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Processor ID 0 1 2 3 4 5 6 7

Load Imbalance 4.5397 5.1334 5.0505 4.9637 4.3170 4.0277 4.0857 3.5376

Table 2: Per-processor Load Imbalance (in Seconds); Multiple Solutions, Sparse Input, KSR1

5 Conclusion

This paper introduced the notion of parallel per-

formance predicates in order to form a language

for discussing the performance of parallel programs.

These predicates can be used to describe a small

but surprisingly useful set of categories for the per-

formance debugging of parallel programs: they for-

mally de�ne poor performance, they are relatively

easy to use, and they apply even to programs for

which common metrics like speedup aren't well de-

�ned.

An important feature of performance predicates

is that, since they are formally de�ned, they al-

low precise measurements of program states that

are often only informally de�ned, such as load im-

balance. In this role, performance predicates form

an unambiguous language for discussing the perfor-

mance of parallel programs. Although a number of

other tools share some goals with ours ([7] de�nes

sources of poor performance in advance of execu-

tion, and [9] reports on various sources of overhead

in a parallel program), the use of a uniform user-

de�nable language for performance tuning is unique

to our approach.

In addition, the de�nition of poor performance

based on states rather than events is a useful one.

In particular, state-based de�nition means that

performance evaluation can be performed on any

subset of an execution, and can be performed on-

line as well as post-mortem. This exibility is pos-

sible because performance predicates in their de�-

nition specify all program state necessary for their

evaluation. In contrast, event-based performance

evaluation is often forced into a post-mortem style

because events may require interpretation in the

context of arbitrarily complex program history.

In conclusion, we showed that by using perfor-

mance predicates we can: 1) characterize aspects of

parallel programs in ways that were previously in-

formally, or only intuitively, de�ned; 2) verify that

parallel programs are e�cient when other methods

are ine�ective; 3) easily organize the instrumen-

tation and measurement of complex parallel pro-

grams; 4) provide signi�cant high-level insight into

the causes of poor performance; and 5) perform de-

tailed performance debugging via predicate re�ne-

ment. We demonstrated these claims by using the

technique of predicate pro�ling on a complex ap-

plication. We showed that predicate pro�ling is a

natural outgrowth of the performance predicate ap-

proach; that its implementation is straightforward

even in complex programs; and that it gives signif-

icant insight into program behavior with very little

programmer e�ort or run-time overhead.
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Figure 8: Decreasing Wasted Computation in Tree

Parallelism

tween these two sources of LC indicates that tree

parallelism is favored on machines such as the KSR

which can provide many processors, while loop par-

allelism is favored on machines such as the Iris

which have a smaller number of faster processors.

4.3 Tuning One Parallelization of

Subgraph Isomorphism

While the previous section concentrated on the use

of predicate pro�ling in the design or application-

level tuning of a program, in this section we show

an example of how predicate pro�ling can help in

tuning an application whose parallel structure has

been determined.

We have seen that load imbalance is one of the

principal contributors to poor performance in sub-

graph isomorphism. We studied the last example in

the previous section in more detail, to see if predi-

cate pro�ling could o�er insight that could lead to

removing some load imbalance. To do so, we sep-

arated out the load imbalance measurements on a

per-processor basis. The resulting measurements

for 8 processors on the KSR1 (the program showed

minimum running time in this case) is given in Ta-

ble 2.

Table 2 indicates that there is a systematic source

of load imbalance present in the parallel loops,

which is indicated by the steadily decreasing val-

ues for load imbalance with processor number (after

excluding processor 0, which is a special case). In

this program, loop iterations are statically sched-

uled in a blocked fashion, with processor 1 getting

the �rst I=N iterations, processor 2 getting the next

I=N , and so on (where I is the total number of it-

erations in the loop, and N is the number of pro-

cessors participating). The load imbalance values

indicate that loop iterations with lower-numbered

indices tend to have less work to do. The reason

this occurs is that each iteration of a �lter loop cor-

responds to eliminating search nodes at one par-

ticular tree level. Later iterations correspond to

search nodes closer to the leaf level. When the pro-

gram searched downward to some level n, all levels

closer to the root than n contain only one search

node, representing the path taken to the current

node. Tree levels closer to the leaves than n will

in general contain many search nodes. Since the

�lters operate by trying to eliminate search nodes

one by one, the �lters do more processing in later

loop iterations (in the average case).

