
[Lenoski et al., 1990] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, \The

Directory-Based Cache Coherence Protocol for the DASH Multiprocessor," Proceedings of the

17th International Symposium on Computer Architecture, pages 148{159, May 1990.

[Lenoski et al., 1992] D. Lenoski, J. Laudon, L. Stevens, T. Joe, D. Nakahira, A. Gupta, and

J. Hennessy, \The DASH Prototype: Implementation and Performance," In Proceedings of the

19th International Symposium on Computer Architecture, May 1992.

[Mellor-Crummey and Scott, 1991] J. M. Mellor-Crummey and M. L. Scott, \Synchronization

Without Contention," Proceedings of the 4th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, pages 269{278, April 1991.

[MIPS Computer Systems Inc., 1991] MIPS Computer Systems Inc., MIPS R4000 Microprocessor

User's Manual, Integrated Device Technology, Inc., 1991.

[Patel and Harrison, 1988] N. M. Patel and P. G. Harrison, \On Hot-Spot Contention in Inter-

connection Networks," Performance Evaluation Review, 16(1):114{123, May 1988, Originally

published at SIGMETRICS '88.

[P�ster and Norton, 1985] G. F. P�ster and V. Alan Norton, \`Hot Spot' Contention and Combin-

ing in Multistage Interconnection Networks," IEEE Transactions on Computers, C-34(10):943{

948, October 1985.

[Singh et al., 1992] J.P. Singh, W-D. Weber, and A. Gupta, \SPLASH: Stanford Parallel Applica-

tions for Shared-Memory," Computer Architecture News, 20(1):5{44, March 1992.

[Thomas, 1986] R. H. Thomas, \Behavior of the Butter
y Parallel Processor in the Presence of

Memory Hot Spots," Proceedings of the 1986 International Conference on Parallel Processing,

pages 46{50, August 1986.

[Wittie and Maples, 1989] Larry Wittie and Creve Maples, \MERLIN: Massively Parallel Hetero-

geneous Computing," In Proceedings of the 1989 International Conference on Parallel Processing,

pages I{142 { I{150, August 1989.

[Yew et al., 1987] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie, \Distributing

Hot-Spot Addressing in Large-Scale Multiprocessors," IEEE Transactions on Computers, C-

36(4):388{395, April 1987.

20

References

[Agarwal et al., 1992] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara,

B.-H. Lim, G. Maa, and D. Nussbaum, \The MIT Alewife Machine: A Large-Scale Distributed-

Memory Multiprocessor," In M. Dubois and S. S. Thakkar, editors, Scalable Shared Memory

Multiprocessors. Kluwer Academic Publishers, 1992.

[Agarwal and Gupta, 1988] A. Agarwal and A. Gupta, \Memory Reference Characteristics of Mul-

tiprocessor Applications under Mach," Performance Evaluation Review, 16(1):215{225, May

1988, Originally published at SIGMETRICS '88.

[Agarwal, 1992] Anant Agarwal, \Performance Tradeo�s in Multithreaded Processors," IEEE

Transactions on Parallel and Distributed Processing, 3(5):525{539, September 1992.

[Bianchini et al., 1993] R. Bianchini, M. E. Crovella, L. Kontothanasis, and T. J. LeBlanc, \Alle-

viating Memory Contention in Matrix Computations on Large-Scale Shared-Memory Multipro-

cessors," Technical Report 449, Department of Computer Science, University of Rochester, April

1993.

[Chaiken et al., 1990] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, \Directory-Based

Cache Coherence in Large-Scale Multiprocessors," IEEE Computer, 23(6):49{58, June 1990.

[Cheriton et al., 1991] David R. Cheriton, Hendrik A. Goosen, and Philip Machanick, \Restruc-

turing a Parallel Simulation to Improve Cache Behavior in a Shared-Memory Multiprocessor: A

First Experience," Proceedings of the International Symposium on Shared-Memory Multiprocess-

ing, pages 109{118, 1991.

[Darema-Rogers et al., 1987] F. Darema-Rogers, G.F. P�ster, and K. So, \Memory Access Pat-

terns of Parallel Scienti�c Programs," Performance Evaluation Review, 15(1):46{57, May 1987,

Originally published at SIGMETRICS '87.

[Davis et al., 1991] Helen Davis, Stephen R. Goldschmidt, and John Hennessy, \Multiprocessor

Simulation and Tracing Using Tango," In Proceedings of the 1991 International Conference on

Parallel Processing, pages II{99 { II{107, August 1991.

[Glenn et al., 1991] R. R. Glenn, D. V. Pryor, J. M. Conroy, and T. Johnson, \Characterizing

Memory Hot Spots in a Shared-Memory MIMD Machine," Proceedings of Supercomputing'91,

pages 554{566, November 1991.

[Glenn and Pryor, 1991] Raymond R. Glenn and Daniel V. Pryor, \Instrumentation for a Mas-

sively Parallel MIMD Application," Journal of Parallel and Distributed Computing, 12(3):223{

236, July 1991.

[Ho and Eager, 1989] Wing S. Ho and Derek L. Eager, \A Novel Strategy for Controlling Hot Spot

Congestion," In Proceedings of the 1989 International Conference on Parallel Processing, pages

I{14 { I{18, August 1989.

[Kendall Square Research Corp., 1992] Kendall Square Research Corp., KSR1 Principles of Oper-

ation, Kendall Square Research Corporation, 170 Tracer Lane, Waltham, MA, 1992.

19

amount of cache space, but this is not so. Assuming an even distribution of servers throughout the

machine, the maximum additional cache space needed per processor is HotDataSize * NumServers

/ NumProcs, where HotDataSize is the size of the hot data, NumServers is the number of servers

per hot cache block, and NumProcs is the number of processors in the machine. This is a worst-case

analysis however; in practice, a server need only store the hot data currently being referenced by

clients. In addition, under the assumption that servers are also clients for hot data, then each

server needs a copy of the data anyway. Furthermore, the extra cache space devoted to copies of

hot data in servers is a small percentage of the cache space devoted to caching application data.

