
References

[Bolosky et al., 1989] William J. Bolosky, Robert P. Fitzgerald, and Michael L. Scott,

\Simple But E�ective Techniques for NUMA Memory Management," In Proceedings

of the Twelfth ACM Symposium on Operating Systems Principles, pages 19{31, Litch-

�eld Park, Arizona, December 1989, also appeared in Operating Systems Review 23(5),

December 1989.

[Costanzo et al., 1986] John Costanzo, Lawrence Crowl, Laura Sanchis, and Mandayam

Srinivas, \Subgraph Isomorphism on the BBN Buttery Multiprocessor," Buttery

Project Report 14, Computer Science Department, University of Rochester, October

1986.

[Crovella and LeBlanc, 1993] Mark E. Crovella and Thomas J. LeBlanc, \Performance De-

bugging using Parallel Performance Predicates," to appear in 3rd ACM/ONR Workshop

on Parallel and Distributed Debugging, May 1993.

[Crowl and LeBlanc, 1992] Lawrence A. Crowl and Thomas J. LeBlanc, \Control Abstrac-

tion in Parallel Programming Languages," In Proc. 4th International Conference on

Computer Languages, pages 44{53, April 1992.

[Crowl and LeBlanc, 1991] Lawrence A. Crowl and Thomas J. LeBlanc, \Architectural

Adaptability in Parallel Programming Via Control Abstraction," Technical Report

TR359, Computer Science Department, University of Rochester, February 1991.

[Finkel and Manber, 1987] Raphael Finkel and Udi Manber, \DIB | A Distributed Im-

plementation of Backtracking," ACM Transactions on Programming Languages and Sys-

tems, 9(2):235{256, April 1987.

[Gustafson et al., 1988] J.L. Gustafson, G.R. Montry, and R.E. Benner, \Development of

Parallel Methods for a 1024-Processor Hypercube," SIAM Journal on Scienti�c and

Statistical Computing, 9:609{638, 1988.

[Natarajan, 1987] K. S. Natarajan, \An Empirical Study of Parallel Search for Constraint

Satisfaction Problems," Technical Report RC 13320, IBM T.J. Watson Research Center,

December 1987.

[Rao and Kumar, 1989] V. Nageshwara Rao and Vipin Kumar, \Parallel Depth-First

Search," International Journal of Parallel Processing, 16(6), 1989.

[Ullman, 1976] J. R. Ullman, \An Algorithm for Subgraph Isomorphism," Journal of the

ACM, 23:31{42, 1976.

[Wah et al., 1985] Benjamin W. Wah, Guo jie Li, and Chee Fen Yu, \Multiprocessing of

Combinatorial Search Problems," IEEE Computer, pages 93{108, June 1985.

19



In order to exploit the various types of parallelism we've considered in this study, the

language, compiler, or runtime system must have the facilities necessary to express (or

�nd) each type of parallelism, and the mechanisms needed to implement each form of par-

allelism e�ciently. Our previous work with control abstraction [Crowl and LeBlanc, 1991;

Crowl and LeBlanc, 1992] explored one such approach to expressing and implementing mul-

tiple parallelizations within a single source code program. Our experiences with subgraph

isomorphism not only illustrate the need for multiple parallelizations, but also indicate the

need to tune the parallelization based on the problem, the input, or the machine. Therefore,

an approach such as ours that incorporates multiple parallelizations within a single source

program, and that allows the programmer to select alternative parallelizations easily, is

particularly welcome.

Acknowledgements

We thank Argonne National Laboratories for the use of their TC2000, International Business

Machines for providing the 8CE, Donna Bergmark and the Cornell Theory Center for their

assistance and the use of their KSR1, and Sequent Computer Systems for providing the

Balance and Symmetry.

18



0

0.5

1

1.5

2

2.5

3

3.5

-36 -34 -32 -30 -28 -26 -24 -22 -20

running

time in

seconds

log density of solution space

tree parallelism

3

3

3

3

3

3

loop parallelism
+

+

+

+
hybrid parallelism

2

2

2

2

2

2

Figure 7: Performance of the three approaches over varying solution space densities.

The inability to predict precisely in every case which static allocation of processors will

perform best (all loop, all tree, or a hybrid) suggests the need for a dynamic allocation of

processing power at runtime. Such an approach could exploit speculative parallelism when

looking for few solutions in a sparse graph, using some measure such as non-uniformity of

solutions in subtrees to determine when a subtree is promising and should be explored more

quickly using loop parallelism. In a dense graph, when many solutions are required, such

a dynamic approach could search the top levels of the tree quickly using loop parallelism,

then descend the most promising subtrees in parallel using tree parallelism.

5 Conclusion

Our experiences with combinatorial search for subgraph isomorphisms have shown that the

best choice of parallelization depends on several factors, including the problem, the input,

and the machine. In particular, the choice between loop and tree parallelism can be di�cult

to resolve, and yet the choice can have a signi�cant impact on performance. In some cases,

the performance of loop parallelism dominates the performance of tree parallelism; varying

the machine, the problem, or the input can cause the opposite to occur. In other cases, a

combination of loop and tree parallelism performs best. Clearly, for this class of problem,

there is no \best" parallelization.