The presence of systematic load imbalance sug-

gests that a simple modi�cation of the program, to

a round-robin scheduling of loop iterations, might

alleviate some load imbalance. In such a schedule,

processor 1 is assigned iterations numbered 1, 1+N ,

etc. In fact, this simple modi�cation, suggested by

the predicate pro�le, results in a performance im-

provement of 12%, decreasing running time from

10.22 seconds down to 9.04 seconds on 8 proces-

sors.

This sort of extension of predicate pro�ling can

be thought of as an instance of the general notion

of predicate re�nement. Predicate re�nement is the

way in which predicates are made to apply to a

more restricted domain, so as to narrow the scope of

investigation and pinpoint performance problems.

For example, as written, the Load Imbalance

predicate does not distinguish between the two

common kinds of load imbalance: unequal task

sizes, and unequal numbers of tasks on per-

processor work queues. It would be a simple and

consistent extension of these predicates to make

that distinction, by adding a per-processor state

that indicates an empty work queue. We would

then re�ne the Load Imbalance predicate into two

disjoint predicates, based on the state of the per-

processor work queue, providing better insight into

the kinds of overhead being measured. Other pred-

icate re�nements include restricting predicate eval-

uation to certain segments of code, or di�erentiat-

ing among many code segments. Highly detailed

predicate re�nement would consist of sampling the

program counter as well as the performance pred-

icates, and relating overheads to code segments at

the source line level.
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solving this problem on a single processor, the Iris

only has 8 processors, while our KSR con�guration

has 32 processors (much larger machines are avail-

able). Our measurements of load imbalance show

that for this problem, on these machines, the de-

gree of load imbalance under loop parallelism grows

quite large with an increase in the number of pro-

cessors. Figure 7 shows the fraction of total pro-

cessor cycles lost due to load imbalance for loop

parallelism on this problem on both machines. The

�gure indicates that beyond about 8 processors, the

fraction of cycles lost due to load imbalance grows

very large. In fact, the bene�t of adding additional

processors beyond this point is completely counter-

acted by the increase in load imbalance, precluding

the KSR from bene�ting from its larger supply of

processors.

On the other hand, the KSR outperforms the Iris

under tree parallelism. As before, the single pro-

cessor case favors the Iris (7.03 seconds on the Iris,

18.86 on the KSR1). However, there is no load im-

balance under tree parallelism on this problem; the

dominant source of LC is wasted computation due

to speculation. Figure 8 shows the total time spent

on wasted computation for this problem on both

machines, in seconds. As the number of processors

increases, each time the line does not rise, the pro-

gram has bene�ted from an increase in processing

power: when the line stays at, a constant amount

of work has been divided among a larger number of

processors, and when the line drops, the program

has found a cheaper set of solutions via specula-
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Figure 7: Increasing Load Imbalance in Loop Par-

allelism

tive parallelism. The �gure shows that increasing

processors for this problem continues to yield signif-

icant bene�ts beyond 8 processors; as a result, the

KSR is able to exploit its larger number of proces-

sors to advantage and outperform the Iris. Using

the common metric of LC in both cases allows us

to con�rm that the KSR should outperform the Iris

for tree parallelism after about 11 processors, since

at that point the KSR execution contains the same

or less LC than does the 8-processor Iris execution.

In this case we have seen that the LC due to

speculation decreases with an increase in proces-

sors, while the LC due to load imbalance increases

with an increase in processors. The tradeo� be-
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The similar performance of these two versions oc-

curs for di�erent reasons, as the pro�les in Figure 6

show. Both parallelizations start out �nding the

same set of solutions, as can be seen by their com-

parable pro�les in the one processor case. However,

as we add processors, tree parallelism (on the left)

is bene�ting from �nding some solutions faster in

each additional subtree. This bene�t is shown by

the fact that each additional processor adds some

pure computation, but not as much as the 1 proces-

sor case. On the other hand, loop parallelism (on

the right) is still �nding the same solutions, only

faster. It is in contrast being limited by load im-

Iris KSR1

loop 2.05 10.68

tree 2.59 2.24

Table 1: Running Time of Loop and Tree (in sec-

onds); Multiple Solutions, Sparse Input

balance and memory loss (communication) as the

number of processors increases.