In short, the space overhead of servers is not an impediment to data replication as used in eager

combining.

5 Conclusions

Our simulation results clearly indicate that memory contention will have a serious impact on appli-

cation performance as we scale cache-coherent multiprocessors to hundreds of nodes. We observed

that for some applications the presence of hot spots completely negates any running time im-

provements from additional processors. For �ve of our applications, hot spot contention increased

running time by 47%, 135%, 219%, 516%, and 3126% on machines with 200 or more nodes. Our

studies of these programs suggest that hot spots are a characteristic of the way shared memory

programs are written. For many programs: 1) hot spots are distributed throughout memory; 2)

individual hot spots worsen with an increase in the number of processors; and 3) the number of hot

spots increases with an increase in processors. Requiring that the programmer remove individual

hot spots by hand is neither desirable nor particularly e�ective; other hot spots worsen, and it

is probably not possible to eliminate enough hot spots by hand to eliminate memory contention

e�ects.

These observations about the nature of hot spots suggest that memory contention needs to be

addressed at the architecture level. We considered two options: queueing requests at the memory

module, thereby increasing memory utilization during periods of contention, and automatic data

replication in the coherency protocol. Our results indicate that queueing is not e�ective enough,

and can require long queues in hardware. On the other hand, we were able to eliminate most hot

spots encountered in our programs using an eager combining protocol. Based on these results, we

conclude that hardware-supported replication is an attractive way to deal with memory contention,

especially when used in conjunction with application restructuring techniques designed to eliminate

the few extreme cases of hot spots.

18

Application Running Time Increase

64 processors 256 processors

mp3d 4% 20%

mp3d2 0% 1%

barnes-hut 0% 0%

100 processors 200 processors

bmatmult 0% 0%

sgauss 1% 1%

mgauss 0% 0%

matinv 6% 18%

tclosure 0% 0%

all-pairs 83% 303%

Table 10: Running Time Increase Due to Contention Under Eager Combining

under eager combining, improving on the speedup of 74 under queueing. Matinv, which was only

able to achieve a speedup of 43 on 200 processors under queueing, is able to achieve a speedup of

99 under eager combining. Tclosure, which exhibited the best speedup under queueing, was able

to improve speedup from 124 to 154 when using eager combining in place of queueing.

Most applications perform well under eager combining; for mp3d2, barnes-hut, sgauss, mgauss

and tclosure, the increase in running time due to contention is less than 2%. Although three

applications (mp3d, matinv and all-pairs) still exhibit noticeable contention, eager combining

dramatically reduces the overhead due to contention, especially in comparison to the model in

which busy memory modules reject arriving requests.

Two approaches are possible to further alleviate contention in these programs. We can eliminate

selected hot spots in software, keeping the number of servers at 10; alternatively, we can increase

the number of servers participating in the eager combining protocol. We evaluated these two

approaches through two simple experiments with mp3d on 256 processors. The �rst approach is

applicable because, as discussed in Section 3.4, mp3d has �ve pages that have a very high degree

of contention, while the other pages exhibit more moderate amounts of contention. Thus, it may

be appropriate to eliminate those �ve hot spots by restructuring the program, while allowing eager

combining to handle the more widespread, lower-contention hot spots. In fact, assuming the �ve

hottest pages are contention free and using eager combining for the other pages, we were able to

reduce the runtime overhead due to contention from 20% to 13%. This result, while not conclusive,

suggests that the use of application-level restructuring may be an e�ective complement to hardware-

supported data replication in removing hot spots from certain applications.

In our second experiment, we used 20 servers for each hot cache block, again on a 256-processor

machine. In this case, the run time overhead due to contention in mp3d was reduced from 20%

to 15%. This result demonstrates that it is pro�table to replicate hot data on a larger number

of servers in order to further reduce contention. As another example, we were able to reduce the

contention overhead of all-pairs from 303% to 127% by using 20 servers per hot block on a

256-processor machine.

It may seem that replicating cache lines in a large number of servers consumes an excessive

17

Application Latency

64 processors 256 processors

mp3d 85.6 99.4

mp3d2 83.4 101.4

barnes-hut 83.3 86.4

100 processors 200 processors

bmatmult 82.0 82.2

sgauss 82.3 83.0

mgauss 82.6 86.1

matinv 91.4 124.9

tclosure 82.2 84.3

all-pairs 550.5 1232.8

Table 9: Remote Memory Latency Under Eager Combining

For example, on 200 or more processors, memory queues must be able to hold at least 76 out-

standing requests for mp3d2, 116 outstanding requests for matinv, and 175 outstanding requests

for all-pairs. It is obvious from these results that small queues will not signi�cantly reduce the

e�ects of contention for these programs.

Table 8 presents the increase in running time attributable to contention under the queueing

memory model. While queueing at the memory helps reduce the performance impact of contention,

it does not solve the problem entirely, since several applications still su�er from a high degree of

contention. In particular, when running on 200 or more processors, contention increases the running

time of mp3d by 26%, mgauss by 41%, matinv by 173%, and all-pairs by 417%. This increase in

running time due to contention has a serious e�ect on speedup; mgauss has a speedup of only 74

on 200 processors, while matinv is even worse, with a speedup of 49 on 100 processors, and 43 on

200 processors.

Eager Combining

The previous section showed that, when memory modules are kept constantly loaded during periods

of contention, long queues develop, and contention still keeps some programs from performing well.

A method of radically increasing the e�ective memory bandwidth is needed. This section presents

an evaluation of our proposed method, eager combining, showing its e�ectiveness at alleviating

memory contention.

Tables 9 and 10 present the performance of our application suite under eager combining. We

used 10 servers in our implementation of eager combining; this particular value represents a com-

promise between the additional memory used and the performance improvement of the application.

As seen in the tables, the average memory latency and the percentage increase in running time

due to memory contention are lower for eager combining than they are for queueing. In four cases

(mgauss, matinv, tclosure, and all-pairs) the di�erences between eager combining and queue-

ing are signi�cant, and in three cases (mgauss, matinv and tclosure) these di�erences translate

to a signi�cant improvement in speedup. On 200 processors, mgauss attained a speedup of 102

16

Application Latency Queue Len. Latency Queue Len.