In addition, our results clearly show that data parallelism (which roughly corresponds

to what we've called loop parallelism) is not the sole source of parallelism, nor even the best

source of parallelism, for this class of problem. A data parallel programming environment

lacking support for tree parallelism (possibly implemented by explicit lightweight threads)

would be unable to exploit all the readily available parallelism in this problem.

17



1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tree

Number of Processors

T
im

e 
in

 S
ec

on
ds

1 2 3 4 5 6 7

0.
0

0.
5

1.
0

1.
5

Loop

Number of Processors

Computation
Load Imbalance
Wasted Speculation
Memory Loss

Figure 6: Overheads of Loop and Tree, Searching a Dense Space for Many Solutions

sparse, loop parallelism and tree parallelism both increase in running time. However hybrid

parallelism does not increase as fast as the other two, because it is exploiting speculation

(this e�ect was veri�ed by examining the raw data).

These data suggest that not only is there need for both loop-parallel and tree-parallel

versions of combinatorial search programs, but that there is a need for both parallelizations

to be in use simultaneously. This suggests that any language or runtime environment

supporting both parallelizations should also be able to support their simultaneous use.

We have extended some hypotheses about when each kind of parallelism is most useful

in an application, but there is more work to be done before this problem is well understood.

Processors Loop Tree Hybrid

1 17.159 16.679 n/a

2 8.769 16.749 8.849

4 4.659 16.659 10.189

6 3.359 3.479 1.459

8 2.649 3.469 1.459

Table 6: Performance of loop, tree, and hybrid programs.

16



desire 1 desire 128 desire 256

Buttery loop 0.7298 4.0369 7.1970

tree 2.3331 2.9804 3.2637

Symmetry loop 0.3190 1.3143 2.3190

tree 1.3214 1.6690 1.8000

Iris loop 0.0227 0.0933 0.1660

tree 0.0753 0.1087 0.1320

Table 5: Searching a dense solution space; varying the problem.

4 Hybrid Parallelization

The previous section showed that, in parallel combinatorial search, tree parallelism and loop

parallelism are both important and serve di�erent roles. Loop parallelism speeds descent of

the search tree, while tree parallelism helps �nd the best subtree as early as possible. The

data in the previous section suggest that, for some inputs and problem spaces, a combination

of both approaches may perform better than either alone.

Such a hybrid algorithm would be expected to do best on inputs and problems in which

speculative parallelism is bene�cial, and time spent in searching subtrees is signi�cant. This

type of problem could be considered midway between inputs with a dense solution space, in

which speculation doesn't help, and inputs with a sparse or empty solution space, in which

the whole graph must be searched and coarse grain size is most important.

We implemented such a \hybrid" algorithm to test this hypothesis. Our implementation

partitions processors into groups of two; each group works together using loop parallelism on

a single subtree. We ran this hybrid program on the Iris, using the graph inputs discussed

in Section 3. Table 6 presents running times when searching for a single solution in a sparse

space (which bene�ts from speculation). The table shows that the notable bene�t obtained

from speculation when the sixth processor is added is evident in both the tree and hybrid

versions; however the hybrid version also bene�ts from loop parallelism, making it the best

choice in this case.

6

These results indicate that there are problems which bene�t from hybrid parallelism.

To test our hypothesis that these problems occur in the inputs ranges between sparse and

dense, but not near the endpoints, we ran the hybrid program on the Iris for a larger set

of input graphs. The larger size of the input graphs helps show more markedly the relative

performance of the three programs. In these tests, we varied the density of the solution

space, starting out dense (where dense is approximately 10

�20

for these larger graphs) and

moving into the intermediate range (about 10

�36

). The results are shown in Figure 7. This

�gure shows solution space density decreasing to the left. As the solution space grows more

6

The increase in running time from two to four processors in the hybrid case results from bus saturation

interfering with loop parallelism, without tree parallelism providing any bene�t.

15



1 2 3 4 5 6 7

0
2

4
6

8
10

12

Tree

Number of Processors

T
im

e 
in

 S
ec

on
ds

1 2 3 4 5 6 7

0
2

4
6

8
10

Loop

Number of Processors

Computation
Load Imbalance
Wasted Speculation
Memory Loss

Figure 5: Overheads of Loop and Tree, Seeking One Solution in a Sparse Solution Space

the number of solutions desired is much greater than the number of processors, speculative

parallelism hurts very little, and loop parallelism incurs additional communication costs. In

other words, when little processing power is wasted on speculation, tree parallelism excels

because of its larger grain size.

3.5 Summary: Loop vs. Tree

The results in this section stand in sharp contrast to the notion that one \best" paral-

lelization exists for this broad class of problems. We have shown that this notion does not

hold even if any two of the three computation characteristics are held constant: machine,

input, or problem. We have not used any characteristics speci�c to subgraph isomorphism

in reaching this conclusion; the performance e�ects that we show here are due to the den-

sity of the solution space, simple variants of the problem de�nition, and the performance

characteristics of the machine being used.

The two kinds of parallelism used in this program, loop parallelism and tree parallelism,

are not often well supported in the same language and runtime environment. These data

argue that any language and runtime environment for parallelism that is intended for use

on this broad class of problems should provide good support for both kinds of parallelism.

