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Abstract

Do large language models (LLMs) process text
and mathematics as a unified skill, or do these
components rely on distinct underlying mecha-
nisms? We investigate this question by disen-
tangling the textual interpretation and mathe-
matical solving steps in math word problems
drawn from Brazil’s largest college entrance
exam (ENEM) and GSM8K, a popular grade
school-level benchmark. Using the symbolic
solver SymPy, we transform word problems
into equivalent purely mathematical representa-
tions, isolating equation formulation from tex-
tual comprehension. Our extended benchmarks
enable a structured analysis of LLM perfor-
mance across these two dimensions. Through
empirical evaluations, we find that small-scale
LLMs struggle significantly more with text in-
terpretation than with equation solving, with ac-
curacy dropping by a factor of 2 to 7 when solv-
ing full word problems compared to their math-
only counterparts. Exploratory factor analysis
confirms a bidimensional structure in LLM rea-
soning, where models exhibit distinct proficien-
cies in textual and mathematical components,
underscoring the need for targeted improve-
ments in language comprehension. Through
factor analysis, we provide insights into model
selection, helping practitioners make informed
choices based on computational costs and task
requirements.

1 Introduction

Math word problems represent a crucial category of
cognitive tasks evaluated in large language models,
requiring decomposing complex textual descrip-
tions into smaller components and applying sys-
tematic logical reasoning, typically over multiple
steps (Strohmaier et al., 2022; Zhu et al., 2022).
An example of a math word problem is the famous
baseball bat and ball cost brain teaser (Leron and
Hazzan, 2009): A baseball bat and ball together
cost one dollar and 10 cents. The bat costs one

dollar more than the ball. How much does the ball
cost?. Arriving at the correct answer requires two
steps: (1) interpreting the problem expressed in
natural language, which involves extracting and re-
lating variables to build the mathematical equation
x+ (1 + x) = 1.10, and (2) solving the equation
using mathematical reasoning, where the linguistic
details are no longer relevant.

Motivated by educational research showing that
humans need a combination of cognitive skills to
solve math word problems (Daroczy et al., 2015;
Strohmaier et al., 2022), we pose two research ques-
tions: (1) How frequently do small-scale language
models err in equation construction compared to
equation solving? (2) Do different language mod-
els exhibit systematic differences in their ability
to construct equations versus solve them? These
questions are important for NLP because they help
characterize the limitations of language models in
real-world analytical problems, which come in tex-
tual, not math forms.

While correctly answering a math word problem
suggests that a model possesses the necessary skills
(though guessing remains a possibility), incorrect
answers can stem from different sources: an error
in interpreting the question and building the under-
lying mathematical equation, an error in solving
the equation, or both. To decompose these sources
of errors, we extend existing benchmarks contain-
ing word problems to include each problem in their
math form, in which the textual interpretation and
formulation of the underlying equation has already
been conducted. In the baseball ball price problem,
once the story-based question has been understood
and the variables identified, it can be translated into
a purely mathematical problem: Solve x + (1 + x)
= 1.10. When a human or AI is presented with
this version of the problem, it does not have to ac-
count for implicit details or linguistic ambiguities
but must still demonstrate mathematical reasoning
in solving a linear equation. Conversely, when



faced with the original word problem, both humans
and AIs can struggle to construct the correct equa-
tion. It is common for college-level students to
misinterpret the problem and construct the incor-
rect equation x+1.00 = 1.10, leading to the wrong
answer of 0.10 instead of 0.05.

We use word problems sampled from two
sources containing problems of different diffi-
culty levels: (1) 40 questions extracted from
the largest Brazilian college admission-level math
exam (ENEM), which tests highly analytical ca-
pabilities (Almeida et al., 2023), and (2) an equal-
sized sample from GSM8K (Cobbe et al., 2021), a
popular benchmark containing grade-school level
(and hence easier) word problems. To systemati-
cally convert word problems into their pure-math
equivalents, we leverage Python’s symbolic solver
SymPy (Meurer et al., 2017). We use a state-of-the-
art generative language model (gpt-4-turbo-2024-
04-09) to generate the SymPy source code that rep-
resents the underlying mathematical structure of
each problem. This symbolic representation serves
as the basis for formulating the pure-math version
of the question, removing any linguistic interpreta-
tion challenges. After constructing extended bench-
marks based on ENEM and GSM8K and evaluating
35 models from different families in different ver-
sions and stages of fine-tuning and with zero-shot
and two-shot chain-of-thought prompts, our find-
ings are:

• For both grade-school and especially college
entrance levels, language models struggle
more with the textual interpretation step than
with the mathematical step. In a typical ques-
tion, errors in its textual version range from 2
to 7 times higher than in the pure-math form.

• The relative difficulty of questions in the math
vs. word forms varies significantly in differ-
ent benchmarks. This highlights how bench-
marks that test the same type of broad class of
problems ("math word problems") can actu-
ally evaluate different aspects of the models;
some benchmarks may demand more math
capabilities and others, textual interpretation.

• Exploratory factor analysis (Finch, 2013) un-
veils two latent factors that align strongly
with text vs. math ability, indicating distinct
skill profiles in small-scale language models:
Some models excel at solving pure-math prob-
lems but struggle with word problems, while

a smaller subset of models demonstrate strong
performance in both areas. We show that fac-
tor analysis is a powerful tool for comparing
models and prompt variations beyond simple
accuracy metrics. By analyzing multiple vari-
ations of different versions of models from
the same family, we can track their evolution
over time and pinpoint whether a new version
introduces a fundamentally new skill.

In addition to making the extended benchmarks
publicly available to encourage further research,
our work aligns with the growing trend of design-
ing controlled benchmarks that test specific ca-
pabilities of language models by systematically
varying key features of the problem space. This
approach enables more nuanced analyses beyond
accuracy (Burnell et al., 2023b) and increases the
relevance and informative power of benchmarking
efforts (v. Kistowski et al., 2015).

2 Related Work

In educational assessments, a word problem is a
mathematical or logical problem presented as a
narrative rather than a direct mathematical equa-
tion (Verschaffel et al., 2020). Math word prob-
lems require test-takers to identify explicit and
implicit quantities in the text, model their rela-
tionships through mathematical operations, and ap-
ply appropriate mathematical techniques to solve
them (Koncel-Kedziorski et al., 2016). These char-
acteristics make word problems a compelling way
to evaluate the reasoning and problem-solving ca-
pabilities of AI models, attracting the NLP commu-
nity for some decades (Roy et al., 2015).