By using LC as common metric, these data show

that the two parallelizations are exploiting entirely

di�erent sources of performance improvement on

the same problem. Thus, predicate pro�ling sug-

gests that there might be an opportunity for a hy-

brid algorithm that exploits both tree and loop par-

allelism, a fact which is con�rmed in [3].

In our third example, we show how predicate pro-

�ling can be used to understand a case in which

loop parallelism outperforms tree on the Iris, while

tree parallelism outperforms loop on the KSR1.

When searching for multiple solutions in a sparse

input space, we �nd that the two parallelizations

perform as shown in Table 1. This table shows that

the proper choice of parallelization depends on the

underlying machine.

To understand why the Iris outperforms the

KSR under loop parallelism, we �rst note that the

uniprocessor (sequential) running time of the pro-

gram is 21.88 seconds on the KSR, while it is 8.66

seconds on the Iris. Although the Iris is faster at

7



3. di�erent parallelizations of a programmay per-

form very di�erently when ported to a new ma-

chine.

Our �rst example examines the reasons for the

widely di�ering performance of three paralleliza-

tions of subgraph isomorphism. We are concerned

with the best parallelization when searching for

a single isomorphism, given a sparse input space.

The running times of three parallelizations: tree,

loop, and loop plus instruction, are shown in Fig-

ure 3 for the Iris. This �gure shows that there are

a number of issues involved in understanding the

performance of these parallelizations: why is tree

parallelism the worst performer on 2 and 3 pro-

cessors, but the best performer on 4 or more pro-

cessors? Why is loop plus instruction parallelism

better than loop alone? What is preventing loop

parallelism from performing well? Will tree paral-

lelism always outperform loop plus instruction on

more than seven processors?
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Figure 3: Running Time of Three Parallelizations

on Iris; One Solution, Sparse Input

Figure 4 shows predicate pro�les for the three

executions shown in Figure 3. In these charts, each

bar shows the total processing time, summed over

all processors. Each bar is further broken down to

show computation time (lowest segment) and the

three kinds of LC that are signi�cant in this case:

Load Imbalance, Wasted Speculation, and Memory

Loss.

The leftmost pro�le shows the overheads in tree

parallelism. On 1 through 3 processors, we see

that LC due to wasted speculation entirely ac-

counts for the lack of any speedup. The increases

in wasted speculation imply that, in this sparse so-

lution space, the branches searched by processors

2 and 3 do not yield a solution before the branch

searched by processor 1. However, the fourth pro-

cessor, exploring its own branch, �nds a solution

much sooner than does processor 1; likewise, pro-

cessor 6 also improves on processor 4's solution

time. Thus this �gure gives us good insight into

the distribution and relative cost of solutions in the

search tree, and explains why tree parallelism out-

performs loop and loop plus instruction for proces-

sors greater than 3.

Next, we examine the other two pro�les. The

loop pro�le (in the center) shows that the LC con-

straining this parallelization is both communication

(memory) and load imbalance. Comparing it to

the loop plus instruction pro�le, we see that com-

putation cost when using instruction parallelism is

actually higher | instruction parallelism itself is

not outweighing the costs of packing and unpack-

ing data, which must occasionally take place under

instruction parallelism. However, the pro�les show

a less-expected bene�t of this parallelization: the

smaller dataset size created by packing data leads

to lower communication costs when using instruc-

tion parallelism. The advantage of the common use

of LC for comparing overheads in this example is

that we can directly observe how instruction par-

allelism improves execution time: the increase in

computation costs caused by data manipulations

are more than o�set by the decrease in LC at-

tributable to communication. Since there is little

communication-caused LC in the tree parallel ex-

ecution, we expect instruction parallelism to have

little bene�t in combination with tree parallelism.

Our data con�rm this conclusion: instruction par-

allelism for this problem increases the running time

of tree parallelism anywhere from 5 to 25%.

The e�ects of speculative parallelism seen in the

tree parallel version demonstrate that for some pro-

grams, it can be di�cult to determine when they

are performing well. Speedup is not an e�ective

metric for this program because the multiproces-

sor execution does not compute the same result as

the uniprocessor execution. However, LC can be

used to assess whether the program is performing

well, since the absence of LC, along with an e�-

cient uniprocessor algorithm, indicates an e�cient

program.

