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5 Conclusions

In this paper we used detailed simulations of application kernels to show that memory contention

can substantially degrade the performance of SPMD computations on large-scale shared-memory

multiprocessors. We showed that under row-major allocation, memory contention is due to synchro-

nized access to entire rows of a matrix, rather than simultaneous accesses to isolated data elements.

We also showed that block-column allocation, which divides the rows of a matrix into cache lines,

and distributes the cache lines containing each row among multiple memory modules, dramati-

cally reduces memory contention, and therefore performs much better than row-major allocation

on large-scale machines.

We analyzed the costs associated with block-column allocation and logarithmic broadcasting,

and showed how the choice between these two techniques for alleviating memory contention de-

pends both on the type of synchronization used and the number of processors. For large numbers of

processors, logarithmic broadcasting is best when using barrier synchronization, but block-column

allocation is best when using lock synchronization. For small numbers of processors, the situation

is reversed: block-column allocation is best when using barrier synchronization, while logarithmic

broadcasting is best when using lock synchronization. Since the use of barrier synchronization

exacerbates memory contention, we conclude that block-column allocation and lock-based syn-

chronization is the most e�ective combination for reducing memory contention in SPMD matrix

computations on large-scale machines.
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Figure 2: Overhead of Logarithmic Broadcasting compared to Block-Column Allocation for Lock

Synchronization (Left) and Barrier Synchronization (Right)

P = 200, r = 6. Table 10 shows the results of our experiments with All pairs and Gaussian

elimination under logarithmic broadcasting, and compares them to their ideal cases. The table

shows that K

2

= 1.0M cycles is a good estimate of the constant overhead for Gaussian elimination

under logarithmic broadcasting. It also shows that our estimate of the overhead due to logarithmic

broadcasting under barriers in all-pairs shortest paths is fairly accurate.

Figure 2 shows how the two techniques compare. The comparison for lock synchronization is

on the left, while the comparison for barrier synchronization is on the right. For lock synchro-

nization, beyond about 50 processors, block-column allocation performs better than logarithmic

broadcasting. This is because the �xed overhead under block-column allocation is lower than that

under logarithmic broadcasting. Since contention is much less severe under lock synchronization,

the extra cycles required to implement logarithmic broadcasting are more expensive than necessary;

block-column allocation is preferable due to its simplicity.

The situation is di�erent for barrier synchronization, as shown on the right side of Figure 2.

This �gure shows the overhead of block-column allocation compared to logarithmic broadcasting

using a tree of �xed degree (equal to 5). The step-function nature of the logarithmic broadcasting

curve is due to changes in the depth of the tree as the number of processors increases. The �gure

also shows an upper bound on logarithmic broadcasting to show that as P grows large, logarithmic

broadcasting eventually outperforms block-column allocation everywhere. This �gure shows that

under barrier synchronization contention is so severe that the linearly increasing costs of accessing

the �rst cache line in each row under block-column allocation eventually grow larger than the

logarithmically increasing costs of broadcast.

Figure 2 shows that for large numbers of processors, logarithmic broadcasting is best when using

barrier synchronization, but block-column allocation is best when using lock synchronization. It

also shows that for small numbers of processors, the situation is reversed: block-column allocation

is best when using barrier synchronization, while logarithmic broadcasting is best when using lock

synchronization.
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Application Running Time

50 processors 100 processors 200 processors

Optimal Gauss 6.5 3.7 2.4

Log. Broadcasting Gauss (Locks) 7.4 4.7 3.4

Optimal All pairs 12.4 6.7 4.0

Log. Broadcasting All pairs (Barriers) 15.9 10.3 7.8

Table 10: The running time of Gauss and All pairs (in millions of cycles) under logarithmic broad-

casting, compared to optimal.

the number of processors contending is less than 8, each processor is delayed only a small amount.

Thus, in our simulated machine, logarithmic broadcasting should not use a tree of degree greater

than 8. With this assumption, logarithmic broadcasting can completely eliminate contention when

used with lock synchronization. This is because the condition in which some memory module is

always saturated does not occur, as it did under simple row-major allocation. Memory modules

do not saturate since the complete broadcast of each row is implemented using a much larger set

of memory modules, and the number of processors accessing a single module will never be greater

than the degree of the tree.

For this reason we can estimate the cost of logarithmic broadcasting under lock synchronization

as a constant, which is equal to the extra instructions and synchronization necessary to implement

the technique. Thus,

LB(P ) = K

2

where K

2

depends on the speci�c program. Interestingly, in the programs we studied, K

2

was

signi�cant; for example, in Gaussian elimination, K

2

= 1.0M cycles. This occurs partly due to

the synchronization needed to access broadcast bu�ers. Ideally each row would have a broadcast

bu�er on each processor, but that would require expanding the memory usage of the program by a

factor of P , which is impractical. Since the amount of bu�er space used for row broadcast on each

processor must be bounded, bu�er space must be re-used, which requires synchronization.

In contrast, under barrier synchronization, the cost of logarithmic broadcasting is not indepen-

dent of P . The broadcast of each row requires d steps, where d + 1 is the depth of the broadcast

tree.

3

For a tree of degree r, each step requires r row transfers. The �rst row causes a delay equal

to its transfer time; the other rows cause a delay equal only to their memory service times (as

discussed earlier in this section). Thus we can estimate the overhead of logarithmic broadcasting

under barrier synchronization as:

LB(P ) = d

M

E

T + d(r� 1)

M

E

C

where d is proportional to dlog

r

Pe.

In our experiments we held d equal to 3, while we varied r to attain the lowest possible value

consistent with d = 3. For the 50 processor case, we set r = 4; for P = 100, r = 5; and for

3

For a tree of degree r, the depth of the broadcast tree is roughly dlog

r

Pe, although details of how the tree is

constructed can change this value by 1 in some cases. In all our experiments, d = 3.
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Figure 1: Overhead of Row Major Allocation compared to Block-Column Allocation for Barrier

Synchronization (Left) and Lock Synchronization (Right)

synchronization, block-column allocation is preferable even on as few as 10 processors. Beyond

about 50 processors, the cost of block-column allocation begins to rise, but at a slower rate than

the cost of row-major allocation. This trend re
ects the di�erence between contending for the �rst

cache line of the row in the block-column case, and contending for the entire row in the row-major

case.