With the rise in popularity of large language
models, benchmarks such as GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021) have
become popular choices for assessing model per-
formance, as they provide structured problem sets
with varying levels of complexity. To elucidate
reasons that make language models fail, there is a
growing trend in AI evaluation that designs bench-
marks that systematically vary key features of prob-
lem formulations to enable a more nuanced analy-
sis (Burnell et al., 2023b). Controlled benchmarks
have explored different aspects, including the inclu-
sion of distracting contextual information (Hos-
seini et al., 2024; Mirzadeh et al., 2024), vari-
ations in numerical representations (Shen et al.,
2023), search space size (Lin et al., 2025), com-
positional tasks (Dziri et al., 2024) and asking the



LLM whether a given solution is correct (Zhang
et al., 2024a). A critical aspect of those works –
which we build upon – is that accuracy as an aggre-
gate metric is not enough to understand reasoning
and hence strategies that evaluate step-specific er-
rors are crucial (Gaur and Saunshi, 2023; Zheng
et al., 2024; Yan et al., 2024; Xia et al., 2024).

Our work introduces a new controlled dimen-
sion to LLM evaluation: comparing model per-
formance on textual vs. symbolic representations
of math word problems. Recent work has used
LLMs to generate word problems (Xie et al., 2024;
Akyürek et al., 2023; Christ et al., 2024); in this
work we are interested in systematically convert-
ing existing word problems into their equivalent
mathematical equations using Python’s symbolic
solver, SymPy (Meurer et al., 2017). This structured
transformation allows for a controlled comparison
of language model performance across different
representations of the same underlying problem.
While previous studies have used symbolic solvers
to assist language models in solving word prob-
lems (He-Yueya et al., 2023; Kao et al., 2024),
to the best of our knowledge we are the first to
leverage symbolic solvers to construct a controlled
benchmark that enables direct comparison between
textual and symbolic problem representations in
LLM evaluation.

Our work is also inspired by studies on the be-
havior and skills that humans need to solve math
word problems (Daroczy et al., 2015; Strohmaier
et al., 2022). The reasons that make word problems
challenging for humans have been thoroughly in-
vestigated (Daroczy et al., 2015; Jaffe and Bolger,
2023), and it is accepted in the educational com-
munity that linguistic and mathematical factors are
distinct, unique skills that contribute to student per-
formance (Vessonen et al., 2024; Pongsakdi et al.,
2020). Recent work has examined word problem
characteristics impacting LLMs and found that they
struggle more with longer questions and rare nu-
merical tokens (Srivatsa and Kochmar, 2024). In
our work, we deepen the analysis on how large
language models solve word problems by applying
exploratory factor analysis (Finch, 2013; Lorenzo-
Seva and Ferrando, 2006), a dimensionality reduc-
tion technique widely used in the social sciences to
uncover latent patterns in complex datasets. While
at least one study has employed factor analysis to
examine LLM response patterns—finding that rea-
soning, comprehension, and language modeling are
distinct high-level capabilities in LLMs (Burnell

et al., 2023a)—our study extends this approach by
leveraging a fine-grained, question-level annota-
tion of each problem (whether it is in the math or
word form). This approach allows us to quantify
latent cognitive dimensions that differentiate model
performance across textual and symbolic formats,
providing deeper insight into how LLMs engage
with different types of problem representations.

3 Benchmarks

We have built two benchmarks following the same
methodology but with a different source of word
problems. The first source is GSM8K (Cobbe
et al., 2021)1, which contains grade school-level
problems and has been used by many previous
work evaluating language models (Liu et al., 2023).
GSM8K is a source of prototype word prob-
lems, in which mathematical word problems fol-
low a simple, linear syntax and are relatively
short (Strohmaier et al., 2022; Mirzadeh et al.,
2024).

To explore questions that involve more complex
interactions between text interpretation and math-
ematical reasoning, we used the Math section of
the Brazilian Exame Nacional do Ensino Médio
(ENEM) as a source of complex word problems,
characterized by presenting potentially redundant
information in a syntax that does not merely mirror
the mathematical task (Strohmaier, 2020). ENEM
is the world’s second-largest university entrance
exam after China’s Gaokao, taken annually by
millions of Brazilian students (Silveira and Mauá,
2018), and Mathematics is consistently the most
challenging section for both human test-takers and
language models, with scores around 30% (Lo-
catelli et al., 2024). According to the official
documentation (Instituto Nacional de Estudos e
Pesquisas Educacionais Anísio Teixeira, 2025), the
exam assesses geometric reasoning, magnitudes
and measurement interpretation, data analysis from
graphs and tables, and trend prediction through
extrapolation and interpolation. A typical ENEM
word problem is shown below:

The subway system in a municipality of-
fers two types of tickets, differentiated by
their colors: blue and red. These tick-
ets are sold in booklets, each containing

1Dataset released under the MIT License. As per https://
huggingface.co/datasets/openai/gsm8k, the dataset was
created to support the task of question answering on basic
mathematical problems that require multi-step reasoning

https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/openai/gsm8k


nine tickets of the same color and with
the same unit price. Two booklets of blue
tickets and one booklet of red tickets are
sold for R$ 32.40. It is known that the
price of one blue ticket minus the price
of one red ticket is equal to the price of
one red ticket plus five cents. What is the
price, in reais, of a booklet of red tickets?

Transforming the word question in its pure
math form. Starting from the observation
that word problems require building a mathe-
matical equation as a well-recognized subprob-
lem (Daroczy et al., 2015), we leverage the sym-
bolic solver SymPy2 (Meurer et al., 2017) to gen-
erate mathematical unambiguous representations
of word problems. This is how the subway ticket
problem is modeled and solved using SymPy:

Listing 1: SymPy code that solves the subway ticket
problem.
import sympy as sp

# Price of one blue and one red ticket
b = sp.Symbol(’b’)
r = sp.Symbol(’r’)

eq1 = 2 * 9 * b + 9 * r - 32.40
eq2 = b - r - (r + 0.05)

solution = sp.solve((eq1 , eq2), (b, r))

price_red_booklet = 9 * solution[r]

solution , price_red_booklet

We then submit a new prompt to GPT-4 instruct-
ing it to convert the SymPy code into a question
in the format "Solve... <equation>.," where all
known variables are replaced with their actual val-
ues, and only the unknowns are retained. For the
subway ticket ENEM word problem, the equiva-
lent math formulation generated from the SymPy
code above is Solve 9*r from 18b + 9r = 32.40
and b − r = r + 0.05. A key advantage of us-
ing SymPy is its enforcement of a structured and
precise format for mathematical expressions, elimi-
nating unnecessary linguistic details and focusing
solely on the mathematical formulation.

To construct the extended benchmark, we consid-
ered 40 ENEM math questions from exams span-
ning 2016 to 2024, using GPT-4 to generate their
corresponding SymPy representations, yielding a
total of 80 questions. We selected questions ran-
domly to ensure diversity regarding difficulty and

2Version 1.12.

problem type, excluding those requiring images
or tables to focus on language-based mathemati-
cal reasoning. The questions were translated into
English using GPT-4 before the SymPy pipeline.
To validate correctness, we executed the generated
SymPy code and verified that it produced the ex-
pected answer. We manually reviewed and curated
the SymPy representations to ensure accuracy and
fidelity to the original problems. The same process
has been conducted with GSM8K; the full prompts
can be found in Appendix A, and examples of ques-
tions in their word and math forms can be found in
Appendix B.

