the minimal

runtime for this dataset is to be found (see Appendix).

Parallelizing more loops within the DO 11 loop resulted in a slowdown.

The lesson is that you really want to parallelize your code only up to a certain

point. The KSR is not really a very �ne grain parallel processor.

A �nal note is that our loop parallelization strategy is lic . This was

based on the premise that the iterations all take about the same running

time. This is not strictly true for two reasons one is that choosing an initial

starting set takes varying amounts of time depending on the random number

generator and the size of the set, and because some processors on the KSR1

run at di�erent speeds than others (for example, when your thread is running

on the same processor where someone else's job is running). Therefore it

might have been better to use the ab strategy when the system is loaded.

(Measurements on an unloaded system showed lic to be very slightly more

e cient than ab.)

After setting l to 1, we ultimately achieved a speedup of

a little more than 12 on the 26 processors (based on the serial run time).

The overall run-time dropped from 10-11 minutes for the serial version to 51

seconds for the parallelized version.

nl r in t e li tion

The algorithm is () where is the number of trials and is the number

of variables times the number of observations.

It is not likely that more than 100 runs will be needed to determine the

outliers. Thus, unlike most simulations, increasing the number of random

trials does not necessarily improve the accuracy of the results.

However, this problem can grow in two other ways the number of vari-

ables per observation, and the number of observations in the data set. In

general it is not useful to increase the number of variables a t .

(Atkinson observed that four variables are usually enough to characterize

anything.) or large statistical samples, the number of observations will de-

termine the run time. Also, the larger the data, the more likely it is that there

16

are many outliers in the data, thus making the M E technique particularly

applicable.

Running this code in parallel for large data (many observations) seems a

very sensible thing to do.

Co ents on ools

orge and a were the primary tools used to do the parallelization reported

in this work. They are complementary orge prepares the initial timing runs

that allow one to \zero in" on the parts of the program to be parallelized,

and a assists you in parallelizing that section, especially if it is a DO loop.

Using a enabled one of us (Mark) to parallelize two loops inside the i

subroutine in only 90 minutes, including removing dependences and picking

out the private variables and handling the one reduction. a would be

even more useful if it could automatically replicate arrays, or generate KSR

directives (currently it generates I M and Cray syntax).

orge was very useful in checking out intuitive feelings about variables.

or example, it appeared that determinant was never used by the main

program a variable trace in orge veri�ed that it a in fact used and showed

exactly where. Similarly, orge tracing revealed an array declared in the main

program but used only within a single subroutine. This should have been

declared as a local array. Using orge to look at the use-def chain of variables

in ortran programs can be valuable for asynchronous I/O, where one needs

to know whether an output of a variable might be pending at the point of

an assignment to that variable.

A very useful thing to do in porting programs to the KSR is to fuse

loops. The loop list from either a or orge could be used for this. Or,

ParaScope, a tool from Rice University, can be used to generate directly

the new ortran with indicated loops merged into a single loop. The KAP

preprocessor occasionally proves useful in pointing out loop inversions, but

we did not need this feature.

Generally speaking, the tools were (a) most useful used side by side (b)

used to double-check one's intuition about the program and (c) useful for

timing. None of these tools, except for KAP, generates KSR syntax, so source

transformation was not something we did here. One of us (ergmark) was

already very familiar with the tools and could use them without e�ort the

17

other (Crovella) got up to speed relatively quickly but had to ask about some

of the ins and outs. Having an on-site tool expert is probably the best thing.

The timer situation is, as always, critical. e su�ered because the KSR

lacks a cumulative parallel timer, i.e. one that returns the total user CPU

time used by all processes in this job so far, as well as the wall-clock time. It

is, however, possible to use a partially shared COMMON to save cumulative

times for each thread and then read these out when in a serial section of the

program.

e cannot leave a discussion of tools without commenting on KSR's

parallel debugger, udb. e are very positive about this debugger it seems

stable, it works with parallel programs, and it was invaluable to us on several

occasions.