The analytic models for lock synchronization in Gaussian elimination are plotted on the right

side of Figure 1. Since contention under lock synchronization starts more slowly than under barriers,

more processors are required before block-column allocation is preferred over row-major, but the

same basic e�ect is observed: beyond some number of processors (in this case about 50) block-

column allocation is always preferable.

4.2 Comparing Block-Column Allocation and Logarithmic Broadcasting

The previous section showed that as the number of processors increases, eventually there comes a

point when it is more pro�table to use block-column allocation over row-major allocation. However,

to adequately assess when to use block-column allocation, we must compare it to the best known

alternative: logarithmic broadcasting.

We implemented two versions of broadcasting for the row-major Gaussian elimination program.

One version is consumer-driven: the producer sets a 
ag indicating when data is ready, and the con-

sumers copy the data; the other is producer-driven: the producer copies the data for the consumers.

In the producer-driven implementation, the copies must occur in sequence. In the consumer-driven

implementation, multiple consumers can overlap time spent in the network, so many copy opera-

tions can proceed in parallel. Thus, the consumer-driven technique performs signi�cantly better,

which is why we only present results for that technique.

As pointed out in the last section, 8 processors reading a row can saturate a memory module

when the memory latency is 10 cycles and the network latency is 72 cycles; however, as long as
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Application Running Time

50 processors 100 processors 200 processors

Optimal Gauss 6.5 3.7 2.4

Row-Major Gauss (Locks) 7.4 8.5 15.6

Optimal All pairs 12.4 6.7 4.0

Row-Major All pairs (Barriers) 43.0 71.3 136.8

Table 9: The running time of Gauss and All pairs (in millions of cycles) under row-major allocation,

compared to optimal.

takes 10 cycles (which we will call service time), no more than 7 consecutive memory accesses can

occur during a network trip.

Beyond a certain number of processors, we can expect that at any point in time, at least one

memory module is saturated. This observation holds because there are only a �xed number of

memories in use; adding more processors adds to the number of requests sent to each memory. The

delay caused by a memory module's saturation is eventually propagated to all processes, since each

processor (in addition to consuming rows) is producing a row that eventually the other processors

will need.

Thus, although it is di�cult to model the random contention for memory when the number of

processors is small, we can provide an estimate of overhead when the number of processors is large.

This estimate is based on the assumption that at any point in time, some module is saturated.

We can then see that each additional processor adds an additional service time to the transfer of

each cache line, since the additional processor will likely access the module while it is saturated.

This means that each additional processor adds the cost of an entire matrix's memory service time,

or 10 cycles times the number of cache lines in an entire matrix. So we estimate the overhead of

row-major allocation, for large P , and lock synchronization, as:

RMA(P ) =

M

E

C(P � �)

where C is the memory's service time (10 cycles), and � is the threshold number of processors

beyond which the system shows memory saturation.

As seen in Table 9, our experimental results for row-major allocation generally con�rm our

analysis. For all-pairs shortest paths, where M = 400

2

, our predictions are about 30% too high;

however, these running times are extremely long and our model predicts them well enough for

comparison purposes with block-column allocation. For Gaussian elimination, we determine by

inspecting the data that memory saturation is reached at about 40 processors, so � = 40; also,

since pivot rows only constitute the upper half of the matrix in Gaussian elimination,M = 512

2

=2.

Our model of overhead for lock synchronization is then quite accurate.

Using this analysis, we can determine when the extra cost of block-column allocation is worth

paying in exchange for the reduction in contention that it provides. Figure 1 shows plots of the

analytic models developed above, for the cases of all-pairs shortest paths (on the left) and Gaussian

elimination (on the right). The all-pairs graph shows that under the high contention costs of barrier
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Application Running Time

50 processors 100 processors 200 processors

Optimal Gauss 6.5 3.7 2.4

Block-Column Gauss (Locks) 7.7 4.5 3.0

Optimal All pairs 12.4 6.7 4.0

Block-Column All pairs (Barriers) 15.4 10.5 10.3

Table 8: The running time of Gauss and All pairs (in millions of cycles) under block-column

allocation, compared to optimal.

L, represents the small amount of contention that still occurs under lock synchronization. We �nd

that the quantity K

1

is �xed for each of our programs.

Block-column allocation can su�er from memory contention when using barrier synchronization,

but only for the �rst cache line of a row. Subsequent accesses to the same row are skewed by the

serial access to the �rst cache line. The overhead of block-column allocation in this case is:

BCA(P ) =

L

P

+ RTP

where R is the number of rows in the matrix, and T is the transfer time of a cache line (82 cycles).

As seen in Table 8, our experimental results agree with this analysis. For Gaussian elimination,

we measure L as approximately 50M cycles and K

1

as approximately 300,000 cycles. For all-pairs

shortest paths, we measure L as approximately 70M cycles; from the program, we know that R is

400, and as noted above, T = 82. These parameters result in good agreement with the data in all

cases.

In contrast, row-major allocation adds no additional loop overhead. However, it su�ers serious

contention under both barrier and lock synchronization. Under barrier synchronization, all proces-

sors contend for the entire row. Since all rows are eventually required by all processors, row-major

allocation under barrier synchronization adds overhead equal to the cost of transferring the entire

matrix, times P . This is because the last processor to receive a row will get it after P �1 other row

transfers have completed. Under barrier synchronization, all the other processors will be forced to

wait for the last processor at the next barrier, so all are slowed equally. In other words:

RMA(P ) =

M

E

TP

whereM is the number of elements in the entire matrix, and E is the number of elements per cache

line.