There is ongoing debate regarding the efficacy
of multiple-choice versus open-ended questions for
assessing reasoning abilities (Zhang et al., 2024b).
We opted for open-ended responses to eliminate the
confounding effect of random guessing in multiple-
choice formats. This ensures cleaner signal in-
tegrity in our analysis, reducing noise and enabling
more precise evaluation of model reasoning.

4 Accuracy in word and math forms

We evaluate 35 models, focusing on small lan-
guage small language models to small-scale large
language models (1.5B, 3B, 7B, 14B), across 9
families (Gemini, Qwen, Falcon, Phi, Mistral,
Gemma, Llama, NuminaMath, distilled versions of
DeepSeek-R1) and training strategies (pre-trained
vs. fine-tuned). We included multiple versions of
the same family and also math-specialized models
(e.g., Qwen2.5-Math-7B) to track model evolution
over time. The models were tested with 0-shot
and 2-shot settings, using chain-of-thought prompt
styles following prior work (Hosseini et al., 2024).
The prompt details and full list of models is pro-
vided in Appendixes A and C.

Differences across benchmarks. Our first key
investigation is how accuracy varies across ques-
tion forms (word vs. math) for all models and for
the two annotated benchmarks. In Figure 1, each
datapoint represents a question (red is ENEM and
blue, GSM8K), with its accuracy on the math and
word forms plotted respectively on the x- and y-
axes and averaged over all models and prompt com-
binations. As expected, the deviations from the
y = x line indicate that word problems are gener-
ally more challenging than their math counterparts.
Some non-obvious patterns emerge:

1. College-admission level questions are typi-
cally harder than grade-school level questions



both in terms of equation formulation and
equation resolution. The median accuracy on
the math version of college-admission prob-
lems (ENEM) is around 0.5, compared to 0.8
for grade-level problems. In the word forms,
accuracy is around 0.1 for college-entrance
and 0.5 for grade-level.

2. The clear separation of ENEM and GSM8K
datapoints in the scatter plot, with a small
overlap region, suggests that the nature of the
questions differs between the two exams and,
based on the accuracy on the word and math
forms of a question, the exam it belongs to
could be predicted. We look at the specific
characteristics of questions in Section 5.

3. In the college-admission ENEM exam, accu-
racy varies significantly across the difficulty
of the math form (from 0.3 to 0.8), but the
accuracy considering the word forms is con-
centrated around 0.1 to 0.2.

Figure 1: Differences in accuracy between math and
word forms for all questions. For the models we exper-
imented with, college-admission questions tend to be
harder both in their word and math forms.

We can compute several descriptive statistics
that summarize Figure 1 and highlights the differ-
ences between the two benchmarks. In Table 1,
the lower Pearson and Spearman correlations in
the ENEM exam means that the accuracy in math
form is a poorer predictor of accuracy in the word
form and vice-versa; the lower harmonic mean
points to higher variability, possibly due to linguis-
tic complexity or differences in problem structure.
In GSM8K, the difficulty of the questions is more
stable across formats and questions are closer to
y = x, indicating that models generally maintain

similar accuracy when switching from mathemati-
cal notation to word problems and performance is
more balanced.

metric GSM8K ENEM

Avg. word accuracy 0.520 0.266
Avg. math accuracy 0.705 0.545
Avg. harmonic mean 0.586 0.338
Pearson correlation 0.515 0.426
Spearman correlation 0.573 0.380
Avg. distance to y = x 0.143 0.203

Table 1: Metrics comparing GSM8K and ENEM accord-
ing to math vs. word accuracy averages and correlations.

Differences across models. Figure 2 focuses on
the aggregate accuracy of individual models when
presented with the different forms of the math word
problems. At the extremes, the highest- and lowest-
performing models on word problems show similar
accuracy regardless of the form, and greater dis-
parities are observed in models exhibiting average
performance. The blue datapoints, representing
models evaluated on GSM8K, tend to be closer
to the y = x line, indicating that the word-to-
math translation step in GSM8K is easier when
compared with ENEM. These findings, together
with the per-question breakdown in Figure 1 and
the metrics in Table 1, provide valuable insights
for researchers and practitioners: depending on
whether their focus is on language understanding
or on pure mathematical reasoning, they can make
more informed choices when selecting an appro-
priate benchmark that will demand from models
more abilities on one skill or another, and also put
special focus on specific questions that are more
challenging either in their textual or mathematical
components.

We also investigated the impact of the prompt
choice in model performance in the word and math
forms of the questions. In Figure 3, for ENEM, we
see that chain-of-thought prompts improve math
forms disproportionally more than the word forms;
we see this pattern as evidence that the word forms
demands a higher level of reasoning that chain-of-
thought typically cannot reach.

Finally, to further investigate model perfor-
mance, Figure 4 ranks models by accuracy on
ENEM’s word form of the exam. A clear pattern
emerges: while accuracy in the word form exam
declines sharply for most models, some maintain
strong performance on math forms. Notably, the
blue (math) and orange (word) bars are not strongly



Figure 2: Differences in accuracy between math and
word forms for all models and prompt combinations.
Datapoint size is proportional to model size.

Figure 3: Density plot of the absolute difference in
accuracy in math and word forms for ENEM. 2-shot-
CoT disproportionately improves math questions.

correlated – some models achieve high math accu-
racy but struggle with word problems. This dis-
parity suggests the presence of uncorrelated latent
factors influencing language model performance
on word problems, motivating the factor analysis
we conduct in the next section.

5 Exploratory Factor Analysis

In pyschometrics, determining the dimensional-
ity of an instrument is an important step towards
assessing its validity and reliability. It informs
whether the instrument measures one or multiple
constructs, how its scores should be interpreted,
and which models such as Item Response Theory
apply (Gustafsson and Åberg-Bengtsson, 2010).

Unidimensional instruments (i.e., those measur-
ing a single construct) tend to have high internal
consistency because all items are strongly corre-
lated with the same underlying factor. A popular

Figure 4: Accuracy by model, comparing performance
on word and math questions on the ENEM exam. Mod-
els are sorted by accuracy on the word-based exam.
While most models show a sharp decline in word-
problem accuracy, some retain strong performance on
math problems.

metric is Cronbach’s Alpha (α) (Cronbach, 1951),
which measures the internal consistency of a set
of items by calculating the average correlation be-
tween all pairs of items and considering how each
item contributes to the overall variance of the test
scores. For the ENEM and GSM8K we found α
of 0.972 and 0.978, respectively, indicating very
high internal consistency and minimal random er-
ror. The high consistency we found supports that
the size of our benchmarks is enough for our study
and is consistent with previous work that found that
large benchmarks such as GSM8K, albeit contain-
ing thousands of items, can be reduced to a few
dozen itens and keep a good degree of discrimina-
tion among LLMs (Polo et al., 2024).