64 processors 256 processors

mp3d 86.6 5 112.5 8

mp3d2 84.0 11 109.9 76

barnes-hut NA NA NA NA

100 processors 200 processors

bmatmult 82.2 3 82.4 3

sgauss 85.1 7 97.5 10

mgauss 114.0 18 232.2 43

matinv 443.6 58 822.5 116

tclosure 152.1 19 411.7 44

all-pairs 820.6 77 1797.0 175

Table 7: Remote Memory Latency and Queue Lengths Under Queueing

Application Running Time Increase

64 processors 256 processors

mp3d 5% 26%

mp3d2 0% 2%

barnes-hut NA NA

100 processors 200 processors

bmatmult 0% 0%

sgauss 2% 4%

mgauss 5% 41%

matinv 52% 173%

tclosure 3% 23%

all-pairs 111% 417%

Table 8: Running Time Increase Due to Contention Under Queueing

15

Consistency Model Protocol Total Number of Messages Number of Hops

Sequential EC (2 * S + 2 * (C - SC)) + 2 (2 * S + 2 * (C - SC)) + 2

DASH-like (2 * C) + 2 (2 * C) + 2

Release EC (2 * S + 2 * (C - SC)) + 2 2

DASH (2 * C) + 2 2

Table 5: Messages transferred in coherency actions (read-shared to modi�ed)

Protocol Total Number of Messages Number of Hops

EC S + 5 4

DASH 4 3

Table 6: Messages transferred in sharing actions (modi�ed to read-shared)

in the tables, eager combining may employ more messages than the DASH protocol when making a

transition from read-shared to modi�ed or modi�ed to read-shared, because hot data blocks are sent

to servers whether or not the servers use the data, and both the servers and clients must be kept

consistent. These extra messages are unlikely to be a serious problem however, since we expect

hot data blocks to be accessed by most processors (including the servers), and the extra messages

required to replicate data to servers can be overlapped under any consistency model. Also, it is

not necessary to wait for invalidation acknowledgements if sequential consistency is not required.

Therefore, under a relaxed consistency model, eager combining is not likely to impose signi�cantly

greater communication latency than the DASH protocol. As shown by the number of hops in the

critical path in tables 5 and 6, eager combining and DASH require roughly the same number of

hops for each state transition, under the assumption that each server actually requires the data it

provides to its clients. Our simulations assume a relaxed consistency model, and therefore do not

include any waiting time in the coherency protocol.

4.3 Evaluation

Queueing at the Memory Module

In the simulation results presented in Section 3.2, a memory module simply rejects any requests

that arrive when it is busy. Rejected requests su�er a round-trip penalty, since the original request

must be re-issued. Moreover, the memory module can go under-utilized while waiting for re-issued

requests to arrive, especially if the network latency is large. By queueing requests at the memory

module rather than rejecting them, we can guarantee that the memory module is fully utilized

while it is hot.

Tables 7 and 8 present the performance of our set of applications under the queueing memory

model. Table 7 presents the average latency for a remote request, and the average length of the

queue when a request arrives at a module under contention. The average queue length can be

considered a lower bound on the queue capacity needed to achieve the average latency. Table 7

shows that queueing is reasonably e�ective at reducing latency, but that very long queues develop.

14

the server doesn't have a copy of the block, or if the server has modi�ed its copy of the block, the

server forwards the client's request to the home node. Subsequent requests from other clients for

the same data block are queued at the server until it receives the block from the home node.

Upon receiving a forwarded read request, the home node proceeds according to the state of the

data block. If the block is not in the modi�ed state, the home node sends the block to the client

directly. Otherwise, the home node forwards the request to the current owner of the block. As in

the DASH protocol, the owner transmits the data block to both the requester and the home node.

On receiving the updated contents of the block, the home node sends a copy to each of the servers

for the block, and sets the state of the block to read-shared. This multicast from the home node to

the servers can be overlapped with computation on all nodes.

It is important to note that the home node does not multicast a data block to its servers

each time the block is written. The multicast takes place only on the transition from modi�ed to

read-shared. Thus, we avoid eager sharing of partially modi�ed data blocks. Nonetheless, eager

combining could exacerbate any adverse performance e�ects caused by �ne-grain sharing and false

sharing.

When a client issues a write to a hot data block, a request for ownership is sent directly to

the home node, bypassing the server. On receiving this request, the home node proceeds according

to the current state of the data block. If the block is in the modi�ed state, the protocol proceeds

exactly as in DASH. That is, the request is forwarded to the current owner of the block, which

transfers ownership to the requesting node, and requests that the home node update the ownership

of the block. If the block is in the read-shared state, the home node must invalidate all copies, both

in the servers and clients.

To implement these invalidations, the home node sends invalidation messages to servers, who

then pass on invalidations to their clients. In this scheme, the directory information in the home

node is consistent with respect to the state of a data block and the number of servers, but not

the number of clients. When a write request reaches the home node, the home sends the data to

the new owner, and tells the new owner the number of servers containing copies of the data block.

The home node sends invalidation messages to each sever, which then send invalidation messages

to each client. When the clients have all acknowledged the invalidation to their server, the server

sends an acknowledgement to the new owner.

In comparison to the DASH protocol, this invalidation scheme reduces the total amount of

work required of the home node to service hot data blocks (under the assumption that servers for

a data block usually access the data block). Instead of distributing copies of a hot data block to

all processors (as in DASH), the home node need only send copies to the servers for the block.

Most read requests are satis�ed by servers, and therefore never reach the home node. If a server

must forward a read request to the home node on behalf of one client, that request will generate

a single response that will satisfy requests from the other clients of the server. In general, this

scheme reduces the number of messages the home node must send, since the number of servers for

a hot block is expected to be much smaller than the number of processors using the block.