Under lock synchronization, contention occurs due to random con
icts between processors,

as before. However, random con
icts are more common, since processors access a single module

repeatedly while transferring a row, and the demand for a particular row tends to be greatest

immediately after it is produced. In fact, we can determine from the characteristics of our simulated

machine that under row-major allocation, it only requires 8 processors transferring rows to saturate

a memory module. Since the network trip lasts for 72 cycles, but the memory access itself only
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4 Determining When to Use Block-Column Allocation

The previous section presented examples of the bene�ts of block-column allocation, and mentioned

some of the tradeo�s associated with the technique. This section develops analytical models that

explain why block-column allocation usually outperforms row-major allocation, and under what

circumstances block-column allocation outperforms logarithmic broadcasting.

In each case, it's necessary to consider the two kinds of producer-consumer synchronization

separately: barrier synchronization and lock synchronization. Under barrier synchronization, we

assume that each task begins trying to access a new matrix row immediately after the barrier. This

leads to a di�erent analysis from lock synchronization, in which tasks access rows after a lock is

set. Under lock synchronization, con
icts in accessing a matrix row are less frequent.

We �rst analyze block-column allocation and row-major allocation, and show that under each

synchronization scheme, there exists some number of processors beyond which block-column al-

location is always preferable to row-major allocation. Then, we analyze logarithmic broadcasting

and show that making the proper choice between blocked-column allocation and logarithmic broad-

casting depends both on the number of processors used to solve the problem, and on the type of

synchronization used in the program.

The metric we will use in our comparison is the increase in running time over the optimal case,

which has no memory contention and no additional instruction overhead. We measure the running

time of the optimal case by simulating the simplest program (row-major allocation) on a system

with in�nite memory bandwidth (but nonzero memory latency).

Our purpose in performing these analyses is not to develop highly detailed models that can

be used to predict the performance of programs. We focus instead on simple models that provide

insight into reasons for preferring one technique over another, and that serve as a means of verifying

our understanding of the tradeo�s involved.

4.1 Modeling the Costs of Block-Column and Row-Major Allocation

In our example applications, row-major allocation admits a simple loop structure, but su�ers from

memory contention. Block-column allocation alleviates memory contention, but introduces loop

overhead, which results from strip mining over fairly small strips (i.e., the size of a cache line). To

compare these two techniques, we must compare the relative impact of contention and strip mining

overhead as we scale the number of processors.

For a given cache line size and matrix size, the loop overhead introduced by strip mining is a

constant number of cycles. These cycles are distributed among the various processors, and therefore

have a decreasing e�ect on running time as we increase the number of processors. The contention

e�ects under block-column allocation depend on the form of synchronization. If processes are loosely

synchronized (as is the case when we use locks), then the overhead introduced by block-column

allocation is almost entirely attributed to loop overhead as follows:

BCA(P ) =

L

P

+K

1

where L is the execution time of the additional instructions introduced by strip mining, and P is

the number of processors (assuming good load balance). K

1

, which is typically small relative to
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Application Running Time

50 processors 100 processors 200 processors

Gaussian elimination 7.7 4.5 2.96

Matrix inversion 25.3 15.3 10.1

Transitive closure 21.3 11.8 6.4

All pairs 15.4 10.5 10.3

Table 6: E�ect of memory contention on running time (in millions of cycles) under block-column

allocation.

Application Running Time

Row-major Row-major Block-column Block-column

(no contention) (contention) (no contention) (contention)

Gaussian elimination 2.4 15.6 2.7 3.0

Matrix inversion 7.7 26.0 8.7 10.1

Transitive closure 6.1 9.0 6.3 6.4

All pairs 4.0 136.8 4.4 10.3

Table 7: Running time (in millions of cycles) with and without memory contention on 200 proces-

sors.

3.2 Overhead in Block-Column Allocation

As we discussed earlier, block-column allocation can be viewed as two loop transformations: strip-

mining followed by loop interchange. The e�ect of strip-mining is to replace one loop with two,

thereby increasing loop overhead. This overhead is not present when using row-major allocation,

and therefore increases the running time of any program using block-column allocation, unless o�set

by a reduction in memory contention.

Table 7 illustrates the tradeo� between the overhead associated with block-column allocation

and the memory contention associated with row-major allocation. In the absence of memory con-

tention (that is, under the assumption that a memory module can satisfy any number of requests

simultaneously), all of our programs execute 3-15% faster on 200 processors using row-major allo-

cation, due to the overhead associated with block-column allocation. When memory contention is

included, block-column allocation clearly dominates, improving performance by an order of magni-

tude in the case of all-pairs shortest paths. Recall from Tables 3 and 6 that block-column allocation

performs signi�cantly better on 50 processors only for those programs with a large amount of con-

tention (matrix inversion and all-pairs shortest paths). For programs with lower contention levels,

block-column allocation performs either slightly better (transitive closure) or slightly worse (Gaus-

sian elimination) than row-major allocation on 50 processors. These data suggest that it is not

always obvious how to resolve the tradeo�s involved. In the next section we analyze these tradeo�s

to determine the circumstances under which to use block-column allocation.
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Application Percent of Delayed Misses

50 processors 100 processors 200 processors

Gaussian elimination 0.16% 0.12% 0.27%

Matrix inversion 1.9% 2.1% 2.1%

Transitive closure 0.4% 0.9% 1.8%

All pairs 5.9% 6.2% 6.3%

Table 4: Percent of all remote memory references that experience delay due to memory contention

under block-column allocation.