14



10

�2

10

�13

10

�18

empty

8CE loop 0.2912 13.7951 163.8678 0.6636

tree 1.1243 11.0926 3.0933 0.5906

Buttery loop 0.7298 33.7188 541.5130 1.7667

tree 2.3331 3.7634 8.0026 1.4941

Iris loop 0.0227 1.0993 13.2450 0.0513

tree 0.0753 0.7400 0.2407 0.0413

Table 4: Searching for one solution; varying inputs.

solution problem" is not. This surprising result occurs because tree parallelism is highly

speculative when only a single solution is required. The processor cycles spent on speculative

computation are bene�cial in a sparse solution space, but are wasted in a dense solution

space, and are neutral in an empty solution space.

We can verify this by comparing the overheads experienced on the Iris by loop and

tree parallelism when seeking one solution in a sparse (10

�13

) solution space. Figure 5

shows the three most signi�cant sources of overhead for both parallelizations, along with

the amount of time spent in productive computation. The �gure shows total time spent

by all processors, so the height of the bar must be divided by the number of processors

to get the actual running time. It shows that tree parallelism exploits speculation well,

with cheaper solutions found when the third and the sixth processors are added. It also

shows that increasing processors in the loop parallelization increases communication and

load imbalance enough that it cannot compete with tree parallelization.

3.4 Varying the Problem

For a given machine and input, each parallelization outperforms the other on some problems.

As seen in Table 5, on each machine loop parallelization is best in at least one category,

and tree parallelization is best in at least one category. The example is searching a dense

solution space (10

�2

).

We can understand these performance �gures by examining why tree parallelism out-

performs loop parallelism on the Iris when seeking many solutions in a dense solution space.

Figure 6 shows the three most signi�cant overheads for this case. It shows that, for tree

parallelism, the overhead due to communication stays roughly constant as we increase pro-

cessors, and that the increased processing power is spent in useful computation. For loop

parallelism, it shows a large increase in communication costs as we increase the number of

processors. This occurs because node �ltering is rapid in a dense space; all nodes are likely

to lead to solutions. As a result, communication occurs more frequently as parallel loops

are entered and exited more quickly.

Here the cost and bene�ts of speculative parallelism can be seen in another way; specula-

tive parallelism wastes cycles when searching for a few solutions in a dense space, but when

13



0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14

Total

Time

Spent

in Wasted

Computation

Processors

Iris

KSR1

Figure 4: Decreasing Wasted Computation in Tree Parallelism

single processor case favors the Iris (7.03 seconds on the Iris, 18.86 on the KSR1). However,

there is no load imbalance under tree parallelism on this problem; the dominant source of

overhead is wasted computation due to speculation. Figure 4 shows the total time spent

on wasted speculation for this problem on both machines, in seconds. As the number of

processors increases, each time the line does not rise, the program has bene�tted from an

increase in processing power: when the line stays at, a constant amount of work has been

divided among a larger number of processors, and when the line drops, the program has

found a cheaper set of solutions via speculative parallelism. The �gure shows that increas-

ing processors for this problem continues to yield signi�cant bene�ts beyond 8 processors;

as a result, the KSR is able to exploit its larger number of processors to advantage and

outperform the Iris.

Thus we have shown that the choice of which parallelization is better depends on pro-

cessor speed and the number of processors available. In addition we believe that memory

speed and interconnect latency and bandwidth would play a role as problem sizes increase.

3.3 Varying the Input

For a given machine and problem, each parallelization outperforms the other on some inputs.

We show selected examples in Table 4. In the examples, we are searching for one solution

while varying the density of the solution space (inputs). We see that for each machine, loop

is best in one case, tree is best in two cases, and one case is about even:

Unlike the problems in the previous section, the results in Table 4 are consistent across

all the machines we studied. Thus we see that the best parallelization for the \�nd multiple

solutions" problem is machine-dependent, yet the best parallelization for the \�nd one

12



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14

Fraction

of Cycles

Spent

in Load

Imbalance

Processors

Iris

KSR1

Figure 3: Increasing Load Imbalance in Loop Parallelism

There seems to be no simple method to determine which parallelization is better for

a given machine, other than to run both versions. However, for particular machines, we

can determine why one parallelization outperforms the other by using our performance

evaluation method.

For example, the �rst two lines in Table 3 show that in a sparse solution space, loop

parallelism outperforms tree parallelism on the Iris, while tree parallelism outperforms loop

parallelism on the KSR1. In addition, loop parallelism executes faster on the Iris than

on the KSR1, while tree parallelism executes faster on the KSR1 than on the Iris. Upon

examination, we �nd that on these two machines, the principal source of overhead under

loop parallelization is load imbalance, and the principal source of overhead under tree

parallelization is wasted speculation.

To understand why the Iris outperforms the KSR under loop parallelism, we �rst note

that the uniprocessor (sequential) running time of the program is 21.88 seconds on the

KSR, while it is 8.66 seconds on the Iris. Although the Iris is faster at solving this problem

on a single processor, the Iris only has 8 processors, while our KSR con�guration has 32

processors (much larger machines are available). Unfortunately our measurements of load

imbalance show that for this problem, on these machines, the degree of load imbalance under

loop parallelism grows quite large with an increase in the number of processors. Figure 3

shows the fraction of total processor cycles lost due to load imbalance for loop parallelism

on this problem on both machines. The �gure indicates that beyond about 8 processors,

the fraction of cycles lost due to load imbalance grows very large. In fact, the bene�t of

adding additional processors beyond this point is completely counteracted by the increase

in load imbalance, precluding the KSR from bene�tting from its larger supply of processors.