Eager combining is not without costs, however. Tables 5 and 6 present a comparison between

the number of messages involved in the DASH protocol and in eager combining. In these tables,

S stands for the number of servers per hot data block, C is the total number of clients of the hot

block, and SC is the number of servers that are also clients of the hot block. The number of hops

referred to in the tables is the number of messages in the critical path of the protocol. As observed

13

4.2 A Coherency Protocol Incorporating Eager Combining

In this section we describe a coherency protocol that implements data replication for hot spots.

Our purpose is to show that the coherency protocol can be used to alleviate contention in direct-

connected, distributed-shared-memory multiprocessors.

We assume certain physical address ranges are marked hot, and these addresses are treated

specially by the coherence protocol. Two ways to accomplish this are:

� The choice of protocol could be selected on a per-page basis; an analogous feature is already

present in the MIPS R4000 cache coherence controller [MIPS Computer Systems Inc., 1991].

� A portion of the physical address space of the machine could be permanently set aside for

hot data.

Which of these approaches is chosen depends on tradeo�s involving cache memory cost, the bene�ts

of dynamic protocol selection, and the ability of the compiler or programmer to precisely identify

hot data ranges. Our simulation results assume that all shared data is marked as hot.

Our basic approach is to designate a �xed number of \server nodes" for each hot physical

page, assigning to each server some subset of the remaining nodes as clients. The protocol uses

eager sharing to distribute data to servers, which then satisfy requests from multiple client nodes.

Multiple requests that cannot be satis�ed immediately by a server are combined to reduce the

tra�c directed to a hot spot. Since our approach incorporates the properties of both eager sharing

and combining trees, we call it eager combining.

We use the DASH cache coherence protocol [Lenoski et al., 1990] as a starting point for our

eager combining protocol. Each data block in DASH is assigned to a memory module, and that

module's node is referred to as the data block's home node. In the eager combining version of the

protocol, we designate a �xed number of server nodes for each hot data block, which are determined

statically from the physical page number. As with regular data blocks, hot data blocks can be in

one of three states: uncached, read-shared, andmodi�ed. We make three modi�cations to the DASH

protocol in order to handle hot data blocks:

� Reads to a hot data block are directed to a server rather than to the home node;

� When a hot data block makes a transition from modi�ed to read-shared, the block's home

node multicasts the data to the block's servers;

� When a hot data block makes a transition from read-shared to modi�ed, the clients and the

servers must have their copies of the block invalidated.

When a node makes a read request on a hot data block, the request goes directly to the proper

server, which is selected based on the requester's node number and the physical page number.

2

If

the server has an unmodi�ed copy of the block, it immediately sends the block to the requester. If

2

The mapping between clients and servers can be static or dynamic. Static mapping is simplest; dynamic mapping

can help to eliminate contention for server memory when a static mapping happens to map contending processors to

the same server. Our results are based on static server selection; however, we have examined dynamic server selection

experimentally and found that it does not signi�cantly improve on static selection for our applications.

12

memory module. Distributing data across more memory modules (pages) requires smaller pages or

discontiguous allocation, neither of which is desirable.

We can also reduce the e�ect of memory contention by queueing requests at the memory, rather

than rejecting them when the memory module is busy. Queueing requests allows a memory module

to be continuously utilized during periods of contention. We evaluate this approach in Section 4.3,

and show that queueing reduces, but does not eliminate, the e�ects of contention. In addition, we

show that queueing requires hardware support for very long queues.

Another conceivable strategy for reducing contention is to use some kind of back-o� strategy,

in which a processor that is rejected by a busy memory module waits for a small random period

of time before reissuing the request. However, random back-o� is likely to leave memory modules

underutilized during periods of contention, and in the best case approaches the performance of

queueing at the memory module. For this reason, we do not consider this option any further.

Since queueing at the module does not fully alleviate contention, we concentrate on still another

way of dealing with contention: data replication. Data replication can be either producer-driven or

consumer-driven. Producer-driven approaches are referred to as eager sharing . In eager sharing,

the producer of a data block actively transmits it to the nodes that will subsequently need it. An

e�cient implementation of eager sharing requires that we 1) identify the recipients of the data to

be multicast and 2) broadcast the data block only when the producer is �nished modifying the

entire block.

Consumer-driven data replication approaches are referred to as combining trees [Yew et al.,

1987]. In this approach, processors are organized into a tree structure, in which each processor

requests the data block from its parent node, and the producer is at the root. Each parent node

combines the requests of its children into a single request to its parent.

The relative feasibility of these two styles of data replication is dependent on the communica-

tion and addressing features of the underlying architecture. Scalable distributed-shared-memory

architectures can be separated into two categories, based on whether a data block has a home.

Architectures in which data has no �xed home are referred to as COMA (Cache Only Memory

Architecture), e.g., the KSR1 [Kendall Square Research Corp., 1992]. Architectures in which data

blocks have a home are referred to as CC-NUMA (Cache-Coherent Non Uniform Memory Access),

e.g., DASH [Lenoski et al., 1990].

COMA machines are usually based on broadcasting media, since processors must be able to

easily locate any data blocks they access. For example, the KSR1 uses a hierarchy of rings; a

processor broadcasts requests for data blocks on the local ring, which are forwarded up the hierarchy

of rings if necessary to satisfy the request. Once data is brought into a local ring, subsequent requests

for the data are satis�ed by the local ring. In e�ect, the KSR1 implements a dynamic combining

tree solution to memory contention, limiting it to at most 32 processors (the number of processors

on the local ring). In addition, the KSR1 supports a form of programmer-speci�ed eager sharing

using the post-store instruction, which updates all cached copies of a replicated data block.

CC-NUMA machines, on the other hand, usually have no such broadcast medium, making it

more di�cult to either locate replicated data (in a combining tree approach) or to perform dynamic

multicast (in an eager sharing approach). In Section 4.2 we propose a modi�cation to the DASH

coherency protocol that implements data replication in a CC-NUMA machine. We show how our

protocol solves the problems associated with the lack of a broadcast medium, and then show in

Section 4.3 that the protocol greatly alleviates memory contention in the applications we consider.