Application Average Remote Memory Latency

50 processors 100 processors 200 processors

Gaussian elimination 82 82 82

Matrix inversion 87 92 99

Transitive closure 83 84 86

All pairs 150 222 366

Table 5: E�ect of memory contention on average latency of remote memory accesses (in cycles)

under block-column allocation.

of remote accesses is only 95 cycles, and the running time only increases by 15%. The same observa-

tion applies if we reduce the cache line size to 32 bytes. For Gaussian elimination on 200 processors

with a cache line size of 32 bytes, only 0.23% of the remote references su�er from contention, the

average remote latency is 82 cycles, and the running time is only 4.0 M cycles. (By way of compar-

ison, Gaussian elimination under row-major allocation takes 30.9 M cycles on 200 processors when

the cache line size is 32 bytes.) If we both double the memory latency and reduce the cache line

size to 32 bytes, then only 0.9% of the remote references su�er from contention, the average remote

latency rises slightly to 98 cycles (where the minimum is now 92 cycles), and the running time

increases to 4.7 M cycles. Thus, the enormous performance advantages of block-column allocation

are relatively insensitive to memory latency and cache line size.

The conclusion that block-column allocation can e�ectively eliminate the e�ects of contention

holds even if we allocate multiple data rows to a memory module (rather than assign each row of

the matrix to a separate page, and treat each page as a memory module). As long as consecutive

rows are allocated in di�erent memory modules, there is no signi�cant contention for data within

a memory module other than the contention measured in our simulations.

As a �nal observation, we note that Gaussian elimination runs slightly faster on 50 processors

under row-major allocation than under block-column allocation. In this case, the additional ad-

dressing costs of block-column allocation outweigh the bene�ts associated with reducing memory

contention. We will examine those costs in the next section.
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3.1 Block-Column Allocation

In block-column allocation, we divide each row of the input matrix into cache blocks, and map

the cache blocks of a single row into di�erent memory modules. In e�ect, we use column-major

allocation of cache blocks, rather than column-major allocation of elements. Since no cache block

contains elements from multiple rows, we eliminate the additional cache misses due to false sharing

in column-major allocation. Since the cache blocks of a single row map to di�erent memory modules,

no memory contention occurs when multiple processors simultaneously access di�erent cache blocks

of the same row.

The algorithm changes needed to exploit block-column allocation can be described in terms

of two loop transformations: strip-mining followed by loop interchange. We use strip-mining on

the innermost loop to group together the elements of a row that �t within one cache block. We

then interchange the innermost loop with the enclosing loop, so that we iterate over columns

of cache blocks. These are standard loop transformations performed by compilers; block-column

allocation requires that compilers accompany these transformations with corresponding changes in

data allocation.

The performance bene�ts of block-column allocation can be seen in Tables 4-6. As seen in Table

4, the percentage of remote references that experience delay has dropped dramatically under block-

column allocation.

2

In most cases, less than 2% of all remote references experience delay. Even

in the worst case (all-pairs shortest paths on 200 processors), only 6.3% of all remote references

experience delay. By way of contrast, 94% of all remote references experience delay when simulating

all-pairs shortest paths on 200 processors using row-major allocation.

Table 5 shows the e�ect of block-column allocation on the average latency of remote memory

accesses. For Gaussian elimination, the average remote access latency on 200 processors is 82 cycles,

which is optimal. The results for transitive closure are also close to optimal. Average latency for

matrix inversion under block-column allocation increases slightly with an increase in processors,

but still manages a 6-10 fold decrease in average latency when compared with row-major allocation.

And even though all-pairs shortest paths still su�ers from contention, which results in an average

remote access latency of 366 cycles on 200 processors, block-column allocation improves the average

remote access latency by a factor of 18 to 33.

This decrease in remote access latency produces a corresponding improvement in running time,

as seen in Table 6. Under block-column allocation, each of our applications runs faster with an

increase in processors. For Gaussian elimination and transitive closure, doubling the number of

processors cuts the running time nearly in half. Additional processors also improve the running

time of matrix inversion, although not in the same proportion. Even all-pairs shortest paths

continues to exhibit improved running time with an increase in processors, although the performance

improvements o�ered by 200 processors are insigni�cant. The speedup of matrix inversion and all-

pairs shortest path are both limited by the use of barrier synchronization; too many processors

waste cycles waiting for a barrier.

Block-column allocation is also e�ective at reducing contention under less optimistic assump-

tions than those used in the majority of our experiments. For example, even if we double the

memory latency to 20 cycles, block-column allocation eliminates most memory contention in Gaus-

sian elimination. On 200 processors, only 0.78% of the misses su�er contention, the average latency

2

The actual number of cache misses is the same for both block-column allocation and row-major allocation.
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to 14.4M cycles. It is clear from this experiment that barriers exacerbate the problem of memory

contention.

1

The e�ect of barriers can also be seen in the performance of matrix inversion, which uses bar-

riers in the implementation of the L-U decomposition step. On 50 processors, matrix inversion

su�ers enormous contention in the L-U decomposition step, where processes are tightly synchro-

nized, but not in the following step, which has no synchronization. Gaussian elimination su�ers

contention throughout execution, but not as much as L-U decomposition, since we use locks in

the implementation of Gaussian elimination. As we increase the number of processors, a greater

percentage of remote references exhibit contention in Gaussian elimination (since all remote ref-

erences are susceptible to contention), while contention is con�ned to references during the L-U

decomposition step of matrix inversion (which only contains about half of all remote references

in the application). Therefore, the percentage of delayed references continues to rise in Gaussian

elimination as we increase the number of processors, but remains around 50% in matrix inversion.

We conclude from these experiments that the major source of contention in our application

programs is due to synchronized access to the elements of a single row of the matrix, all of which

reside in a single page (or memory module). Although relaxing synchronization constraints (by

replacing barriers with locks) helps to reduce contention, we still observe substantial performance

degradation due to contention in large-scale machines. In the next section we consider an alternative

data allocation strategy designed to address this problem.

3 Reducing Memory Contention with Block-Column Allocation

Our experiments in the previous section suggest that the main cause of memory contention in our

example programs is the row-major allocation we used for matrices. Row-major allocation places

an entire row of the matrix in a single page (or memory module), so that access to the row by

multiple processors results in memory contention. Since none of our example programs access a

matrix by columns, one obvious way to alleviate memory contention is to allocate the matrices in

column-major order. That way, each element of a row resides in a di�erent memory module.