On the other hand, the KSR outperforms the Iris under tree parallelism. As before, the

11



The BBN Buttery TC2000 uses the Motorola 88100 processor, each with its own local

memory. Each processor may access another's memory through an FFT switching network.

The processor data caches are not used for shared data because they are not kept consistent.

The SGI Iris uses the MIPS R3000 processor. There is a single global memory accessed

through a shared bus. Each processor has a two-level cache. The second level cache is 1

MB, which is large enough that the Iris is most e�ectively programmed as though it had

local memories.

The KSR 1 uses a custom 64-bit processor. All memory in the system is managed as

a set of caches, with each processor containing a 32 MB cache and a 512 KB subcache.

Access times to the subcache, the local cache, and a remote cache are in the ratio 1:9:88.

Cache block movement is through a high-speed ring network.

4

3.2 Varying the Machine

For a given problem and input, each parallelization outperforms the other on some ma-

chine(s). Here we show two selected examples. In each example, loop parallelization is best

for more than one machine, and tree parallelization is best for more than one machine. This

shows that the di�erences we are noting are signi�cant; there are multiple machines in each

category.

The �rst example in Table 3, is searching for multiple solutions in a sparse solution

space. (Speci�cally, looking for 128 isomorphisms in a solution space with density 10

�13

).

We see that loop parallelism is best on two machines, tree parallelism is best on four other

machines, and one machine (the Balance) is a toss-up. For this and subsequent tables, we

underline the time taken by the better parallelization in those cases where the di�erence in

execution time is signi�cant.

5

8CE Buttery Balance Iris Symmetry TC2000 KSR1

sparse loop 24.6673 75.7317 91.6722 2.0559 29.7714 11.0429 10.68

tree 36.0518 12.5988 86.7278 2.5880 15.8381 3.7843 2.24

dense loop 1.0644 4.0369 4.2056 0.0933 1.3143 0.5518 0.46

tree 1.5251 2.9804 6.5167 0.1087 1.6690 0.5177 0.26

Table 3: Searching for 128 solutions; varying machines.

The second example in Table 3 is searching for multiple solutions in dense input. (Look-

ing for 128 isomorphisms with solution space density 10

�2

). Again, there is a number of

machines (3 in this case) for which loop parallelism is best, and a number (2 in this case)

for which tree parallelism is best. The two parallelizations are a toss-up on the remaining

two machines.

4

The KSR 1 has a multi-level ring architecture, but all our tests were done on a single ring.

5

We consider di�erences in running time signi�cant if the slower version takes at least 25% more time

than the faster version.

10



no solutions exist. The problems we consider are: �nding a single isomorphism; �nding

128 isomorphisms; and �nding 256 isomorphisms. We have collected data for these seven

machines, four classes of inputs, three problems, and several parallelizations, amounting to

over 37,000 data points.

In this presentation, we will not address variability in performance due to the number

of processors used and the choice of whether or not to exploit word parallelism. To ensure

fairness, we report the minimum execution time (in seconds) achieved over the entire range

of processors whether exploiting word parallelism or not.

3.1 Machines Used

Our implementation runs on seven shared-memory multiprocessors, covering a range of

processor and interconnect technologies. Table 2 summarizes them.

Number of

Label Processors Machine

8CE 7 IBM 8CE

Balance 20 Sequent Balance

Symmetry 19 Sequent Symmetry

Buttery 39 BBN Buttery One

TC2000 21 BBN Buttery TC2000

Iris 8 Silicon Graphics Iris

KSR1 32 Kendall Square Research 1

Table 2: Machines used in this study.

The IBM 8CE uses the ROMPC processor (as found in the IBM RT). In addition to a

global shared memory, each processor has its own local memory. Access to non-local memory

is through a shared bus, and the access times to local, global and another processor's local

memory are in the ratio 1:2:5. The 8CE has an experimental operating system [Bolosky

et al., 1989] that dynamically places shared pages in global shared memory and leaves

unshared pages in local memories. There is no memory cache.

The Sequent Balance uses the National Semiconductor 32032 processor. There is a

single global shared memory, accessed through a shared bus. Each processor has an 8KB

write-through cache.

The Sequent Symmetry uses the Intel 80386 processor. There is a single global shared

memory, accessed through a shared bus. Each processor has an 64KB write-back cache.

The BBN Buttery One uses the Motorola 68000 processor, each with its own local

memory. Each processor may access another's memory through an FFT switching network.

The access times to local memory and another processor's memory are in the ratio 1:5.

There is no memory cache.

9



no segment of a single processor's time can be simultaneously assigned to two di�erent

overhead categories. This ensures that we can measure, add, and subtract overhead values

meaningfully.