Our second example shows two parallelizations

that exhibit complementary reasons for good per-

formance. Figure 5 shows the running time of in-

struction plus loop, and instruction plus tree paral-

lelism when searching for many solutions in a dense

solution space.
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4 An Example

We have found predicate pro�ling to be useful in

application-level performance tuning (e.g., select-

ing the best parallelization of an algorithm) and in

program-level tuning (e.g., improving one particu-

lar parallelization of a program). The next section

describes the example problem we use to demon-

strate predicate pro�ling. Section 4.2 then gives

three examples of application-level tuning, and sec-

tion 4.3 gives an example of program-level perfor-

mance tuning.

4.1 The Example Problem: Sub-

graph Isomorphism

We employed predicate pro�ling on a program that

solves the subgraph isomorphism problem. Given

two graphs, one small and one large, the problem

is to �nd one or more isomorphisms from the small

graph to arbitrary subgraphs of the large graph. An

isomorphism is a mapping from each vertex in the

small graph to a unique vertex in the large graph,

such that if two vertices are connected by an edge

in the small graph, then their corresponding ver-

tices in the large graph are also connected by an

edge. A complete description of the problem and

the algorithm we used is given in [3]

In our algorithm, the search for isomorphisms

takes the form of a tree, where nodes at level i cor-

respond to a single postulated mapping for vertices

1 through i in the small graph. Since the search

space is very large, it is prudent to eliminate tree

nodes early, before they are visited in the search.

We do this by applying a set of �lters as each tree

node is visited. These �lters typically loop over the

vertices in the two graphs, looking for inconsisten-

cies between the current mapping and search nodes

not yet visited. For the problem sizes we consider,

these �lters prune the search space enough to make

the problem tractable.

In the experiments presented here, input graphs

are randomly generated; by varying the likelihood

of edges between nodes in each graph, we can vary

the likelihood that a leaf node in the search tree

represents an isomorphism. We use this probabil-

ity, which we refer to as the density of the problem

space, to characterize the input data in our exam-

ples.

This algorithm can be parallelized in a number

of di�erent ways, three of which we will discuss:

Tree In tree parallelism, we assign di�erent pro-

cessors to di�erent subtrees of the root node

in the search tree. This parallelization exploits

speculative computation; adding a processor

can cause a new section of the search space

to be explored.

Loop In loop parallelism, we parallelize the loops

within the �lters. This accelerates the depth-

�rst search of the solution space.

Instruction In instruction parallelism, we pack

boolean data into words and use logical op-

erations to implement set operations. This

form of parallelism is of course also available

on uniprocessors.

We present data for implementations running on

two multiprocessors: an 8 processor Silicon Graph-

ics 4D/480GTX multiprocessor workstation, and a

32 processor Kendall Square Research KSR1. Al-

though these are both shared-memory multiproces-

sors, we show that in some cases di�erent paral-

lelizations are preferable on di�erent machines.

We show data for only three parallelizations of

this problem, but there are more opportunities for

parallelism available | for example, vector opera-

tions and functional parallelism. Additionally, we

might choose to parallelize only certain loops, or

certain subtrees. As a result, there are a very large

number of possible parallelizations of this problem.

Without an understanding of the reasons why one

parallelization outperforms another for a particu-

lar machine, choosing the best parallelization for

this algorithm would be very di�cult. Most perfor-

mance evaluation tools provide too much low-level

detail to quickly assess each of these paralleliza-

tions; in contrast, we show in the next section how

predicate pro�ling can quickly and simply explain

the important factors determining the best paral-

lelization for subgraph isomorphism on a given ma-

chine.

4.2 Choosing the Best Paralleliza-

tion of Subgraph Isomorphism

Predicate pro�ling seems especially well suited to

the design and application-level tuning of parallel

programs. In this section we present examples that

show how predicate pro�ling can explain why:

1. di�erent parallelizations of a program may

show widely di�ering performance;

2. di�erent parallelizations of a program may

show similar performance for di�erent reasons;

and
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Load Imbalance(x) � Work Exists ^ Processors Idle(x)

Starvation Loss(x) � : Work Exists ^ Processors Idle(x)

Synchronization Loss(x) � Work Exists ^ Processors Spinning(x)

Braking Loss(x) � Solution Found ^ Processors Busy(x)

Memory Loss(x) � Processors Stalled(x)

Wasted Computation(x) � f(Events, States)

Figure 1: Candidate Set of Performance Predicates

the cost is minimal. Measuring this predicate re-

quires that we (automatically) modify a program's

assembly code so that each basic block stores the

current instruction count to local memory | this

makes the stall behavior of each processor visible

at run time.