We simulated Gaussian elimination on 50 processors using column-major allocation. In this

implementation, every element of a row resides in a di�erent page. This implementation is successful

at reducing memory contention; only 1.5% of all remote references experience a delay, and the

average delay is only 83 cycles. However, this implementation also introduces 15 times as many

cache misses (due to false sharing), and increases the running time from 7.4M cycles to 30.2M cycles!

We can see from this experiment that column-major allocation merely trades memory contention

for additional cache misses, and does not solve the performance problem. We require an allocation

strategy that has the spatial locality properties of row-major allocation, and the memory contention

properties of column-major allocation. Block-column allocation has both properties.

1

Note that the e�ects of memory contention are greater in the lock-based implementation of all-pairs shortest

paths than in the lock-based implementation of transitive closure, since there are many more cache misses in all-pairs

shortest paths.
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contention is the major obstacle to e�ective speedup.

The e�ects of contention are magni�ed even more if we relax some of our optimistic assumptions.

For example, if we double the memory latency to 20 processor cycles, the e�ect of contention is even

more pronounced. On 200 processors, 92% of the misses in Gaussian elimination su�er contention

(up from 84%), the average remote reference latency increases to 2910 cycles (up from 1546), and

the running time increases to 28.8 M cycles (up from 15.6 M cycles). Similarly, if we keep memory

latency at 10 cycles and reduce the cache line size to 32 bytes, then 90% of the misses in Gaussian

elimination su�er contention, the average remote latency increases slightly to 1571 cycles, and the

running time increases dramatically to 30.9 M cycles (since we've doubled the number of remote

references). If we both double the memory latency and reduce the cache line size to 32 bytes, then

the average remote latency increases to 2904 cycles, and the running time increases to 55.2 M cycles.

These results suggest that under less optimistic (and perhaps more realistic) assumptions, memory

contention is likely to be an extremely serious problem in large-scale shared-memory machines.

2.4 The Source of Memory Contention

From the results presented in the previous section, it is obvious that all of our example programs

su�er from memory contention. This contention could be caused by any of three factors: (1)

simultaneous access to a single element of the matrix, (2) simultaneous access to a single row of

the matrix (which resides in a single page, and therefore results in memory contention), and (3)

simultaneous access to multiple rows that happen to reside in the same page. In all of our examples,

we padded the rows of the matrix to �ll a page, and therefore eliminated any contention caused by

simultaneous access to multiple rows within a single page. Simultaneous access to a single element

of the matrix can occur in our programs since, upon creation, all processes immediately try to

reference the �rst element of a row in the matrix. However, serial access to the �rst element in a

row tends to skew the requests for subsequent elements in that row, thereby avoiding contention

for individual elements.

We validated this hypothesis by a simple experiment in which we simulated Gaussian elimination

on 50 processors, using a matrix that was allocated so that elements within the same rowwere placed

in di�erent pages. This allocation strategy reduced the percentage of delayed references from 20%

to 1.5%, and the average remote access latency from 164 cycles to 83 cycles. This experiment

con�rms that the memory contention seen in our examples is due primarily to simultaneous access

to the elements of a row, all of which reside in one memory module.

We can also see from our examples that synchronization plays an important role in memory

contention. All-pairs shortest paths experiences the worst contention by far, in part because our

implementation uses barriers to implement the parallel loop. Transitive closure is similar in struc-

ture, but we used locks in its implementation. By using barriers in the all-pairs shortest paths

program, we force all processes to access the same row at the same time on every iteration of the

outermost loop, thereby increasing contention. To con�rm the role of barrier synchronization as

a root cause of memory contention in all-pairs shortest paths, we implemented the program using

locks instead of barriers on 50 processors. The percentage of remote references that were delayed

fell from 89% to 54% as a result of this change. More importantly, the average latency of a remote

memory access fell from 2764 cycles to 247 cycles, and the running time decreased from 43M cycles
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Application Percent of Delayed Misses

50 processors 100 processors 200 processors

Gaussian elimination 20% 56% 84%

Matrix inversion 46% 51% 51%

Transitive closure 8% 35% 60%

All pairs 89% 92% 94%

Table 1: Percent of all remote memory references that experience delay due to memory contention

under row-major allocation.

Application Average Remote Memory Latency

50 processors 100 processors 200 processors

Gaussian elimination 164 572 1546

Matrix inversion 264 536 991

Transitive closure 95 228 619

All pairs 2764 5924 12335

Table 2: E�ect of memory contention on average latency of remote memory accesses (in cycles)

under row-major allocation.

memory contention causes the running time to increase with an increase in processors. In fact,

moving from 50 to 200 processors increases the running time of these applications by a factor of

2-3, rather than cutting the running time by a factor of 4. The situation is not quite as bleak in the

case of matrix inversion, where 100 processors perform slightly better than 50 processors; however,

200 processors perform no better than 50 processors. Transitive closure is the only program that

bene�ts from an increase in processors, although doubling the number of processors from 50 to

100 only improves performance by a factor of 1.8, and multiplying the number of processors by 4

only improves performance by a factor of 2.4. It is important to note that, for the inputs used in

our simulations, these programs have good locality of reference and load balancing properties, and

achieve good speedup when contention is not considered. Thus, for all of these programs, memory

Application Running Time

50 processors 100 processors 200 processors

Gaussian elimination 7.4 8.5 15.6

Matrix inversion 26.1 21.7 26.0

Transitive closure 21.7 12.3 9.0

All pairs 43.0 71.3 136.8

Table 3: E�ect of memory contention on running time (in millions of cycles) under row-major

allocation.
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yet still produce substantial contention in our simulations. For example, we chose to use 64-byte

cache lines, which are larger than the cache lines used in both DASH and Alewife (but smaller than

the cache lines used in the Kendall Square KSR1). Given the spatial locality in our applications

and the lack of �ne-grain sharing, we would expect these longer lines to result in fewer cache

misses, and less memory contention than would occur in either DASH or Alewife. Similarly, we

chose a memory latency of 10 processor cycles per cache line, and a network latency of 36 processor

cycles, both of which are quite optimistic. We would expect the faster remote memory service time

represented by these two factors to result in less memory contention than would occur in DASH

and Alewife. Our in�nite cache assumption means that we only measure the e�ect of invalidation-

related misses, and ignore capacity misses. Our assumption that network latency is �xed (i.e.,

there is no network contention) allows us to isolate the e�ects of memory contention from network

contention; adding network contention to our simulations would assign some of the contention we

observe to the network rather than the memory, but would not be likely to a�ect the tradeo�s we

consider here.