However, an instrument exhibiting high inter-
nal consistency is not necessarily unidimensional:
multidimensional scales can still produce high α
values if its items form strongly correlated sub-
components (Taber, 2018; Tavakol and Dennick,
2011). This observation, alongside the findings in
Section 4, motivates conducting exploratory factor
analysis – a well-established method for testing the
dimensionality of an instrument (Tate, 2003). The
goal is to identify distinct skills or dimensions that
may underlie the observed variables. We employed
the software Factor (Ferrando and Lorenzo-Seva,
2017), selecting unweighted least squares as the
estimation method and using promax rotation. To
determine the optimal number of factors that rep-
resent the data, we used parallel analysis, which
compares the eigenvalues derived from the actual
data with those from random datasets generated un-
der equivalent conditions. Factors with eigenvalues



exceeding those of the random data are considered
significant, suggesting they account for meaningful
variance (Timmerman and Lorenzo-Seva, 2011).

Our experiments revealed two statistically sig-
nificant factors on both benchmarks. Details are
provided in Table 2. Kaiser-Meyer-Olkin (KMO) is
a measure of sampling adequacy of the data; values
above 0.70 are considered suitable for factor analy-
sis (Shrestha, 2021). Note that in both benchmarks,
the KMO value is within an acceptable range, the
factors explain about 40% of the variance in the
data, and they are positively correlated.

metric ENEM GSM8K

Kaiser-Meyer-Olkin (KMO) 0.767 0.791
# of factors 2 2
Proportion var. explained 38.04% 43.48%
Correlation between factors 0.708 0.794

Table 2: Summary of factor analysis results.

For each benchmark, we calculate the proportion
of word/math questions whose factor of highest
loading is either factor F1 or factor F2 and also
the average accuracy for the questions that are as-
signed to each (Table 3). Notably, in ENEM, there
is a strong connection between factors and question
types. While 85% of math questions align more
closely with Factor F1, 80% of word questions are
more strongly linked to Factor F2. Furthermore,
the average accuracy on questions falling into F2
is roughly half of those linked to F1. Those num-
bers, in accordance to results in Section 4, suggest
that language models possess distinct capabilities.
We label F1 as the equation resolution skill, and
F2 as the text interpretation skill. On GSM8K,
all math-form questions load onto the first factor,
whereas easier and harder word problems are split
between the two factors. These results suggest that,
in GSM8K, translating some word problems into
their mathematical form is straightforward, while
others require greater capacity to extract explicit
and implicit quantities from the text. This kind of
distinction can aid how practitioners inspect and
debug their question-answering applications.

Factor scores. Do specific versions of a fam-
ily of models possess different problem-solving
skills? To answer that question, we resort to factor
scores (DiStefano et al., 2019), which are numeri-
cal values representing an observation’s position on
the latent factors identified through factor analysis.
These scores are derived from observed variable
scores and factor loadings, providing a way to es-

timate the contribution of each factor to a specific
case. In Table 4 we show factor scores for a selec-
tion of the model families doing the ENEM exam;
the complete table can be consulted at Appendix C.
Next, we highlight some nuances and judgments
that can be made by examining factor scores, which
aggregate accuracy metrics often overlook.

• Gemini: The evolution of factor scores for the
Gemini family of models demonstrates that
Gemini 2.0-Flash has greater generalization
capability compared to earlier versions: while
Gemini 1.5-Flash required more elaborately
crafted prompts to solve pure math problems
(F1), Gemini 2.0-Flash generalizes better by
maintaining a high capacity for solving prob-
lems in their mathematical form, regardless
of the prompting strategy. Additionally, there
is a clear progression across versions in the
ability to solve word problems (F2).

• Qwen: First, we see that moving from Qwen-
2.5-7B-Instruct to Qwen-2.5-14B-Instruct
does not improve the model’s capacity for
solving problems in their pure math forms
(F1); it had already reached a plateau of
around 12 in the 7B version. However, we
observe a moderate increase in its ability to
solve problems that require equation formu-
lation (F2). Factor scores also highlight the
impact of the instruct and math-specialized
versions of Qwen: not only are they more
consistent in solving pure math problems, but
they have also developed a higher capacity for
solving word problems, despite sharing the
same size as Qwen-2.5-7B.

• Distilled versions of DeepSeek-R1: Regard-
less of the teacher model and the prompt, dis-
tilled DeepSeek-R1 models still need to im-
prove in solving word problems, although they
are already capable of solving pure math prob-
lems at the college-admission level.

Explaining factors. Recent work has looked at
the characteristics that make word problems harder
for language models (Srivatsa and Kochmar, 2024).
We can extend this kind of analysis by investigating
if there are characteristics that link a question to
either F1 or F2. Table 5 shows how, on average, the
features of the underlying equation associated with
each problem vary according to the dominant factor
and the question form, in the ENEM benchmark.



dominant factor ENEM GSM8K

F1 (equation resolution) F2 (text interpretation) F1 F2

math 0.85 (avg. acc. 0.56) 0.15 (0.25) 1.00 (0.76) 0.00
word 0.20 (0.40) 0.80 (0.21) 0.55 (0.70) 0.45 (0.39)

Table 3: Prevalence of question forms across dominant factors in each dataset. Average accuracy is reported. In
ENEM, 85% of math questions load more heavily on F1, while 80% of word questions load more heavily on F2. In
GSM8K, all math questions load more heavily on F1.

Notably, in word forms, additional tokens, terms,
operators, and equation depth have a greater impact
on the overall difficulty of the question. For exam-
ple, while questions in their mathematical form are
linked to F2 when they contain, on average, 13.67
terms, in word form, just 9.13 terms are sufficient.

6 Conclusions

Analytical problems require multiple capabilities,
including understanding the problem statement and
extracting and solving a mathematical model. To
disentangle natural language understanding from
pure mathematical reasoning, we used the symbolic
solver SymPy to introduce extended versions of
benchmarks (Brazilian ENEM and GSM8K) that
present math word problems in both word-based
forms and mathematical components only.

Through structured problem reformulation and
factor analysis of 35 large language models, we
found that while pure mathematical problem-
solving skills are relatively common, only a subset
of small-scale language models can effectively han-
dle word problems requiring both interpretation
and mathematical modeling. Our work contributes
to the growing body of research focused on devel-
oping benchmarks that test specific model capabili-
ties by systematically varying key features (Burnell
et al., 2023b), and, as models become more multi-
modal and diverse in their reasoning capabilities,
factor analysis can play a larger role as part of lan-
guage model evaluation frameworks.

7 Reproducibility

The source code, the questions in their word and
math forms, the prompts and the full output of
factor analysis are available at http://www.dcc.
ufmg.br/~pcalais/papers/facl-2025-data.
The extended benchmarks are available for use
in the same research contexts as their original
versions.

8 Limitations

While our study provides evidence supporting a
bidimensional structure of reasoning in small-scale
large language models, some limitations should be
noted.

First, our dataset construction relies on a sym-
bolic solver to generate problem formulations that
isolate mathematical reasoning from textual inter-
pretation. Although this approach ensures a con-
trolled separation of these components, complete
disentanglement is difficult, as creating the under-
lying equation that represents the problem still re-
quires some mathematical modeling (e.g., recogniz-
ing that the formula for the area of a circle applies
in a given scenario).