The categories we used are: Load Imbalance, Idling, Synchronization Loss, Braking Loss,

Memory Loss and Wasted Computation. Load Imbalance is de�ned as the processor cycles

spent idling, while parallel tasks exist and are not yet completed. Idling is de�ned as the

processor cycles spent idling, while there are no parallel tasks available. Synchronization

Loss is de�ned as the time spent executing synchronization instructions; (e.g., waiting in a

barrier or spinning on a lock). Braking Loss is de�ned as algorithmic work done after the

solution has been found by another processor. Memory Loss is de�ned as time processors

spend stalled, waiting for memory to supply needed operands. Finally,Wasted Computation

is de�ned as algorithmic work done by the program that did not contribute to �nding the

problem solution(s). This category is often signi�cant in combinatorial search, because when

many processors independently search for a small number of solutions, some processors may

not �nd any solutions. In this case, we refer to this category as wasted speculation.

We developed a uniform method for quantitatively evaluating each of these overhead

categories, and applied it to our implementations of subgraph isomorphism. This general

approach to performance evaluation, along with its implementation, is described in more

detail in [Crovella and LeBlanc, 1993]. We found that these categories provided the right

level of abstraction for examining how performance depends on the underlying architec-

ture, the structure of the input graphs, and the number of desired isomorphisms, on a

range of shared-memory multiprocessors. The next section presents the results of those

examinations.

3 Multiple Parallelizations

In this section we show that good performance in the subgraph isomorphism computation

sometimes requires that tree search be parallelizable, and sometimes requires that pruning

be parallelizable. (Section 4 discusses situations for which parallelizing both search and

pruning is useful.) As a result, good performance requires the ability to parallelize the

problem using both loop parallelism and tree parallelism.

This surprising result holds no matter which aspect of the problem is varied. Both

parallelizations are needed whether one is concerned with:

1. porting a given problem and input to a di�erent machine,

2. running a given problem on a given machine while varying inputs, or

3. for a �xed input and machine, solving varying problems.

We show multiple examples for each of these points based on our implementation, which

currently runs on seven shared-memory multiprocessors. These machines are as described

in Section 3.1 and Table 2. We study four input data sets: one in which solutions are

extremely plentiful; two in which solutions exist but are relatively rare; and one in which

8



input when searching for a single isomorphism, the reverse may be true when searching

for multiple isomorphisms. This could occur because even a successful depth-�rst search

of a single subtree might not yield enough solutions. The choice depends on the number

of solutions desired, and the extent to which solutions are clumped in the search tree. In

some cases, a combination of tree and loop parallelism might provide the best performance,

assuming we have enough processors to implement loop parallelism within the context of

tree parallelism.

The underlying architecture (hardware and software) is also an important factor to con-

sider when choosing a parallelization. For example, both vector and word parallelism require

the appropriate operations in hardware. The performance e�ects of word parallelism de-

pend on several factors, including the time required to pack and unpack the representation

of mappings into a single word, the number of parallel operations on mappings, and the

time required to extract a single bit from the representation. Also, since the packed repre-

sentation of mappings reduces the overall bandwidth required to read and write mappings,

word parallelism will lower communication costs (and perhaps even contention overhead),

and therefore have a signi�cant performance e�ect on machines where communication is

expensive.

The underlying architecture may also a�ect the choice between loop and tree paral-

lelism. Loop parallelism is particularly appropriate on machines and software systems that

support �ne-grain parallelism, while the coarser-grain tree parallelism could be used on any

shared-memory multiprocessor (or even distributed-memory multiprocessors) using operat-

ing system processes or lightweight threads.

Since there are so many possible parallelizations of the subgraph isomorphism algo-

rithm, it is di�cult to choose a particular parallelization without a better idea of how

various problem parameters a�ect the choice. Indeed, in an earlier study of subgraph iso-

morphism [Costanzo et al., 1986] we chose to exploit tree parallelism because of its lower

synchronization costs, even though the problem parameters were such that tree parallelism

was not very e�ective. We will examine the relationship between problem parameters and

the best choice of parallelization in the following sections.

2.4 Evaluating the Performance of Subgraph Isomorphism

To explore the relationship between problem parameters and the performance of di�erent

parallelizations, we measured the causes of poor performance in each implementation of

subgraph isomorphism. Our goal was to gain understanding of the way that machine

characteristics, problem de�nition, and input choice a�ect the various kinds of overhead

that can occur in parallel combinatorial search.

To help develop insight, we assigned the various overhead costs to categories that are

meaningful to the programmer. The particular categories were chosen so as to be com-

plete and orthogonal . By completeness we mean that in the absence of overheads in these

categories, the program would have exhibited linear speedup. This is veri�ed empirically:

if, after measuring all overhead in a multiprocessor execution, the remaining computation

equals that of the uniprocessor case, then the set is complete for that execution. Our set

was found to be complete for all executions we measured. By orthogonal we mean that

7



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

�

�

�

C

C

C

C

�

�

�

�

�

�

�

�

X

X

X

X

X

X

X

X

X

X

X

X

Q

Q

Q

Q

Q

Figure 1: A sparse search tree.