2.3 The E�ects of Memory Contention

We simulated each of our application programs, and measured the number of remote memory

accesses, the number of remote memory accesses delayed by memory contention, the average latency

of remote access, and the running time. The results are shown in Tables 1-3.

As seen in Table 1, memory contention is widespread in our applications. On a 200 processor

machine, over 50% of all remote memory accesses are delayed due to memory contention. Even

on 50 processors, 46% of all remote references are delayed during matrix inversion, and 89% of

all remote references are delayed in the all-pairs shortest paths program. Although only 8% of all

remote accesses are delayed during transitive closure on 50 processors, the percentage rises to 60%

on 200 processors. There is a similar rise in the percentage of references that experience contention

in Gaussian elimination. Only matrix inversion exhibits a consistent degree of contention, with

roughly 50% of all remote references experiencing delays on 50, 100, and 200 processors.

The minimum delay introduced by memory contention is 72 cycles of network round-trip latency,

but much greater delay is possible, since subsequent requests may also be rejected due to contention.

Table 2 illustrates the e�ect of memory contention on the e�ective latency of remote memory

accesses. The minimum possible latency is 82 cycles, which represents the round-trip network

costs, and the latency of the memory. As seen in Table 2, transitive closure su�ers a 16% slowdown

in remote memory access time due to contention on 50 processors, while every other program

su�ers at least a 100% slowdown. The all-pairs program su�ers the worst: a 3270% slowdown in

the average latency of remote accesses due to memory contention! As we increase the number of

processors, the latency of remote memory accesses rises dramatically in every case. Even transitive

closure, which has the least contention, su�ers a slowdown of remote memory accesses of 655%

on 200 processors. These results suggest that memory contention will be a serious problem on

large-scale machines, and yet all of these results are optimistic, since each 4KB page is considered

a separate memory module in our simulations.

The e�ect of memory contention on application performance isn't obvious from these tables,

since it depends on the frequency of remote references. Table 3 shows how memory contention

a�ects the running time of our applications. For Gaussian elimination and all-pairs shortest paths,
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all processes on each iteration of the outermost loop, and thereby increases the potential for mem-

ory contention during access to the pivot row. We used locks (as a form of condition variable) to

implement synchronization in Gaussian elimination, which allows each process a bit more freedom

during execution, and thereby reduces contention.

Transitive closure (implemented with locks) is interesting because it is similar in structure

to Gaussian elimination, except that conditional execution of the inner loop helps to alleviate

contention. All-pairs di�ers from transitive closure in that (a) we used a barrier to implement

synchronization, and (b) each element of the matrix is a 4-byte distance, rather than a single byte

representing connectivity.

2.2 Methodology

Since we are interested in studying memory contention in the truly large-scale shared-memory mul-

tiprocessors currently under development, direct experimentation is not an available option. Thus,

we use analytic modeling and simulation for our studies. We simulate a large-scale direct-connected

multiprocessor (up to 256 processors) executing our example applications. Our simulations consist

of two distinct steps: a trace collection process, and a trace analysis process. The trace-collection

step uses Tango [Davis et al., 1991] to simulate a multiprocessor with (in�nite) coherent caches.

The traces generated by Tango contain the data references that missed in the local cache of each

processor, and all synchronization events.

Our analyzer process takes as input an address trace produced by Tango, and simulates execu-

tion of the references in the trace on a distributed shared memory multiprocessor. The analyzer

assigns each reference to the appropriate processor at the appropriate time by tracking the delay

induced by previous references, combined with the time spent executing instructions on the pro-

cessor. The analyzer respects the synchronization behavior of an application as represented by the

synchronization events contained in the trace. Synchronization events are not allowed to cause

contention in our model, although they are critical in maintaining the relative timing of events

during trace analysis.

In our machine model, a memory module can process only one request at a time. Requests

arriving when the module is busy are rejected and must be reissued. Our analyzer measures

contention for memory at the page level; thus each 4KB page is treated as a separate memory

module to which requests may be directed. We treat each page as a separate memory module so as

to simulate an ideal page placement policy in which contention caused by simultaneous accesses to

multiple pages does not occur. One consequence of this assumption is that the number of memory

modules in the system is dependent on the size of the problem and not on the number of processors

in use. As a result, our estimates of memory contention are optimistic, in that we measure the

contention inherent in an application, independent of the placement of pages in memory modules.

Our simulations assume a cache line size of 64 bytes, a �xed network latency of 36 processor

cycles, and local memory latency of 10 processor cycles. In the absence of contention, a remote

memory request requires a request message, a reply message, and memory service time, or 82

cycles total. Each request rejected due to contention su�ers a 72 cycle penalty, corresponding to

an immediate re-issue of the request.

Our simulation assumptions are optimistic, in that we chose values for the simulation parameters

that are likely to result in less contention than would exist in the machines of the near future, and
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process has its own version of this data structure.) Again, we used a random input matrix of size

512 � 512.