Second, our analysis is limited to the GSM8K
and Brazilian ENEM benchmarks, which contain
grade-school and high-school level questions, re-
spectively. To further explore the problem space,
future work should consider advanced college-level
mathematics, covering topics such as differential
and integral calculus (Fan et al., 2024).

9 Ethical Considerations

In the context of solving math word problems, our
findings may have broader implications. Large lan-
guage models could be misused for purposes such
as automating academic dishonesty or generating
misleading solutions in academic or professional
settings. There is also a risk that, due to the LLMs’
difficulties with interpreting text, they may produce
erroneous or misleading answers that could be mis-
used, especially in critical areas like education or
finance.
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Table 4: Factor scores for top performing families of
models on the ENEM dataset. Values greater than the
median are highlighted.

F1 F2 acc.
model prompt

gemini-2.0-flash-exp 0-shot 11.3 12.76 76
0-shot-cot 11.24 12.26 74
2-shot 11.3 12.76 76
2-shot-cot 11.3 12.76 76

gemini-1.5-flash 0-shot 4.18 7.05 37
0-shot-cot 6.69 8.33 52
2-shot 9.05 9.8 53
2-shot-cot 10.9 8.45 62

gemini-1.5-flash-8b 0-shot 3.24 0.41 19
0-shot-cot 12.14 5.37 58
2-shot 3.8 0.95 19
2-shot-cot 11.52 5.38 55

gemini-1.0-pro 0-shot 4.96 1.18 21
0-shot-cot 7.31 2.17 33
2-shot 5.43 0.48 22
2-shot-cot 8.06 1.65 31

Qwen2.5-14B-Instruct 0-shot 9.96 8.2 57
0-shot-cot 11.78 9.58 67
2-shot 12.12 8.82 64
2-shot-cot 11.68 8.19 62

Qwen2.5-7B-Instruct 0-shot 12.46 7.54 63
0-shot-cot 12.21 6.65 56
2-shot 12.02 5.4 56
2-shot-cot 12.58 5.42 58

Qwen2.5-Math-PRM-7B 0-shot 9.65 7.06 51
0-shot-cot 8.99 9.07 53
2-shot 10.55 6.9 59
2-shot-cot 10.19 6.92 57

Qwen2.5-Math-7B-PRM800K 0-shot 9.95 5.24 48
0-shot-cot 10.11 8.08 56
2-shot 10.1 7.04 55
2-shot-cot 10.12 7.7 58

Qwen2.5-7B 0-shot 2.17 0.64 13
0-shot-cot 7.86 0.97 28
2-shot 9.9 2.99 45
2-shot-cot 10.18 2.62 44

Qwen2.5-Math-1.5B-Instruct 0-shot 1.96 0.74 13
0-shot-cot 8.54 0.58 28
2-shot 8.13 0.69 35
2-shot-cot 7.1 0.05 32

Qwen2.5-3B-Instruct 0-shot 0.62 0.94 7
0-shot-cot 2.32 1.06 14
2-shot 9.89 2.91 45
2-shot-cot 10.72 1.94 42

DeepSeek-R1-Distill-Qwen-14B 0-shot 9.05 3.28 49
0-shot-cot 8.45 2.66 36
2-shot 12.39 6.14 57
2-shot-cot 11.17 5.21 52

DeepSeek-R1-Distill-Qwen-7B 0-shot 7.56 0.54 28
0-shot-cot 8.34 2.4 34
2-shot 10.85 5.83 52
2-shot-cot 10.91 3.37 44

deepseek-math-7b-instruct 0-shot 8.49 0.83 33
0-shot-cot 8.11 0.65 32
2-shot 7.93 0.38 32
2-shot-cot 7.93 0.38 31

DeepSeek-R1-Distill-Qwen-1.5B 0-shot 8.4 0.55 29
0-shot-cot 6.58 1.64 28
2-shot 9.74 1.23 31
2-shot-cot 7.14 0.35 23

Word Math

F1 F2 F1 F2

# of Tokens 82.25 130.00 15.82 31.0
# of Terms 4.75 9.13 7.29 13.67
# of Unique Operators 2.50 3.13 2.82 4.00
Syntatic Tree Depth 3.25 4.62 4.18 5.33

Table 5: Average values for features of the underlying
equations according to dominant factor of the questions
in the ENEM dataset.
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SymPy code generation

Generate SymPy code that solves the
following math word problem:

In the year a company launched its new
smartphone model in the Brazilian mar-
ket, it invested 45 million reais in the first
semester in each of the five regions of the
country, offering 30,000 devices for sale
in each region. In the first semester, all
the devices offered were sold, generating
a total profit of 30 million reais. In the
second semester, the company decided to
make the same investment and offer the
same quantities of devices per region. Due
to the observed demand, the company as-
sumed that all the devices of this model
offered would be sold, and in addition, it
planned to achieve a total profit 10% higher
in the second semester than in the first. For
the company to achieve the planned profit,
what should the selling price, in reais, of a
smartphone of this model be in the second
semester of that year?

Output

import sympy as sp
from sympy import symbols , Eq, solve

# Define symbols
p1, p2 = symbols(’p1␣p2’)

# Equation for first semester
eq1 = Eq (150000 * p1 - 225000000 , 30000000)

# Solve for p1 (price in the first semester)
p1_solution = solve(eq1 , p1)[0]

# Equation for second semester
eq2 = Eq (150000 * p2 - 225000000 , 33000000)

# Solve for p2 (price in the second semester)
p2_solution = solve(eq2 , p2)[0]

p2_solution

The generated SymPy code is then used as an
input for the next prompt:

Math form generation

I will give you a SymPy code and want you
to produce a question in the following for-
mat: Solve <equation>, where <equation>
is the equation contained in the SymPy code.
Make sure you replace all known variables
by their values first.

Sympy code:

import sympy as sp
from sympy import symbols , Eq, solve

# Define symbols
p1, p2 = symbols(’p1␣p2’)

# Equation for first semester
eq1 = Eq (150000 * p1 - 225000000 , 30000000)

# Solve for p1 (price in the first semester)
p1_solution = solve(eq1 , p1)[0]

# Equation for second semester
eq2 = Eq (150000 * p2 - 225000000 , 33000000)

# Solve for p2 (price in the second semester)
p2_solution = solve(eq2 , p2)[0]

p2_solution

Output

The question based on the given
SymPy code would be:
Solve 150000× p2 − 225000000 =
33000000, where p2 is the price in
the second semester.

We manually validate that both the source code
and the math form version of the word problem pro-
duces the correct answer, and make small adjust-
ments to strip language details that are unnecessary
to the question, like the explanation of the seman-
tics of p2 in the example, which is not required to
solve the problem.