11

Application Number of Hot Spots

64 processors 256 processors

mp3d 6 24

mp3d2 1 1

barnes-hut NA NA

100 processors 200 processors

bmatmult 2 3

sgauss 87 326

mgauss 288 495

matinv 448 442

tclosure 401 512

all-pairs 400 400

Table 4: Number of Hot Spots

became even hotter, with latencies of 2764 and 2634 cycles; one new page became hot; and one

more hot spot reached an average latency higher than 350.

Repeating this process by removing the hot spots with latency higher than 2000 cycles resulted

in a similar e�ect. The application's performance does not improve much, still su�ering a 67%

degradation. The most important e�ect of removing these two hot spots was that another page

became extremely hot with a latency of 1930 cycles.

After this step there were still 20 hot spots. We cannot expect to continue this process indef-

initely, because in practice each hot spot removal would require the laborious identi�cation of a

hot physical page, determination of its virtual address, identi�cation of the data structure residing

at that address, and the restructuring of the computation on the data structure. In addition, this

approach to contention elimination may not be always possible in the presence of arbitrary data

structures.

These results, in combination with the results presented in the previous section, indicate that

individual elimination of hot spots through software modi�cation cannot be expected to completely

alleviate the e�ects of memory contention in future machines. Hot spots must be addressed in

a more systematic way, at the hardware level. The next section evaluates two such hardware

approaches.

4 Reducing Memory Contention

4.1 Alternatives for Reducing Memory Contention

The memory contention we observed in our programs could conceivably be reduced by increas-

ing total memory bandwidth. There are two ways of achieving such an increase: increasing the

bandwidth of each memory module (through a wider and/or faster memory) or e�ectively utilizing

more memories. Our simulations are already very aggressive in terms of the bandwidth of each

10

500 1000 1500 2000

0
5

10
15

Average Delay Per Reference to Page

N
um

be
r

of
 P

ag
es

Figure 3: Distribution of Hot Spots in mgauss, 200 processors

Table 4 illustrates the growth in the number of hot spots in our applications that occurs when

using larger numbers of processors. For some applications (mp3d, sgauss, mgauss and tclosure),

the number of hot spots increases markedly as we move the application to a larger machine. For

other applications (mp3d2, bmatmult, matinv, and all-pairs), the number of hot spots increases

slightly or remains roughly constant. (For all-pairs the number of hot spots does not increase

because all shared pages are hot, even on 100 processors.) Even in those cases where the number

of hot spots does not increase signi�cantly, pages become hotter as the number of processors is

increased.

3.4 Persistent Aspects of Memory Contention

One response to the presence of hot spots might be to eliminate them on an individual basis, using

software techniques. In this section we show that removing hot spots on an individual basis has

the e�ect of causing other hot spots to worsen.

We performed selective hot-spot removal on mp3d because it has a few pages that are much

hotter than the others. The average remote memory latency for mp3d on 256 processors is 302

cycles. One of its pages is extremely hot with an average latency of 4411 cycles. Four other pages

are also very hot with average latencies of 2522, 2096, 1257 and 1222 cycles. No other page has

average latency higher than 350 cycles.

We modi�ed the trace analyzer so that references to the three hottest pages would always be

serviced without contention costs. The result was that the average remote memory latency declined

from 302 to 212, indicating a reasonably successful improvement to the application. However, the

application still su�ers a 76% degradation in running time due to the remaining contention. We

observed three interesting e�ects after this modi�cation: The two pages that were already very hot

9

Processors Input Size Runtime Increase

64 320 � 320 71%

128 400 � 400 333%

256 512 � 512 1004%

Table 3: Scaled Speedup Experiments With mgauss

200 400 600 800 1000 1200

0
2

4
6

8
10

Average Delay Per Reference to Page

N
um

be
r

of
 P

ag
es

Figure 2: Distribution of Hot Spots in mgauss, 100 processors

� hot spots are spread widely throughout memory;

� the degree of contention for individual hot spots increases drastically with an increase in the

number of processors; and

� the number of hot spots increases with an increasing number of processors.

Figure 2 shows the distribution of access times to memory for mgauss running on 100 processors.

If we de�ne a hot spot as a page with an average access time of more than 123 cycles (that is, a page

whose average access time is 50% larger due to contention), then we see that hot-spot contention

in this program is spread across a number of pages. Over 130 pages exhibit an average access time

between 400 and 800 cycles, while 18 pages exhibit an average access time in excess of 1000 cycles.

Figure 3 presents the distribution of hot spots for mgauss on 200 processors. By comparing

�gures 2 and 3, we can see that the number of hot spots and the average access time per hot spot

increases as we increase the number of processors. The number of hot pages is much larger in

�gure 3; more than 490 pages are hot on 200 processors. The average access times of the pages are

also very high, reaching above 2000 cycles in ten cases. We observed this same e�ect for most of

the application programs in our study.

8

reference the �rst element of a row in the matrix. However, serial access to the �rst element in a

row tends to skew the requests for subsequent elements in that row, thereby avoiding contention

for individual elements. Thus, factor (2) is primarily responsible for the contention seen in these

programs.

We con�rmed this conclusion using a simple experiment in which we simulated Gaussian elim-

ination on 50 processors, using a matrix that was allocated so that elements within the same row

were placed in di�erent pages. This allocation strategy reduced the percentage of delayed references

from 20% to 1.5%, and the average remote access latency from 164 cycles to 83 cycles. This exper-

iment con�rms that the memory contention seen in our kernels is due primarily to simultaneous

access to the elements of a row, all of which reside in one memory module.

Note that bmatmult does not exhibit any memory contention, since the relatively small number

of remote memory accesses in the program are not tightly synchronized.