�

�

�

�

�

�

�

�

�

C

C

C

C

�

�

�

�

�

�

�

C

C

C

C

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

C

C

C

C

�

�

�

�

Q

Q

Q

Q

Q

C

C

C

C

�

�

�

�

�

�

�

�

�

C

C

C

C

�

�

�

�

�

�

�

C

C

C

C

�

�

�

�

A

A

A

C

C

C

C

�

�

�

�

Q

Q

Q

Q

Q

C

C

C

C

�

�

�

�

�

�

�

�

�

C

C

C

C

�

�

�

�

�

�

�

C

C

C

C

X

X

X

X

X

X

X

X

X

X

X

X

�

�

�

�

A

A

A

C

C

C

C

�

�

�

�

Q

Q

Q

Q

Q

Figure 2: A dense search tree.

6



Label Source of Parallelism

tree search of di�erent children of the root node

�lter application of di�erent �lters

loop examining small \relatives" of the postulated mapping

vector constraining mappings for each \relative"

word constraining mappings for each \relative"

Table 1: Exploitable parallelism, from coarsest to �nest.

Each �lter removes potential mappings based on some relationship between the candi-

date vertex in the small graph and other vertices in the small graph. For a given candidate

vertex, we can examine constraints on the remaining vertices of the small graph in paral-

lel. We refer to this source of parallelism as loop parallelism, since both the granularity

and structure of this source of parallelism resembles a single parallel loop. A �ner-grain

source of parallelism arises when removing mappings that violate the constraints of a �lter.

Since the primitive data elements in a mapping are of type Boolean, we can pack many

booleans into a single word and use word-parallel bit operations, such as and and or. We

refer to this source of parallelism as word parallelism. In addition, multiple word-parallel

operations could be performed in parallel by a vector processor, thereby exploiting vector

parallelism.

3

Although both vector and word parallelism exploit the same source of paral-

lelism (the possible mappings of a given small vertex), they can be used individually or in

tandem.

The presence of both tree parallelism and parallelism within the tree-pruning step has

been noted by other researchers [Wah et al., 1985; Natarajan, 1987; Finkel and Manber,

1987; Rao and Kumar, 1989]. However, there has been little previous attention given to

whether there is a single best parallelization of branch-and-bound search for a particular

machine, input, or problem. In fact, we �nd that the best choice of parallelization depends

on the precise problem to be solved (that is, the number of isomorphisms to be found), the

structure of the input graphs (i.e., the density of the solution space), and the underlying

architecture.

When searching for only one solution, tree parallelism is speculative, in that we might

not need to search every subtree of the root in order to �nd the required number of solutions.

If the solution space is sparse, so that only some subtrees of the root contain solutions, as

in Figure 1, then we might choose to search several subtrees in parallel, rather than apply

loop parallelism during a sequential depth-�rst search of a subtree that might contain no

solutions. On the other hand, when searching in a very dense solution space, as in Figure 2,

we can reasonably expect every subtree of the root to contain many solutions, and therefore

could expect better results by using loop parallelism in an e�cient depth-�rst search under

a single child of the root.

Even when, as above, loop parallelism is more e�ective than tree parallelism for a given

3

None of the machines in our study support vector operations, so we did not exploit this form of

parallelism.

5



to two vertices in the large graph, the probability that the two vertices in the large graph

are connected is simply l. We assume that edge occurrences are independent events in both

graphs, and therefore

density � l

(

S

2

)

s

In the experiments reported here, we use this de�nition of density to characterize the input

graphs.

Solutions are not randomly distributed among the leaves of the search tree. The �lters

described earlier are highly e�ective in practice because many subtrees contain no solutions

while others contain many solutions. For example, when S = 32, L = 128, s = 0:9, and

l = 0:2 (density � 10

�312

), our implementation visits only 105 nodes of the more than 10

65

nodes in the search tree, in the process of determining that no isomorphisms exist.

When the search reaches level k in the tree, there are S � k vertices remaining to be

matched in the partial isomorphism. We can expect

�

k

2

�

s of the

�

S

2

�

s edges in the subgraph

to connect vertices seen so far, and

�

S

2

�

s�

�

k

2

�

s edges to remain to be matched. If all edges

joining matched vertices in the small graph are also present in the large graph (note that this

is not always guaranteed by the �lters we employ), then the probability that any particular

leaf below us in the search space represents an isomorphism is

l

(

S

2

)

s�

(

k

2

)

s

a quantity that can be considerably larger than the density of the problem space as a

whole. For example, when S = 32, L = 128, and overall density � 10

�18

, subtree density

is over 1000 times the overall density only 11 levels down in the tree (again given that all

edges joining matched vertices in the small graph are also present in the large graph). This

analysis shows that pruning the search tree can be highly e�ective in reducing the number

of nodes searched.

2.3 Parallel Implementations of the Subgraph Isomorphism Algorithm

There are many ways to exploit parallelism in the implementation of our algorithm for

subgraph isomorphism. (See Table 1.) The coarsest granularity of parallelism occurs in the

tree search itself; we can search each subtree of the root node in parallel (hereafter referred

to as tree parallelism), with depth-�rst, sequential search at the remaining levels.

1

At each

node of the tree, several �lters must be applied so as to prune the search tree, and this set

of �lters could be executed in parallel.

2

We can also exploit parallelism when applying a

�lter to a candidate mapping.