A.2 Question-solving prompts

We used the same prompt style as (Hosseini et al.,
2024). Here as examples of 0-shot, 2-shot, 0-
shot-CoT and 2-shot-CoT prompts. Note that the
chain-of-thought prompts explicitly ask the model
to think step by step.

0-shot prompt

Answer the following question. When you
respond, respond only with the Solution of
the final Problem. At the end of the So-
lution, when you give your final answer,
write it in the form ’The final answer is AN-
SWER’.
Q: <question>
A:

2-shot prompt

I am going to give you a series of demon-
strations of math Problems and Solutions.



When you respond, respond only with the
Solution of the final Problem. At the end
of the Solution, when you give your final
answer, write it in the form ’The final
answer is ANSWER’.

Q: There are 15 trees in the grove. Grove
workers will plant trees in the grove today.
After they are done, there will be 21 trees.
How many trees did the grove workers
plant today?
A: There are 15 trees originally. Then there
were 21 trees after some more were planted.
So there must have been 21 - 15 = 6. The
final answer is 6.

Q: If there are 3 cars in the parking lot and
2 more cars arrive, how many cars are in
the parking lot?
A: There are originally 3 cars. 2 more cars
arrive. 3 + 2 = 5. The final answer is 5.

Q: <question>
A:

0-shot CoT prompt

Answer the following question. When you
respond, respond only with the Solution of
the final Problem. When you respond, re-
spond only with the Solution of the final
Problem, thinking step by step. At the end
of the Solution, when you give your final
answer, write it in the form ’The final an-
swer is ANSWER’.
Q: <question>
A:

2-shot CoT prompt

I am going to give you a series of demon-
strations of math Problems and Solutions.
When you respond, respond only with the
Solution of the final Problem, thinking step
by step. At the end of the Solution, when
you give your final answer, write it in the
form ’The final answer is ANSWER’.

Q: There are 15 trees in the grove. Grove
workers will plant trees in the grove today.
After they are done, there will be 21 trees.

How many trees did the grove workers
plant today?
A: There are 15 trees originally. Then there
were 21 trees after some more were planted.
So there must have been 21 - 15 = 6. The
final answer is 6.

Q: If there are 3 cars in the parking lot and
2 more cars arrive, how many cars are in
the parking lot?
A: There are originally 3 cars. 2 more cars
arrive. 3 + 2 = 5. The final answer is 5.

Q: <question>
A:

B Question examples

We show five examples of questions from ENEM
and GSM8K in their word (original) and math ver-
sions. To give a sense of the varying levels of dif-
ficulty in the benchmarks, we sorted the questions
according to their accuracies in the word form and
show the questions from each of the five quintiles,
starting with the easiest question. We also show the
factor loadings associated to each question; notice
that typically the word version of the question has
a higher loading on F2, interpreted as the textual
interpretation skill.

B.1 ENEM

word form: The goal is to buy lenses for
glasses. The lenses should have thicknesses
as close as possible to 3 mm. In a store’s
stock, there are lenses with the following
thicknesses: 3.10 mm, 3.021 mm, 2.96 mm,
2.099 mm, and 3.07 mm. If the lenses are
purchased from this store, the chosen thick-
ness, in millimeters, will be:

math form: Determine the closest value,
in absolute terms, to 3: 3.10, 3.021, 2.96,
2.099, 3.07.

answer: 3.021

factor loadings (word): F1 0.333, F2 0.304
factor loadings (math): F1 0.292, F2 0.293



word form: In a school, the probability that
a student understands and speaks English
is 30%. Three students from this school,
who are in the final phase of an exchange
selection process, are waiting in a room to
be called for an interview. However, in-
stead of calling them one by one, the in-
terviewer enters the room and asks an oral
question in English, which can be answered
by any of the students. The probability that
the interviewer will be understood and have
his question answered orally in English is

math form: Calculate 1− (1− 30/100)3.

answer: 0.657
factor loadings (word): F1 0.258, F2 0.372
factor loadings (math): F1 0.802, F2 -
0.220

word form: The subway system in a mu-
nicipality offers two types of tickets, dif-
ferentiated by their colors: blue and red.
These tickets are sold in booklets, each con-
taining nine tickets of the same color and
with the same unit price. Two booklets of
blue tickets and one booklet of red tickets
are sold for R$ 32.40. It is known that
the price of one blue ticket minus the price
of one red ticket is equal to the price of
one red ticket plus five cents. What is the
price, in reais, of a booklet of red tickets?

math form: Calculate 9× y : 2× 9× x+
9× y = 32.40 and x− y = y + 0.05.

answer: 6.30

factor loadings (word): F1 -0.109, F2
0.797
factor loadings (math): F1 0.314, F2 0.441

word form: A building has floor numbers
starting from the ground floor (T), con-
tinuing with the first, second, third, and
so on, up to the top floor. A child en-
tered the elevator and, touching the panel,
followed a sequence of floors, stopping,
opening, and closing the door at various

floors. From where the child entered, the
elevator went up seven floors, then down
ten, down another thirteen, up nine, down
four, and stopped at the fifth floor, com-
pleting the sequence. Consider that, in
the path followed by the child, the eleva-
tor stopped once on the top floor of the
building. Based on the given informa-
tion, the top floor of the building is the

math form: Solve for T the equation T +
7− 10− 13+ 9− 4 = 5 and then calculate
T + 7.

answer: 23

factor loadings (word): F1 -0.272, F2
0.833
factor loadings (math): F1 0.155, F2 0.522

word form: According to data collected
in the 2010 Census, for a population of
101.8 million Brazilians aged 10 or older
who had some form of income in 2010, the
average monthly income was R$ 1,202.00.
The total monthly income of the poorest
10% accounted for only 1.1% of the to-
tal income of this population, while the to-
tal monthly income of the richest 10% ac-
counted for 44.5% of the total. What was
the difference, in reais, between the average
monthly income of a Brazilian in the richest
10% and a Brazilian in the poorest 10%?

math form: Calculate (101.8 × 106 ×
1202 × 0.445)/(101.8 × 106 × 0.1) −
(101.8 × 106 × 1202 × 0.011)/(101.8 ×
106 × 0.1).

answer: 5216.68

factor loadings (word): F1 -0.339, F2
0.806
factor loadings (math): F1 0.015, F2 0.350



B.2 GSM8K

word form: A train travels 360 miles in 3
hours. At the same rate, how many addi-
tional hours would it take to travel an addi-
tional 240 miles?

math form: Solve 360 = 3× rate, 240 =
rate × time for time, where rate = 120.

answer: 2

factor loadings (word): F1 0.877, F2 -
0.333
factor loadings (math): F1 0.373, F2 0.112

word form: Darry is a roofer and has to
climb ladders multiple times a day. He
climbs his full ladder, which has 11 steps,
10 times today. He also climbs his smaller
ladder, which has 6 steps, 7 times today. He
did not climb any steps otherwise. In total,
how many times has Darry climbed a step
today?

math form: Solve 11× 10 + 6× 7.