Measuring the Wasted Computation category is

naturally application-dependent, and so it requires

programmer de�nition; however, in our application

it is easily identi�ed. We de�ne a state corre-

sponding to each independently-schedulable piece

of work (task), and if the processor, after exe-

cuting the task, has not contributed to the solu-

tion it signals so via an event. The event causes

the time measured for that task to be charged to

Wasted Computation. Since wasted computation

may occur in many forms, this approach is not com-

pletely general, but the underlying mechanisms are

su�cient for a wide variety of cases.

The cost of predicate pro�ling in a shared-

memory multiprocessor amounts to the additional

communication generated by the sampling process.

This cost can be reduced by sampling at less than

the maximum possible rate; however, lowering the

sampling granularity increases the possibility of er-

ror in the results. Luckily, neither of these e�ects

are very severe. Figure 2 shows both the percent

error introduced in a pro�le and the percent in-

crease in running time for a typical run of our ex-

ample application. The �gure shows that for a wide

range of sampling intervals (between about 50 and

250 �s), both running time overhead and measure-

ment error are close to about 5%.

The e�ort involved in predicate pro�ling is rela-

tively small. The sampling task is structured as 50

to 100 lines of code (depending on the number of

predicates) which periodically evaluate each pred-

icate. The ag-setting code amounted to adding

only 18 lines of code to our application. The code

for the sampling task is reusable across implemen-

tations, and the ag setting code can be made in-

visible by embedding it in the runtime system.

The results of applying predicate pro�ling to an
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application can be presented in a number of ways.

We have found that the simplest presentation is of-

ten the most useful: a summary table for each ex-

ecution of the program. The table shows the total

time, summed over all processors, that the program

spent in each category. It provides an immediate

assessment for the programmer of how the program

performed, and what sort of tuning would be prof-

itable. It allows the programmer to make an in-

formed tradeo� between di�erent kinds of tuning

(e.g., memory system tuning vs. load balance tun-

ing) and the relative e�ort that each kind of tuning

requires.

Other useful presentations expand the pro�ling

data along one of a number of dimensions: proces-

sors, time, or code. In the next section we show

an example where the per-processor pro�les give

insight to performance problems. We have also ex-

panded the pro�ling data in the time dimension,

and can present the results using the display tool

Upshot , available from Argonne National Labs. Fi-

nally, we believe that by combining predicate pro�l-

ing with traditional program-counter pro�ling, that

overhead values could be associated with proce-

dures or loops, allowing more detailed exploration

of code segments during performance tuning.
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use in this space is the metric LC. Although it may

not be obvious that such a set exists, the next sec-

tion presents a set that meets these criteria; the

remainder of the paper discusses the use of this set

and demonstrates its utility.

2.2 De�ning a Set of Performance

Predicates

The set of performance predicates we use in our

example are de�ned in Figure 1.

1

Most predicates

are de�ned based on global or per-processor states,

which are the interpretations of the expressions on

the right hand side of the equations in the �gure.

For example, the �rst predicate is read as \A load

imbalance on x processors exists if Work Exists is

true and Idle is true for exactly x processors."

If processors are idle, their processing power is

being wasted; the �rst two predicates express this,

and distinguish between load imbalance and insuf-

�cient parallelism as causes of idling. If processors

are spinning (de�ned to be true while waiting for

synchronization), then their processing power is be-

ing wasted only if work exists to be done; the third

predicate captures this case. If processors are busy,

their work is being wasted only if the solution has

already been found; the fourth predicate expresses

this case. The �fth predicate (Memory Loss) recog-

nizes inaction while waiting for service from mem-

ory. This predicate thus includes communication

costs in a shared-memory multiprocessor as well as

cold cache and replacement misses.

The last predicate (Wasted Computation) is de-

�ned by the user; it expresses algorithmically

wasted computation. Wasted computation oc-

curs in some programs because adding processors

changes the actual work done by the algorithm [10].

The work added may not contribute to solving the

problem; providing this category allows the pro-

grammer to interpret and treat this wasted work

as a form of overhead.

3 Predicate Pro�ling

The precise de�nitions of the performance predi-

cates in the last section provide a basis for quanti-

tative evaluation via predicate pro�ling. The pro-

�ling could be done by system software on each

processor, but for our prototype implementation we

allocated one of the system's processors to the sam-

pling task, as in Parasight [1].