In order to further study the contention behavior of programs, we simulated some programs on a

larger range of machine sizes. Figure 1 shows the increase in running time attributable to contention

for the mgauss application. This �gure illustrates how rapidly contention-induced slowdown rises

as an application is run on machines of increasing size. These simulation results were modeled

in a more detailed analysis presented in [Bianchini et al., 1993]. In that paper we showed that,

beyond a certain number of processors, each additional processor adds the cost of an entire matrix's

memory service time to the execution time of the program. Thus, an estimate of the overhead due

to contention in mgauss (using lock synchronization), on a large number of processors (P) is:

OVH(P) =

M

E

C(P � �)

where C is the memory's service time (10 cycles), M is the number of elements in the entire

matrix, E is the number of elements per cache line, and � is the threshold number of processors

beyond which the system shows memory saturation. This analysis shows that the e�ect of memory

contention can be expected to grow linearly with increasing machine size.

In addition, it is important to note that some programs exhibit large amounts of contention,

even when the input size is scaled up with the number of processors. Table 3 presents performance

results of mgauss when we kept the amount of work per processor constant and thus kept the

communication to computation ratio the same. Since communication is the source of contention,

we would expect that maintaining the amount of work per processor constant should reduce the

amount of contention seen. However, as can be seen in the table, increasing the problem size

with the number of processors helps, but contention is still a serious problem. While contention

increases the total running time by 71% on 64 processors, it increases running time by as much as

1004% when moving to 256 processors, even though the problem size has scaled with the number

of processors.

3.3 Widespread Aspects of Memory Contention

In this section we show that the large amount of memory contention we �nd seems to be intrinsic

to the way programs for shared-memory architectures are written. In particular, we show that for

many applications:

7

 0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

40 60 80 100 120 140 160 180 200

T
im

e
in

 C
yc

le
s

Number of Processors

Figure 1: Increased Running Time Due to Contention in mgauss

The results in these two tables are disconcerting, considering that our simulation parameters are

optimistic. The e�ects of contention are even worse if we relax some of our optimistic simulation

assumptions. For example, if we double the memory latency to 20 processor cycles, the e�ect

of contention is even more pronounced: on 200 processors, 92% of the misses in mgauss su�er

contention (up from 84%), and the average remote reference latency increases to 2910 cycles (up

from 1546). Similarly, if we keep memory latency at 10 cycles and reduce the number of bytes we

fetch on a miss to 32 bytes, then 90% of the misses in mgauss su�er contention, and the average

remote latency increases slightly to 1571 cycles. If we both double the memory latency and reduce

the number of bytes fetched to 32 bytes, then the average remote latency increases to 2904 cycles.

The very poor performance results we observed are due to a number of application characteris-

tics. Mp3d, for instance, is known to exhibit poor locality of reference, and frequent synchronization.

Contention in mp3d is caused by very tightly synchronized processes accessing a data structure con-

taining counters, and the reservoir of particles, which acts as a central pool of particle velocities.

Mp3d2 improves the locality characteristics of mp3d, and contention decreases markedly.

Our simulations show that mgauss, matinv, tclosure and all-pairs have good locality of

reference and good speedup in the absence of contention; speedups of 114, 124, 154, and 144

(respectively) on 200 processors. However, Table 2 shows that these applications forfeit all their

speedup to contention e�ects. The excessive memory contention seen in sgauss, mgauss, matinv,

tclosure and all-pairs could have been caused by any of three factors: (1) simultaneous access

to a single element of the main matrix, (2) simultaneous access to a single row of the main matrix

(which resides in a single page, and therefore results in memory contention), and (3) simultaneous

access to multiple rows that happen to reside in the same page. In all of our kernel examples we

padded the rows of the matrix to �ll a page, and therefore eliminated any contention caused by

simultaneous access to multiple rows within a single page. Simultaneous access to a single element

of the matrix can occur in our programs since, upon creation, all processes immediately try to

6

Application Average Latency

64 processors 256 processors

mp3d 132.3 302.6

mp3d2 98.7 286.6

barnes-hut 97.3 180.6

100 processors 200 processors

bmatmult 82.7 83.0

sgauss 100.1 232.8

mgauss 571.5 1546.7

matinv 535.6 990.5

tclosure 228.4 619.3

all-pairs 5924.1 12335.5

Table 1: Average Remote Memory Latency

Application Running Time Increase

64 processors 256 processors

mp3d 40% 135%

mp3d2 2% 6%

barnes-hut 4% 15%

100 processors 200 processors

bmatmult 0% 0%

sgauss 7% 30%

mgauss 112% 516%

matinv 68% 219%

tclosure 8% 47%

all-pairs 927% 3126%

Table 2: Running Time Increase Due to Memory Contention

5

from network contention; adding network contention to our simulations would assign some of the

contention we observe to the network rather than the memory, but would not be likely to a�ect

the trends and conclusions we present in this paper.

The principal outputs of the analyzer are the average remote memory latency, and the running

time of the program in the presence of memory contention. In this paper, average remote memory

latency means the average duration from the time the memory request is issued to the time the

data is received. This average duration is an important metric that can be used to guide analytical

studies of large-scale multiprocessors, as in [Agarwal, 1992]. Additional statistics output from the

trace analyzer indicate the average remote memory latencies on a per-page basis (which allows us

to determine the distribution of memory latencies across pages, and the identities of hot pages) and

the average queue lengths (when memory requests are allowed to queue at the memory modules).

We studied the programs shown in the left-hand column of Table 1. The �rst three are well-

known applications used in many previous studies. Mp3d and barnes-hut are programs from the

SPLASH suite [Singh et al., 1992]. Mp3d is a wind-tunnel air
ow simulation. Barnes-hut is an

N-body application that simulates the evolution of a system under the in
uence of gravitational

forces. Mp3d2 is a version of mp3d restructured for better cache behavior, as described in [Cheriton

et al., 1991]. In our experiments, both versions of mp3d were run with 30000 particles for 100 time

steps. Barnes-hut was run with a system of 4K bodies.