Co ents on t e

Most of this work was done during the month of August 1992 while Crov-

ella was visiting the Cornell Theory Center as a DARPA Parallel Processing

ellow. The machine became increasingly more stable as the month pro-

gressed. At the end of the month it had stayed up for an entire weekend,

allowing many runs to be made. It also acquired a new operating system

during the course of this study, when it was upgraded to OS 1.0.5. At this

point, machine downs decidedly decreased in number.

efore then, the multiplicity of crashes was disconcerting. One of us

(Crovella) found his password kept changing. requent reboots had an un-

expected dividend, though the machine was very lightly loaded for most all

the runs reported here. After a reboot, there were usually not many people

logged in to the system.

The KSR-1, with its cache architecture, is well-suited to statistics prob-

lems. Although in most statistical applications the input data needs to be

looked at by everybody and so is inherently not data-parallel, the data is

read-only. On many machines, this could result in memory contention. ut

on the KSR, one can expect the entire data set to be replicated into the

cache of each processor working on the program. This gives the KSR an

advantage over more traditional shared memory computers. In this example,

each stalactite run and each operation within the run processed all the input

data.

18

The machine seems to be easy to use, although �guring out all the envi-

ronment variables can be di cult. The tiling statements make it exception-

ally easy to parallelize loops. e enjoyed the exercise, found many items of

interest to investigate further, and best of all, produced a parallel random

number generator in the course of the work.

1 no le e ents

This research was conducted using the resources of the Cornell Theory Cen-

ter, which receives major funding from the National Science oundation and

I M Corporation, with additional support from New ork State Science and

Technology oundation and members of the Corporate Research Institute.

Mark Crovella was supported by a DARPAResearchAssistantship in Parallel

Processing.

e eren es

[1] ill Appelbe, Kevin Smith, and Charlie McDowell. Start/pat A parallel-

programming toolkit. t a e, pages 29 38, uly 1987.

[2] A. Atkinson. Robust estimation for outlier detection. In

ata al a t e , Ascona, Switzerland, une 29 uly 3 1992.

Proceedings to be published one day by irkhauser.

[3] A. Atkinson and H.-M. Mulira. The stalactite plot for the detection of

multivariate outliers. tat t a t , 3, 1992. (in press).

[4] . Daudin, C. Duby, and P. Trecourt. Stability of principal component

analysis studied by the bootstrap method. tat t , 19 241 258, 1988.

[5] O. Percus and M. Kalos. Random number generators for MIMD parallel

processors. al a allel a t te t , 6 477 497,

1989.

[6] P. Rousseeuw and . van omeren. Unmasking multivariate outliers and

leverage points. al e a tat t al at , 85, 1990.

19

(Most variables local to subroutines have been omitted from this list)

20

21

22

23

24

25

(rom a pre 1.0.5 release of the OS)

i

aca
none opt opt opt opt opt

calib
none opt none none none opt

dist
none opt opt none none none

gasdev
none none none none opt opt

gaussj
none none none none opt opt

init
none none none none opt opt

ludcmp
opt opt opt opt opt opt

milkin
opt opt opt opt opt opt

order
opt opt opt opt opt opt

ran2
opt opt opt opt opt opt

stout
opt opt opt opt opt opt

weight
opt opt opt opt opt opt

woodin
opt opt opt opt opt opt

l
OK AD AD OK OK OK

Conclusion

inary Optimization shows that i is

not correctly optimized with this compiler.

26

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30
processors

Speedup of aca2 on dataset 2 (large)

I/O in parallel loop
no I/O in pgm

Ideal

2
7

0

5

10

15

20

25

30

0 5 10 15 20 25

S
p
e
e
d
u
p

Processors

Effect of Tuning Loop Tiling -- Speedup

PL_ONE_SP_LONG = 16
PL_ON_SP_LONG = 1

Ideal

2
8