1

The names of some of these predicates are taken from

[15].

An advantage of using predicate de�nitions that

are primarily posed in terms of global and per-

processor states is that they can be implemented

by setting ag-variables in a shared-memory envi-

ronment. This allows pro�ling to be implemented

by a process that periodically inspects shared mem-

ory.

Our global states are Work Exists and Sol-

ution Found. Work Exists is true whenever par-

allel work has been created, but not yet completed;

for example, between a fork and its corresponding

join. Solution Found is true when the program

has completed its necessary computation; unnec-

essary computation may still be occurring. That

is, Solution Found is true as soon as the program

could print out the answer it is intended to com-

pute.

Our per-processor states are Busy, Spinning,

and Idle. Busy is true for a processor when it is

executing code that is logically a part of the pro-

gram. For example, Busy is true when a processor

begins executing its iterations of a parallel loop,

and if the processor does not execute the subse-

quent serial code, Busy is false when its loop iter-

ations complete. Spinning is true for a processor

after it has requested a lock, but before it has ac-

quired the lock (Spinning overrides Busy). Idle

is true for a processor whenever it is not Busy or

Spinning.

These ag de�nitions are intuitive, which is an

essential feature. Because of of their unambigu-

ous de�nitions, decisions on where to set and clear

such ags in the source are very straightforward,

which allows accurate implementation in a wide

variety of applications. In fact, we believe that

these ag manipulations can be incorporated in

self-instrumenting macros, such as the Argonne P4

macros, allowing predicate pro�ling to be totally

hidden from the programmer.

Pro�ling the Memory Loss predicate is more dif-

�cult. On most machines, processors stall while

waiting for memory, so this predicate cannot be de-

�ned based on an observable processor state, since

the processor cannot itself determine when it is

stalled. The most common way this state is mea-

sured is via simulation, as in [6]; we used that

method in our implementation on the SGI Iris mul-

tiprocessor workstation. We have been able to pro-

�le the Memory Loss predicate at run-time, how-

ever, using the on-line instruction counting imple-

mented by compilers on the KSR1 [2]. KSR compil-

ers update a dedicated register with the current in-

struction count for each basic block (at minimum).

Usually this can be done by replacing no-ops, so

3



wrong with a parallel program.

In this paper we argue that there is signi�cant

bene�t to a rapid, complete, assessment of a par-

allel program's performance in terms of categories

that are semantically signi�cant to programmers.

This assessment either directly identi�es opportu-

nities for performance tuning, or it serves as a

focusing mechanism prior to the use of more de-

tailed performance tuning tools. In order to ac-

complish this assessment, we suggest a candidate

set of categories, and provide precise de�nitions for

each category. We show that these de�nitions can

be expressed in terms of functions that identify in-

stantaneous program states; we call these functions

performance predicates. Via examples we demon-

strate how the use of performance predicates im-

poses an easily-understood and easily-implemented

structure on the performance debugging and tun-

ing process. In addition, our examples show that

performance predicates provide a common basis for

the comparison of di�erent kinds of overhead in a

parallel program. This common basis is especially

useful in program design and application-level tun-

ing, and can be used to decide when a program is

performing well when other metrics (e.g., speedup)

are ine�ective.

2 Parallel Performance Pred-

icates

A performance predicate is a recognizer; it recog-

nizes a state of the program that the programmer

wishes to measure. In general, it can be very ex-

pensive to identify the instant when an arbitrary

predicate changes value, especially in a parallel or

distributed system [8]. Therefore, exact measure-

ment of program states based on measuring each

duration during which a predicate has a certain

value is unattractive. Luckily, however, highly pre-

cise measurements are not required for performance

debugging; we only need to know about any state

that, in the aggregate, consumes more than some

small fraction of running time. As a result, we can

use a simple, sampling-based method that period-

ically evaluates each predicate. We call this ap-

proach predicate pro�ling.

We use the term performance predicate to dis-

tinguish performance predicates from correctness

predicates. A correctness predicate must be evalu-

ated atomically, which presents problems in parallel

and distributed systems. A performance predicate

on the other hand, need not always have a con-

sistent interpretation when it is evaluated. Sim-

ple performance predicates will be inconsistent only

very rarely; with su�ciently frequent sampling, any

errors introduced during evaluation will have neg-

ligible e�ect on the end results.