1

We could choose to implement tree parallelism at any depth in the tree, rather than at the root. A

comparative evaluation of the alternative implementations of tree parallelism is beyond the scope of this

paper, however.

2

Our implementation uses only two �lters, but others are possible. In general, we would expect com-

binatorial search problems to employ many �lters, so much so that this source of parallelism could prove

extremely valuable. However, in the experiments reported in this paper, we do not exploit this source of

parallelism.

4



The vertex distance �lter eliminates mappings where the distance between two vertices

in the small graph is less than the distance between two vertices in the large graph, which

implies that there is some edge in the small graph that is not represented in the isomorphism.

Formally, the �lter removes entry (i; j) of the matrix if some vertex h in the small graph

has already been mapped to a vertex k in the large graph and the distance from h to i is

less than the distance from k to j. The distance �lter uses precomputed distance matrices

for the two input graphs.

The vertex connectivity �lter ensures that the possible mappings of a vertex in the

small graph are consistent with the possible mappings of its neighbors. Formally, the �lter

eliminates entry (i; j) of the matrix if there exists a neighbor k of i in the small graph for

which there is no remaining possible mapping to a neighbor of j in the large graph. Our

vertex connectivity �lter resembles the one employed by Ullman, except that we do not

iterate after eliminating a possible mapping to see whether its elimination would allow us

to eliminate additional mappings.

Since neither of the above �lters eliminates all invalid isomorphisms, we perform a �nal

veri�cation at each leaf node to ensure that every edge in the small graph is represented by

an edge in the large graph, and therefore represents a valid isomorphism.

2.2 Analysis of the Search Space

We characterize the search problem in terms of the number of isomorphisms we want to �nd

and the structure of the two input graphs. In our experiments input graphs are randomly

generated from four parameters: the size of the small and large graph, and the probability

for each graph that a given pair of vertices will be joined by an edge. We use S for the

number of vertices in the small graph, L for the number of vertices in the large graph, and

s and l, respectively, for the edge probabilities in each of the graphs. The expected degree

of a vertex in the small graph is (S� 1)s; the expected degree of a vertex in the large graph

is (L� 1)l.

As described above, the problem of �nding isomorphisms can be reduced to searching

a very bushy S-level tree of possible vertex matchings. In this bushy (unpruned) search

tree, the L children of the root represent the L associations of vertex 1 of the small graph

with a vertex of the large graph. The L� 1 children of a level-1 vertex represent the L� 1

associations of vertex 2 of the small graph with one of the remaining vertices of the larger

graph, and so on. The total number of leaves in the problem space tree is

�

L

S

�

S!

This number is very large; for S = 32 and L = 128 (the size of our experiments), there are

approximately 4� 10

65

leaves. Brute-force search of this space is not feasible.

The expected number of solutions (i.e., isomorphisms) is the number of leaves times the

probability that a given leaf is a solution. To determine this probability, which we refer to

as the density of the problem space, we �rst note that the expected number of edges in the

small graph is

�

S

2

�

s. Also, given a mapping from two connected vertices in the small graph

3



is NP-hard, techniques for pruning the search space often allow solutions to be found in a

reasonable amount of time.

2.1 An Algorithm for Finding Isomorphisms

Our algorithm is based on Ullman's sequential tree-search algorithm [Ullman, 1976]. This

algorithm postulates a mapping from one vertex in the small graph to a vertex in the large

graph. This mapping constrains the possible mappings for other vertices of the small graph:

they must map to distinct vertices in the large graph, and must have the same relationship

to the �rst vertex in both graphs. (This notion of relationship is made more precise below.)

The algorithm then postulates a mapping for a second vertex in the small graph, again

constraining the possible mappings for the remaining vertices of the small graph. This

process continues until an isomorphism is found, or until the constraints preclude such a

mapping, at which point the algorithm postulates a di�erent mapping for an earlier vertex.

The search for isomorphisms takes the form of a tree, where nodes at level i correspond to

a single postulated mapping for vertices 1 through i in the small graph and a set of possible

mappings for each vertex j > i, and where the mappings at levels 1 through i constrain the

possible mappings at levels j > i.

Each node in the search tree is a partial isomorphism, which we represent by an S � L

Boolean matrix, where S is the number of verticies in the small graph, L is the number of

verticies in the large graph, and entry (i; j) is true if we are still considering the possibility

of mapping vertex i of the small graph to vertex j of the large graph. When all rows in the

partial isomorphism contain exactly one true element, then each vertex in the small graph

has a single postulated mapping and the isomorphism is complete. When any row in the

partial isomorphism contains no true elements, then some vertex in the small graph has

no acceptable mapping, the isomorphism is invalid, and we may prune that node from the

search tree.

The children of a node are constructed by selecting one possible mapping at the next

level of the tree and then removing any conicting mappings. Formally, we assign a vertex

i in the small graph to one of its remaining possible mappings j in the large graph. Since

the vertex i in the small graph may map to only one vertex j in the large graph, we

remove all other mappings for the small graph vertex, that is remove (i; k 6= j) in the

partial isomorphism. In addition, no two vertices in the small graph may map to the same

vertex in the large graph, so we remove the postulated large graph vertex from the possible

mappings of all other small graph vertices, that is remove (k 6= i; j).