answer: 152

factor loadings (word): F1 0.667, F2 0.114
factor loadings (math): F1 0.417, F2 0.047

word form: Shannon bought 5 pints
of frozen yogurt, two packs of chewing
gum, and five trays of jumbo shrimp from
The Food Place for a total of $55 If the
price of a tray of jumbo shrimp is $5
and a pack of chewing gum costs half as
much as a pint of frozen yogurt, what
is the price of a pint of frozen yogurt?

math form: Solve 5 ∗
frozen_yogurt_price + 2 ×
(frozen_yogurt_price/2)+5×5−55 = 0

answer: 5

factor loadings (word): F1 0.004, F2
0.732
factor loadings (math): F1 0.420, F2

0.356

word form: Bill gets paid $20 ev-
ery hour he works up to a total of 40
hours, after which he gets paid double
that amount per hour. How much does
Bill get paid for a 50-hour workweek?

math form: Solve 20 × 40 + (2 × 20) ×
(50− 40).

answer: 1,200

factor loadings (word): F1 -0.080, F2
0.797
factor loadings (math): F1 0.727, F2 -
0.231

word form: Steven is preparing a ship-
ment of boxes to deliver to a customer for
his chemical supply business. The prod-
ucts are very delicate and must be carefully
packed, so partially filled boxes can’t be
shipped. Steven has three trucks that can
be sent on each delivery. Each truck can
carry a load of no more than 2,000 pounds
of cargo. Some of the boxes weigh 10
pounds after being packed, and some of
the boxes weigh 40 pounds when packed.
Steven’s customer has ordered equal quanti-
ties of both the lighter and heavier products.
How many boxes of products can Steven
ship to his customer in each delivery?

math form: Solve 10×x+40×y = 6000,
x = y and calculate x+ y.

answer: 240

factor loadings (word): F1 -0.034, F2
0.525
factor loadings (math): F1 0.888, F2 -
0.184

C Factor Scores

Models were run with default temperature in
Google Colab Pro cloud computing service.



Table 6: Factor scores for top performing families of
models in the ENEM dataset. Values greater than the
median are highlighted.

F1 F2 acc.
model prompt

gemini-2.0-flash-exp 0-shot 11.3 12.76 76
0-shot-cot 11.24 12.26 74
2-shot 11.3 12.76 76
2-shot-cot 11.3 12.76 76

gemini-1.5-flash 0-shot 4.18 7.05 37
0-shot-cot 6.69 8.33 52
2-shot 9.05 9.8 53
2-shot-cot 10.9 8.45 62

gemini-1.5-flash-8b 0-shot 3.24 0.41 19
0-shot-cot 12.14 5.37 58
2-shot 3.8 0.95 19
2-shot-cot 11.52 5.38 55

gemini-1.0-pro 0-shot 4.96 1.18 21
0-shot-cot 7.31 2.17 33
2-shot 5.43 0.48 22
2-shot-cot 8.06 1.65 31

Qwen2.5-14B-Instruct 0-shot 9.96 8.2 57
0-shot-cot 11.78 9.58 67
2-shot 12.12 8.82 64
2-shot-cot 11.68 8.19 62

Qwen2.5-7B-Instruct 0-shot 12.46 7.54 63
0-shot-cot 12.21 6.65 56
2-shot 12.02 5.4 56
2-shot-cot 12.58 5.42 58

Qwen2.5-Math-PRM-7B 0-shot 9.65 7.06 51
0-shot-cot 8.99 9.07 53
2-shot 10.55 6.9 59
2-shot-cot 10.19 6.92 57

Qwen2.5-Math-7B-PRM800K 0-shot 9.95 5.24 48
0-shot-cot 10.11 8.08 56
2-shot 10.1 7.04 55
2-shot-cot 10.12 7.7 58

Qwen2.5-7B 0-shot 2.17 0.64 13
0-shot-cot 7.86 0.97 28
2-shot 9.9 2.99 45
2-shot-cot 10.18 2.62 44

Qwen2.5-Math-1.5B-Instruct 0-shot 1.96 0.74 13
0-shot-cot 8.54 0.58 28
2-shot 8.13 0.69 35
2-shot-cot 7.1 0.05 32

Qwen2.5-3B-Instruct 0-shot 0.62 0.94 7
0-shot-cot 2.32 1.06 14
2-shot 9.89 2.91 45
2-shot-cot 10.72 1.94 42

DeepSeek-R1-Distill-Qwen-14B 0-shot 9.05 3.28 49
0-shot-cot 8.45 2.66 36
2-shot 12.39 6.14 57
2-shot-cot 11.17 5.21 52

DeepSeek-R1-Distill-Qwen-7B 0-shot 7.56 0.54 28
0-shot-cot 8.34 2.4 34
2-shot 10.85 5.83 52
2-shot-cot 10.91 3.37 44

deepseek-math-7b-instruct 0-shot 8.49 0.83 33
0-shot-cot 8.11 0.65 32
2-shot 7.93 0.38 32
2-shot-cot 7.93 0.38 31

DeepSeek-R1-Distill-Qwen-1.5B 0-shot 8.4 0.55 29
0-shot-cot 6.58 1.64 28
2-shot 9.74 1.23 31
2-shot-cot 7.14 0.35 23

DeepSeek-R1-Distill-Llama-8B 0-shot 4.4 0.76 19

Table 7: Factor scores for bottom performing families
of models in the ENEM dataset. Values greater than the
median are highlighted.

F1 F2 acc.
model prompt

DeepSeek-R1-Distill-Llama-8B 0-shot-cot 7.87 1.91 32

NuminaMath-7B-CoT 0-shot 8.06 2.68 31
0-shot-cot 7.43 1.89 29
2-shot 9.32 2.29 39
2-shot-cot 9.33 2.2 39

NuminaMath-7B-TIR 0-shot 1.94 0.19 13
0-shot-cot 5.79 -0.28 21
2-shot 8.25 2.15 33

Falcon3-7B-Base 2-shot 6.5 0.74 31
Falcon3-7B-Instruct 0-shot 1.41 1.14 12

0-shot-cot 1.7 0.74 14
2-shot 9.59 2.78 43
2-shot-cot 12.17 4.59 50

Falcon3-3B-Instruct 0-shot 0.44 0.43 9
0-shot-cot 4.65 0.94 26
2-shot 7.16 0.94 34
2-shot-cot 8.83 1.19 38

Phi-3-mini-4k-instruct 0-shot 7.95 0.86 36
0-shot-cot 9.59 1.48 43
2-shot 10.39 3.96 42
2-shot-cot 7.79 2.77 38

phi-4 0-shot 1.01 0.36 8
0-shot-cot 0.7 0.17 7
2-shot 2.79 4.5 28
2-shot-cot 8.58 6.25 49

phi-2 0-shot -0.28 0.61 1
0-shot-cot 1.52 -0.17 2
2-shot 2.77 -0.11 14
2-shot-cot 3.52 -0.25 15

gemma-2-9b-it 0-shot 9.5 1.75 34
0-shot-cot 11.42 5.09 47
2-shot 8.47 3.95 41
2-shot-cot 11.05 3.18 45

gemma-2-2b-it 0-shot 3.95 0.18 16
gemma-2-9b 0-shot 1.51 0.05 9

0-shot-cot 2.2 0.01 10
gemma-2-2b 0-shot 0.32 -0.01 4

0-shot-cot 0.32 -0.01 2
2-shot 2.63 -0.35 9
2-shot-cot 2.68 -0.21 10

Mistral-Nemo-Instruct-2407 0-shot 6.33 0.56 30
0-shot-cot 6.61 1.13 28
2-shot 8.45 0.76 35
2-shot-cot 7.37 2.72 36