The last six programs in Table 1 represent computational kernels similar to those present in

many programs. Bmatmult is blocked matrix multiplication. Mgauss is medium-grained Gaussian

elimination, in which each process eliminates one row of the matrix. Sgauss is �ne-grained Gaus-

sian elimination, in which each process eliminates a single element of the matrix. Matinv is matrix

inversion. Tclosure is transitive closure, in which each process operates on a set of rows of an

adjacency matrix. All-pairs computes the all-pairs shortest paths of a graph, using a paralleliza-

tion of Warshall-Floyd's algorithm. Our example kernels, except for bmatmult, all require that all

processors simultaneously access data (a row of the main memory) that was recently modi�ed by

a single processor. This form of producer/consumers relationship can lead to memory contention

if the data that must be accessed by all processors resides in a single memory module, as is usually

the case. All these kernels operate on 512 � 512 matrices, except for bmatmult and all-pairs,

which operate on 400 � 400 matrices.

3.2 Observed Contention

We evaluated a set of applications with su�ciently di�erent behavior to establish that contention

can be a common problem in large-scale machines. Table 1 presents the average memory latency

for references that missed in the cache for di�erent numbers of processors. The table shows that

all the applications studied exhibited some degree of contention for memory, and that in the vast

majority of cases, average latency increases signi�cantly with the number of processors.

1

The most important metric provided by our simulations is the increase in execution time due

to contention. Table 2 shows that the amount of time spent contending for memory, especially on

large machines, can signi�cantly increase the running time for most applications.

1

Recall that remote memory latency in the absence of contention is 82 cycles.

4

3 Memory Contention in Real Programs

3.1 Experimental Method

Since we are interested in studying memory contention in the truly large-scale shared-memory

multiprocessors currently under development, direct experimentation is not an available option.

Therefore, we simulate a large-scale direct-connected multiprocessor (up to 256 processors) exe-

cuting our example applications. Our simulations consist of two distinct steps: a trace collection

process, and a trace analysis process. The trace-collection step uses Tango [Davis et al., 1991] to

simulate a multiprocessor with (in�nite) coherent caches. The traces generated by Tango contain

the data references that missed in the local cache of each processor, and all synchronization events.

Our analyzer process takes as input an address trace produced by Tango, and simulates exe-

cution of the references in the trace on a distributed-shared-memory multiprocessor. The analyzer

assigns each reference to the appropriate processor at the appropriate time by tracking the delay

induced by previous references, combined with the time spent executing instructions on the pro-

cessor. The analyzer respects the synchronization behavior of an application as represented by the

synchronization events contained in the trace. Synchronization events are not allowed to cause

contention in our model, although they are critical in maintaining the relative timing of events

during trace analysis.

In our machine model, a memory module can process only one request at a time. Requests

arriving when the module is busy are rejected and must be reissued. Our analyzer measures

contention for memory at the page level; thus each 4KB page is treated as a separate memory

module to which requests may be directed. We treat each page as a separate memory module so as

to simulate an ideal page placement policy in which contention caused by simultaneous accesses to

multiple pages does not occur. One consequence of this assumption is that the number of memory

modules in the system is dependent on the size of the problem and not on the number of processors

in use. As a result, our estimates of memory contention are optimistic, in that we measure the

contention inherent in an application, independent of the placement of pages in memory modules.

Our simulations assume a cache line size of 16 bytes with four lines fetched on a miss, a �xed

network latency of 36 processor cycles, and local memory latency of 10 processor cycles. In the

absence of contention, a remote memory request requires a request message, a reply message, and

memory service time, or 82 cycles total. Each request rejected due to contention su�ers a 72 cycle

penalty, corresponding to an immediate re-issue of the request.

Our simulation assumptions are optimistic, in that we chose values for the simulation parameters

that are likely to result in less contention than would exist in the machines of the near future. For

example, we chose to use 64-byte fetches on misses, which is larger than the fetching units used in

both DASH and Alewife (but smaller than the fetching units used in the Kendall Square KSR1). In

addition, we chose a memory latency of 10 processor cycles per fetching unit, and a network latency

of 36 processor cycles, both of which are quite optimistic. We would expect the combination of

fewer misses (due to larger fetching units, and assuming no �ne-grain sharing in our applications)

and faster memory service time to result in less memory contention than would otherwise occur

in DASH and Alewife. Our in�nite cache assumption means that we only measure the e�ect of

invalidation-related misses, and ignore capacity misses. Our assumption that network latency is

�xed (i.e., there is no network contention) allows us to isolate the e�ects of memory contention

3

1988; Ho and Eager, 1989]. Those studies focused on eliminating tree saturation, and used synthetic

applications for experiments. Our experiments show signi�cant performance degradation without

including network congestion e�ects, and are based on real applications.

Glenn et al. [1991] studied hot-spot e�ects in synthetic applications in the absence of network

congestion and processor caches. They divided hot spots into three categories: 1) a read-only

memory location with a large number of readers; 2) synchronized access to memory modules due

to related strides; and 3) hot spots caused by synchronization references. This classi�cation does

not apply directly to machines with processor caches, which do not exhibit type 1 hot spots, and

may not exhibit type 3 hot spots given an appropriate implementation of synchronization [Mellor-

Crummey and Scott, 1991]. In addition, type 2 hot spots are primarily an issue on machines

that use low-order interleaving of addresses. In this paper we focus on a fourth type of hot spot,

synchronized access to read-mostly data. We show that this type of contention can be a major

source of overhead in shared-memory multiprocessors, and that it is often caused by synchronized

access to large data structures, as opposed to single addresses.

In their study of a single application, Glenn and Pryor [1991] found hot spots to be a signi�cant

problem. They noted that each time their application was moved to an increasing number of

processors, new hot spots developed. We show that this e�ect is common, occurring consistently

in the applications we studied.

A number of other studies have considered memory reference patterns of applications running

on multiprocessors. However, none to date has measured the amount of hot spot contention in

typical applications. Agarwal and Gupta [1988] did not record exact time in their traces, so precise

quanti�cation of memory contention was not possible. Darema-Rogers et al. [1987] found signi�cant

burstiness in the memory access rates of parallel programs, which indicates the likelihood of memory

contention, but they did not measure or predict contention e�ects.