Since the search space is very large, it is prudent to eliminate possible mappings early,

before they are postulated in the search. We do this by applying a set of �lters to the

partial isomorphisms, reducing the number of elements in each mapping set, and pruning

nodes in the search tree before they are visited. Though there is a large number of possible

�lters, each based on a relationship between verticies within the small graph and between

verticies and their potential mappings, we apply only two �lters, vertex distance and vertex

connectivity. These �lters are not necessary, but they prune the search space enough to

make the problem tractable.

2



1 Introduction

As parallel processors increase in size, it becomes harder and harder to develop applications

with su�cient parallelism to make use of all the available processors. On small machines

(e.g. multiprocessor workstations), it is commonplace to run a modest number of hetero-

geneous processes, such as the independent programs of a typical time-sharing mix, or the

pieces of a small-scale parallel application that has been divided along functional lines.

On large-scale machines, however, successful exploitation of the hardware has generally re-

quired applications with a highly regular structure and, consequently, large amounts of data

parallelism.

Two of the problem domains for which large-scale parallelism has proven most success-

ful are on-line transaction processing and demanding scienti�c computations. The former

domain is characterized by a very large number of small, mostly independent tasks, which

can be executed in parallel by a collection of servers. The latter domain is characterized

(at least in large part) by the parallel application of a local operation throughout one or

more very large arrays. It has been argued [Gustafson et al., 1988] that scalability depends

on ever-increasing data sets, and it is tempting to suspect that problems with this sort of

highly regular data parallelism are the only ones for which very large-scale machines will

be practical. We argue in this paper, however, that there are important classes of paral-

lelizable problems whose structure, while in some sense regular, is not data parallel in the

usual sense of the word. Speci�cally, we argue that there are problems containing several

fundamentally di�erent kinds of potential parallelism, where no one parallelization is consis-

tently best. Using combinatorial search as our problem class, and focusing in particular on

the problem of �nding subgraph isomorphisms, we show that the choice between alternative

parallelizations depends on the underlying architecture, the expected density of the solution

space, and the number of solutions desired. For certain combinations of parameters, we �nd

that it pays to employ a hybrid approach that mixes parallelizations. We conclude that

neither straightforward loop-based data parallelism nor thread-based functional parallelism

captures the full range of practical parallel algorithms, and that programming languages

and systems with a heavy bias toward only one style of parallelization will be inadequate

to express the full range of programs on large-scale parallel machines.

We present the problem of subgraph isomorphism, and a parallel algorithm to solve it,

in Section 2. Using results culled from over 37,000 data points on seven di�erent shared-

memory machines, we argue the need for multiple parallelizations in Section 3. We present

the case for hybrid parallelizations in Section 4, and summarize our conclusions in Section 5.

2 Problem Description and Analysis

We will use subgraph isomorphism as an example problem requiring combinatorial search.

Given two graphs, one small and one large, the problem is to �nd one or more isomorphisms

from the small graph to arbitrary subgraphs of the large graph. An isomorphism is a

mapping from each vertex in the small graph to a unique vertex in the large graph, such

that if two vertices are connected by an edge in the small graph, then their corresponding

vertices in the large graph are also connected by an edge. Though subgraph isomorphism

1



BEYOND DATA PARALLELISM: The Advantages of

Multiple Parallelizations in Combinatorial Search

Lawrence A. Crowl

�

Mark E. Crovella Thomas J. LeBlanc Michael L. Scott

The University of Rochester

Computer Science Department

Rochester, New York 14627

Technical Report 451

y

April 1993

Abstract

Two popular myths concerning parallel programming are: (1) there is a \best" paralleliza-

tion for a given application on a given class of machine and (2) loop-based data parallelism

captures all useful parallelizations. We challenge these myths by considering alternative

parallelizations of combinatorial search, examining the factors that determine the best-

performing option for this important class of problems. Using subgraph isomorphism as a

representative search problem, we show how the density of the solution space, the number

of solutions desired, the number of available processors, and the underlying architecture

a�ect the choice of an e�cient parallelization. Our experiments, which span seven dif-

ferent shared-memory machines and a wide range of input graphs, indicate that relative

performance depends on each of these factors. On some machines and for some inputs, a

sequential depth-�rst search of the solution space, applying data parallelism at each node in

the search tree, performs best. On other machines or other inputs, parallel tree search, with

no data parallelism, performs best. In still other cases, a hybrid solution, containing both

parallel tree search and data parallelism, works best. From these experiences we conclude

that there is no one \best" parallelization that su�ces over a range of machines, inputs, and

precise problem speci�cations. As a corollary, we argue that programming environments

should not focus exclusively on data parallelism, since parallel tree search or hybrid forms

of parallelism may perform better for some applications.

y

This report is a revised version of Oregon State University Computer Science Department TR 92-80-06.

This research was supported under NSF CISE Institutional Infrastructure Program Grant No. CDA-

8822724, and ONR Contract No. N00014-92-J-1801 (in conjunction with the DARPA HPCC program, ARPA

Order No. 8930). Mark Crovella is supported by a DARPA Research Assistantship in Parallel Processing

administered by the Institute for Advanced Computer Studies, University of Maryland.

�

Deparment of Computer Science, Oregon State University, Corvallis, Oregon 97331-3202