2.1 Properties of Performance Pred-

icates

The proper choice of a set of performance predi-

cates (and the states they recognize) is constrained

in three ways. First, the states should represent

categories of poor performance that are intuitively

meaningful. The advantage in using meaningful

states is that the resulting performance measure-

ments are easily related to design decisions at the

application level.

Second, the states should be complete. That is,

they should include every source of performance

loss. Completeness can be veri�ed empirically: if,

after measuring all overhead in a multiprocessor ex-

ecution, the remaining computation equals that of

the uniprocessor case, then the set is complete for

that execution.

Third, the states should be mutually exclusive.

Mutual exclusion of states makes their measure-

ments orthogonal | no wasted time is ever charged

to two categories. This ensures that we can add and

subtract overheads accurately, and makes it possi-

ble to reason about overheads independently.

Predicates chosen according to these constraints

have the property that they express overheads in

common units. That is, we can directly compare

the overhead measured using one predicate to that

measured using another, since they both recognize

states in which no useful work is done. We will

call time spent in these states in general lost cycles

(LC). We usually express LC as its sum over all

processors in an execution. Although overheads are

not independent (so we cannot in general vary one

without changing another) the e�ect of changing

LC in an execution is the same no matter what

speci�c kind of overhead is actually changing. If the

useful computation done by a program is C, then

the running time of the program on P processors is

always

C + LC

P

:

This equation is useful because in most cases C

doesn't vary as we change P . Thus, LC forms a

single uniform metric for comparing di�erent over-

heads that are de�ned by performance predicates.

In summary, the set of performance predicates

should form a meaningful, orthogonal basis set for

the space of performance overheads; the norm we
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Abstract

Parallel programs incur overhead in many di�er-

ent ways, such as synchronization, load imbalance,

communication, and insu�cient parallelism. We

have found that all of these categories are impor-

tant in understanding the performance of parallel

programs, and that a rapid assessment of how pro-

cessing time is spent in each of these categories is

extremely helpful in the performance tuning of par-

allel programs. As a result we have developed the

notion of performance predicates, which are expres-

sions that de�ne these categories and can be used

to recognize and classify ine�cient states during a

program's execution. Formal de�nition allows us

to discuss the categories quantitatively; we present

a method for measuring time spent in each cate-

gory, based on the common metric of lost cycles.

The method we describe, called predicate pro�ling,

is shown to be quite useful for both application-

level and program-level performance tuning. We

show that predicate pro�ling is relatively easy to

implement, and has very low run-time cost. We

also show that the lost cycles metric is applicable

to programs for which other metrics, like speedup,

aren't well de�ned.

1 Introduction

The use of parallelism in a program presents many

new opportunities for performance degradation.

Most parallel programmers are aware of these new

sources of poor performance, and group them into

general categories, such as load imbalance, commu-

�
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nication overhead, and synchronization loss. The

use of these categories allows programmers to rea-

son about and discuss the performance of speci�c

programs. Programmers tend to think about the

performance of parallel programs in terms of these

categories; in fact, in our experience, understanding

which category is a primary cause of poor perfor-

mance is often su�cient to guide initial program

tuning and design changes.

Unfortunately, current parallel performance tun-

ing and analysis tools do not directly support

programmers in assessing the amount of perfor-

mance degradation attributable to each of these

categories. Many performance analysis tools as-

sume the programmer already knows which gen-

eral category is the root cause of poor perfor-

mance in the case at hand. These tools focus

the programmer's attention on the code or data

that is most to blame for poor performance in a

given category (e.g., for memory system e�ects [6;

13], synchronization costs [5], or insu�cient paral-

lelism [4]). Other performance analysis tools are

more general, but do not present data speci�cally

in terms of categories of poor performance [11; 12;

14]. These more general tools capture and present

large amounts of data, which can make it di�cult

to form high-level assessments of program perfor-

mance.

Our work is based on a number of observations

regarding the performance tuning process: pro-

grammers can identify categories of poor perfor-

mance; poor performance is the result of the pro-

gram or machine spending time in particular, inef-

�cient, states; those states can be recognized, and

time spent in them can be measured; and those

states can be associated with categories of poor per-

formance. We believe these observations suggest

a new approach to performance debugging: using

pre-de�ned predicates that recognize categories of

poor performance and report speci�cally on what is

1