In general, memory contention results from accesses to data by multiple processors in a coor-

dinated way; this e�ect is not a simple function of temporal, spatial, or processor locality, which

are the metrics emphasized by previous trace-based studies. In [Bianchini et al., 1993], we address

this problem at the application (compiler) level through a technique called block-column allocation.

Although successful at alleviating contention, block-column allocation is only e�ective for certain

types of matrix computations. This paper explores more widely applicable solutions that do not

depend on sophisticated compilers or programmers.

We propose a general solution to hot-spot contention consisting of simple hardware support for

data replication. Our strategy combines ideas from software combining trees [Yew et al., 1987] and

eager sharing (e.g., [Wittie and Maples, 1989]). We describe and evaluate the implementation of

our strategy for use in distributed directory-based cache-coherency schemes [Chaiken et al., 1990;

Lenoski et al., 1990].

The quanti�cation of memory contention we present in this paper has implications for analytical

models of multiprocessor performance, such as [Agarwal, 1992]. In particular, the round-trip latency

of a non-local memory reference is an important parameter when predicting the number of processor

contexts that will be most pro�table in multi-threaded multiprocessors. We show that non-local

memory references are often considerably more expensive when memory contention e�ects are

included.

2

1 Introduction

E�ective use of large-scale multiprocessors requires the elimination of all bottlenecks that reduce

processor utilization. A common assumption in analytical models used to guide multiprocessor

design is that applications generate a uniform memory referencing pattern, resulting in a uniform

utilization of the memory modules in the system. This assumption is overly optimistic, because

nonuniformity in reference patterns will lower throughput as processors contend for the bandwidth

of individual memory modules. This e�ect has been termed hot-spot contention [P�ster and Norton,

1985].

In this paper we show that signi�cant memory contention is common in typical parallel ap-

plications, when those programs are run on large-scale machines. In addition, we show that hot

spot contention increases in degree and extent as programs are moved from smaller to larger ma-

chines. Whereas previous hot-spot studies have focused primarily on their e�ects on multistage

interconnection networks, we show that hot spots will have serious performance implications in

direct-connected, distributed-shared-memory machines such as the Stanford DASH [Lenoski et al.,

1992] and the MIT Alewife [Agarwal et al., 1992]. We relate our hot spot studies to previous

analytical and simulation studies of hot spots, and previous work on memory reference patterns,

in Section 2.

Our approach to hot spot evaluation di�ers from previous approaches, which did not use ref-

erence traces from real programs. We generate reference traces from a number of typical parallel

programs using the Tango simulator [Davis et al., 1991], and then simulate the contention e�ects of

those traces when accessing a distributed memory. This allows us to explicitly measure the delay

experienced by requests to each memory module, and provides insight into the distribution of hot

spots in memory.

Our simulator, and the quanti�cation of hot-spot contention in the programs we studied, is

presented in Section 3. We show that memory contention can drastically increase running time,

even for programs with good locality of reference and under optimistic simulation parameters.

We show that hot spots are often spread throughout memory; in some applications over 90% of

the shared data pages exhibit contention. We also show that the selective removal of individual

hot spots can cause other hot spots to worsen. The widespread and persistent nature of memory

contention in our applications suggests that it should be addressed at the architectural level.

In section 4 we evaluate two mechanisms for hot spot removal: queueing at the memory module,

and hardware-supported data replication. We show that queueing at the memory module is reason-

ably e�ective, but that very long queues are needed. As an alternative, we propose a combination

of eager sharing and combining trees, applied to distributed directory-based coherence protocols.

We evaluate the performance of our protocol, and show that it virtually eliminates the e�ects of

hot spot contention. We conclude, in section 5, that hardware-supported replication is an attrac-

tive way to deal with memory contention, especially when used in conjunction with application

restructuring techniques designed to eliminate the few extreme cases of hot spots.

2 Related Work

Previous evaluations of the e�ects of hot spots have focused primarily on their impact in multistage

interconnection networks (MINs) [P�ster and Norton, 1985; Thomas, 1986; Patel and Harrison,

1

Memory Contention in Scalable Cache-Coherent Multiprocessors

Ricardo Bianchini, Mark E. Crovella,

Leonidas Kontothanassis and Thomas J. LeBlanc

fricardo,crovella,kthanasi,leblancg@cs.rochester.edu

The University of Rochester

Computer Science Department

Rochester, New York 14627

Technical Report 448

April 1993

Abstract

E�ective use of large-scale multiprocessors requires the elimination of all bottlenecks that reduce

processor utilization. One such bottleneck is memory contention. In this paper we show that

memory contention occurs in many parallel applications, when those applications are run on large-

scale shared-memory multiprocessors. In our simulations of several parallel applications on a large-

scale machine, we observed that some applications exhibit near-perfect speedup on hundreds of

processors when the e�ect of memory contention is ignored, and exhibit no speedup at all when

memory contention is considered. As the number of processors is increased, many applications

exhibit an increase in both the number of hot spots and in the degree of contention for each hot

spot. In addition, we observed that hot spots are spread throughout memory for some applications,

and that eliminating hot spots on an individual basis can cause other hot spots to worsen. These

observations suggest that modern multiprocessors require some mechanism to alleviate hot-spot

contention.

We evaluate the e�ectiveness of two di�erent mechanisms for dealing with hot-spot contention

in direct-connected, distributed-shared-memory multiprocessors: queueing requests at the memory

module, which allows a memory module to be more highly utilized during periods of contention,

and increasing the e�ective bandwidth to memory by having the coherency protocol distribute

the hot data to multiple memory modules. We show that queueing requires long queues at each

memory module, and does not perform as well as our proposed coherency protocol, which essentially

eliminates memory contention in the applications we consider.

This research was supported under NSF CISE Institutional Infrastructure Program Grant No. CDA-8822724, and

ONR Contract No. N00014-92-J-1801 (in conjunction with the DARPA HPCC program, ARPA Order No. 8930).

Ricardo Bianchini is supported by Brazilian CAPES and NUTES/UFRJ fellowships. Mark Crovella is supported

by a DARPA Research Assistantship in Parallel Processing administered by the Institute for Advanced Computer

Studies, University of Maryland.