Our third program computes the transitive closure of a graph, which is represented using an

adjacency matrix stored in row-major order. The code for this program is as follows:

FOR i = 1 TO N DO

FORALL j = 1 TO N DO

IF M[j][i] THEN

FOR k = 1 TO N DO

IF M[i][k] THEN M[j][k] = TRUE

Our sample input graph has 512 vertices, and each vertex is connected to each other vertex with

probability 0.5. Unlike the previous two programs, where each process does roughly the same

amount of work, there is the potential for load imbalance in this program. Some processes do

O(N) work, while others do O(1) work. Each process that does O(N) work must access the same

row, represented by the index of the outermost loop. As with the previous programs, access to this

row may introduce memory contention, but we would expect the e�ects of contention to be less in

this case since not all processes execute the innermost loop.

Our �nal program uses a parallelization of theWarshall-Floyd algorithm to compute the all-pairs

shortest paths for a graph with 400 vertices. The code for this program is as follows:

FOR k = 1 TO N DO

FORALL i = 1 TO N DO

IF G[i][k] < INFINITY THEN

FOR j = 1 TO N DO

IF G[i][k] + G[k][j] < G[i][j] THEN

G[i][j] = G[i][k] + G[k][j]

As in the previous examples, all processes require access to the same row of the input matrix. This

program di�ers from the previous example in that the matrix elements represent distances between

vertices rather than a boolean value of connectivity. Since we use four-byte integers to represent

distances in the all-pairs shortest paths program, and single bytes to represent connectivity in

transitive closure, there is more communication required in the all-pairs shortest paths program,

even though both programs do roughly the same amount of work. We expect therefore that memory

contention will have a greater impact on the all-pairs shortest paths program.

We selected these computational kernels to illustrate the tradeo�s that must be considered in

the face of memory contention. Gaussian elimination is both common in practice, and illustrative

of one common source of memory contention. Matrix inversion can bene�t from any technique

used to alleviate memory contention during Gaussian elimination (since the same technique can be

applied to L-U decomposition), but the second phase of matrix inversion may incur overhead due to

changes in the data allocation scheme used to alleviate contention. Also, matrix inversion illustrates

simultaneous accesses that cause contention (during L-U decomposition), and simultaneous accesses

that do not cause contention (during the second phase, when the matrix is already loaded into each

local cache).

Since both barriers and locks (used as condition variables) can be used to implement the neces-

sary producer/consumer synchronization in these problems, we also explore the role of synchroniza-

tion. We implemented the parallel loop in L-U decomposition using a barrier, which synchronizes
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2.1 Applications

Our example programs are drawn from two large classes of applications: linear algebra and graph

algorithms. These SPMD programs represent computational kernels similar to those found in many

applications. For each kernel, matrix data is allocated in row-major order.

The �rst program is a parallel implementation of Gaussian elimination (without pivoting or

back-substitution). The code for this program is as follows:

FOR pivot = 1 TO N-1 DO

FORALL row = pivot+1 TO N DO

tmp = M[row][pivot]/M[pivot][pivot]

FOR col = pivot TO N DO

M[row][col] = M[row][col] - M[pivot][col] * tmp

On each iteration of the outermost sequential loop, we create a set of processes, each of which

eliminates the entries in a single row of the input matrix. All processes require access to the same

pivot row, and since all processes begin execution at approximately the same time, the pivot row

is a likely source of memory contention. In our experiments we used a random matrix of size 512

� 512 as input.

Our second program implements matrix inversion. The code for this program is:

FOR pivot = 1 TO N-1 DO

FORALL row = pivot+1 TO N DO

M[row][pivot] = M[row][pivot]/M[pivot][pivot]

tmp = M[row][pivot]

FOR col = pivot+1 TO N DO

M[row][col] = M[row][col] - M[pivot][col] * tmp

FORALL row = 1 TO N DO

FOR diagonal = 1 TO N DO

sum = 0

FOR col = 1 TO diagonal DO

sum = sum + M[diagonal][col] * I[col]

I[diagonal] = I[diagonal] - sum

FOR diagonal = N DOWNTO 1 DO

sum = 0

FOR col = N DOWNTO diagonal DO

sum = sum + M[diagonal][col] * M[row][col]

MInv[row][diagonal] = (I[diagonal] - sum) / M[diagonal][diagonal]

The �rst phase of this program uses L-U decomposition, which has roughly the same structure as

Gaussian elimination, and therefore is susceptible to memory contention. Although both sequential

loops within the second phase require that all processes access the same row of matrix M, the second

of these loops cannot cause contention; M has already been loaded into the local cache during

execution of L-U decomposition and the �rst loop. The �rst sequential loop in the second phase

may su�er from contention, but the processes are only loosely synchronized, and are likely to skew

their accesses to the matrix during execution. (There is no contention for accesses to I, since each
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our investigation of memory contention in programs for solving linear algebra and graph problems

suggests that techniques devoted speci�cally to parallel matrix computations [Geist et al., 1987;

Ortega and Romine, 1988] can also be very e�ective at alleviating contention. In this paper, we

focus on one such technique, called block-column allocation. This technique is motivated by the

observation that memory contention in matrix computations is typically caused by simultaneous

access to a single row of the matrix by multiple processors. If matrices are allocated among

memories by rows, simultaneous access to any part of a row requires that processors contend for

a single memory module. Allocating matrices among memories by column alleviates this source of

contention, but creates other problems, such as false sharing. In block-column allocation, a row is

divided into cache lines, and the cache lines are distributed among the memories in round-robin

order. This technique has the spatial locality properties of allocation by rows, and the memory

contention properties of allocation by column.

Using block-column allocation to alleviate memory contention is not new; the same basic idea

(called interleaved shared memory) is supported in hardware on the BBN TC2000 [BBN, 1989].

Although this hardware feature has been used in scienti�c applications [Amestoy et al., 1992;

Brooks and Warren, 1991], we know of no comprehensive evaluation of this technique, or of any

published experiences with this technique when applied in software. We seek to characterize the

source and extent of memory contention in SPMD matrix computations, quantify the costs and

bene�ts of block-column allocation, and evaluate the tradeo�s between block-column allocation

and logarithmic broadcasting on large direct-connected shared-memory multiprocessors.

In the following section we describe our example application programs, and use simulation

to quantify the impact of memory contention on their performance. In section 3 we describe

implementations of our example programs based on block-column allocation, and quantify the

e�ect of our implementation on the latency of remote memory accesses and the running time of

our applications. Our most important contributions are presented in section 4, where we analyze

the costs and bene�ts of block-column allocation, and compare its performance to both row-major

allocation and logarithmic broadcasting. We present our conclusions in section 5.

2 Characterizing the E�ects and Source of Memory Contention

Memory contention occurs whenever multiple processors require simultaneous access to a single

memory module, thereby producing a so-called hot spot. Glenn et al. [1991] divided hot spots

into three categories: 1) read-only memory with a large number of readers; 2) synchronized access

to memory modules due to related strides; and 3) hot spots caused by synchronization references.

Type 3 hot spots can be e�ectively eliminated using proper synchronization techniques [Mellor-

Crummey and Scott, 1991]. Type 2 hot spots are present in certain highly structured problems,

and are relatively uncommon. Here we consider four representative SPMD programs that exhibit

a form of type 1 memory contention.

Our example programs all require that all processors simultaneously access data that was re-

cently modi�ed by a single processor. This form of producer/consumers relationship can lead to

memory contention if the data that must be accessed by all processors resides in a single memory

module. As we will show, the resulting memory contention can signi�cantly degrade performance.
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1 Introduction

Large-scale shared-memory multiprocessors based on o�-the-shelf RISC microprocessors o�er the

computational power needed to solve large scienti�c problems. Several e�orts are underway to

design shared-memory multiprocessors that scale to hundreds of processors, including the Stanford

DASH [Lenoski et al., 1992] and MIT Alewife [Agarwal et al., 1992] machines. To e�ectively exploit

these large-scale multiprocessors we must eliminate all bottlenecks that limit scalability. One such

bottleneck is memory contention, which occurs whenever multiple processors need to access the

same memory module simultaneously. Absent special hardware, the memory module can satisfy

only one request at a time, and must reject all others. By serializing multiple accesses, and requiring

that a processor repeatedly issue requests to the same memory module so as to satisfy a single data

reference, memory contention can severely limit the speedup of parallel applications.

The majority of techniques for alleviating memory contention assume special hardware sup-

port, such as multi-stage interconnection networks with combining of memory references [Gottlieb

et al., 1983; P�ster and Norton, 1985], interleaved memory [P�ster et al., 1985], and eager sharing

[Wittie and Maples, 1989]. Although these techniques are known to reduce or eliminate mem-

ory contention, the associated hardware can be both complex and expensive, and may depend on

particular properties of the interconnection network.

One general technique to alleviate memory contention caused by simultaneous access to data

is to broadcast the data to every processor [Saad and Schultz, 1989]. This technique is especially

easy to implement on machines that support broadcasting in hardware, such as bus-based multi-

processors like the Sequent Symmetry, or ring-based systems like the Kendall Square KSR1. On

direct-connected distributed-memory machines, such as DASH and Alewife, the broadcast must be

implemented in software (or by the coherency protocol). Software broadcasting typically employs a

logarithmic distribution of data, wherein the source processor sends the data to N other processors,

each of which pass the data on to N other processors, until all processors receive the data.

Two other related techniques for alleviating contention are software combining trees [Yew et al.,

1987] and data replication. Software combining trees are analogous to hardware combining net-

works, and incorporate logarithmic broadcasting. As in combining networks, requests for shared

data 
ow from the leaves of the tree to the root, and the data 
ows from the root down to the

leaves. As in logarithmic broadcasting, the data 
ows down the tree in O(logP ) steps (where P is

the number of processors), and the width of the tree limits the potential for memory contention.

In SPMD programs where all processors are known to require the data, there is no need to propa-

gate read requests up the tree, and therefore no need to distinguish software combining trees and

logarithmic broadcasting.

We can also limit memory contention by replicating data across multiple memory modules.

By distributing the requests for data evenly among the copies, we can reduce or eliminate memory

contention for the original copy. Although this scheme avoids broadcasting data to all the processors

(since each processor explicitly requests the data from one of the copies), it requires that the copies

either be created serially, or that some form of broadcasting be used to create the copies. In

addition, there can still be memory contention for an individual copy, depending on the number of

processors and the number of copies. See [Bianchini et al., 1993] for a complete discussion of this

technique.

Each of the techniques described above is general enough to use in any program. However,
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Abstract

Memory contention can be a major source of overhead in large-scale shared-memory multiprocessors.

Although there are many hardware solutions to the problem of memory contention, these solutions are

often complex and expensive, so software solutions are an attractive alternative. This paper evaluates

one particular software solution, called block-column allocation, which is very e�ective at reducing memory

contention for a large class of SPMD (Single-Program-Multiple-Data) programs, and can be implemented

easily by the compiler. We �rst quantify the impact of memory contention on performance by simulating

the execution of several application kernels on a large-scale multiprocessor. Our simulation results con�rm

that memory contention is widespread on large-scale machines; our applications suggest that contention is

usually caused by synchronized access to a range of addresses (rather than to a single address). We show

that block-column allocation, where each range of addresses is divided into cache lines, and each cache line

is allocated to a separate memory module, can nearly eliminate this source of memory contention. As our

main contribution, we compare block-column allocation to row-major allocation (a common data allocation

scheme) and logarithmic broadcasting (the standard software technique for alleviating memory contention).

Our analysis demonstrates the clear superiority of block-column allocation over row-major allocation in

the presence of memory contention. Our analysis also indicates that the choice between block-column

allocation and logarithmic broadcasting is less clear, as it depends both on the type of synchronization used

and the number of processors. We can conclude however that on large-scale machines with hundreds of

processors, block-column allocation and lock-based synchronization is the most e�ective combination for

reducing memory contention in SPMD matrix computations.
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