Mathstral-7b-v0.1 0-shot 4.44 2.33 29
0-shot-cot 4.53 2.56 27
2-shot 5.74 1.1 26
2-shot-cot 6.04 1.44 28

Mistral-7B-Instruct-v0.2 0-shot 1.31 0.34 5
0-shot-cot 1.1 0.53 8
2-shot 1.54 0.24 10
2-shot-cot 3.03 0.8 15

Mistral-7B-v0.3 0-shot 0.0 0.0 5
0-shot-cot 1.62 -0.39 6
2-shot 2.34 -0.25 14

Mistral-7B-Instruct-v0.1 0-shot 0.0 0.0 3
0-shot-cot 0.99 0.31 8
2-shot 0.32 -0.01 7
2-shot-cot 0.62 0.29 7

Meta-Llama-3-8B 0-shot 0.32 -0.01 4
0-shot-cot 1.07 -0.15 4
2-shot 2.76 0.12 9



Table 8: Factor scores for top performing families of
models in the GSM8K dataset. Values greater than the
median are highlighted.

F1 F2 acc.
model prompt

Qwen2.5-Math-7B-PRM800K 0-shot 15.14 8.09 77
0-shot-cot 14.83 8.33 72
2-shot 15.14 8.21 76
2-shot-cot 15.71 8.08 77

Qwen2.5-Math-7B-Instruct 0-shot 14.26 8.34 76
0-shot-cot 14.62 7.77 74
2-shot 15.71 8.08 75
2-shot-cot 14.8 8.0 73

Qwen2.5-Math-PRM-7B 0-shot 14.01 8.04 73
0-shot-cot 14.38 8.15 72
2-shot 14.83 8.41 75
2-shot-cot 15.71 8.08 74

Qwen2.5-14B-Instruct 0-shot 15.05 6.55 71
0-shot-cot 14.87 7.48 73
2-shot 16.27 5.94 73
2-shot-cot 15.71 8.08 76

Qwen2.5-14B 0-shot 15.69 4.82 69
0-shot-cot 16.73 3.88 70

Qwen2.5-Math-1.5B-Instruct 0-shot 13.34 1.49 40
0-shot-cot 13.15 4.94 51
2-shot 14.41 6.17 69
2-shot-cot 14.84 6.4 71

Qwen2.5-3B-Instruct 0-shot 8.44 2.2 26
0-shot-cot 9.44 1.9 26
2-shot 14.4 7.25 68
2-shot-cot 14.71 7.61 68

Qwen2.5-7B 0-shot 9.12 6.45 38
0-shot-cot 15.6 1.99 56

gemini-2.0-flash-exp 0-shot 15.67 8.38 79
0-shot-cot 17.08 5.23 76

gemini-1.5-flash-8b 0-shot 13.06 1.89 38
0-shot-cot 16.34 6.78 73
2-shot 12.51 3.7 44
2-shot-cot 15.88 6.59 75

DeepSeek-R1-Distill-Qwen-14B 0-shot 15.98 3.21 65
0-shot-cot 16.27 4.34 67
2-shot 16.09 4.88 70
2-shot-cot 16.4 3.92 68

DeepSeek-R1-Distill-Qwen-7B 0-shot 13.8 3.43 59
0-shot-cot 14.24 5.94 66
2-shot 16.03 6.54 74

deepseek-math-7b-instruct 0-shot 14.82 2.63 61
0-shot-cot 14.82 2.63 63
2-shot 13.06 7.6 66
2-shot-cot 14.06 7.25 67

DeepSeek-R1-Distill-Qwen-1.5B 0-shot 13.11 5.25 63
0-shot-cot 11.25 7.1 59
2-shot 7.81 5.08 43
2-shot-cot 11.97 4.48 50

NuminaMath-7B-CoT 0-shot 15.36 4.13 66
0-shot-cot 14.41 3.13 61
2-shot 15.97 1.78 60
2-shot-cot 16.9 1.42 62

NuminaMath-7B-TIR 0-shot 10.6 2.8 39
0-shot-cot 9.86 5.39 42
2-shot 13.92 1.01 57

Table 9: Factor scores for bottom performing families
of models in the GSM8K dataset. Values greater than
the median are highlighted.

F1 F2 acc.
model prompt

NuminaMath-7B-TIR 2-shot-cot 15.98 3.2 64

gemma-2-9b-it 0-shot 17.01 2.26 63
0-shot-cot 17.18 1.72 61
2-shot 16.8 2.99 61
2-shot-cot 17.58 3.39 64

gemma-2-2b-it 0-shot 12.62 -0.43 40
0-shot-cot 12.61 -0.53 39
2-shot 10.32 0.39 36

gemma-2-9b 0-shot 7.14 0.17 23
0-shot-cot 9.16 0.22 30

gemma-2-2b 0-shot 2.97 0.27 11

Falcon3-3B-Instruct 0-shot 6.96 0.04 16
0-shot-cot 15.71 1.22 50
2-shot 14.22 4.59 62
2-shot-cot 13.88 4.93 57

Falcon3-7B-Instruct 0-shot 4.68 0.17 11
0-shot-cot 7.11 -0.74 19
2-shot 15.02 5.81 72
2-shot-cot 13.61 4.99 65

Falcon3-7B-Base 0-shot 6.09 1.29 20
0-shot-cot 5.26 0.48 16
2-shot 15.75 4.46 59

Phi-3-mini-4k-instruct 0-shot 13.43 4.77 58
0-shot-cot 15.9 6.03 68
2-shot 15.77 6.65 72
2-shot-cot 15.77 6.65 71

phi-4 0-shot 0.66 -0.23 4
0-shot-cot 0.66 -0.23 3
2-shot 15.9 5.32 65
2-shot-cot 16.36 3.77 64

phi-2 0-shot 1.87 0.11 7
0-shot-cot 2.68 0.91 9
2-shot 10.28 -0.28 30
2-shot-cot 9.25 0.03 29

Mistral-Nemo-Instruct-2407 0-shot 14.05 -0.09 50
0-shot-cot 15.33 0.96 48
2-shot 16.57 1.94 57
2-shot-cot 16.87 1.56 55

Mathstral-7b-v0.1 0-shot 14.58 2.18 49
0-shot-cot 13.11 0.87 42
2-shot 16.37 0.78 59
2-shot-cot 15.92 1.39 58

Mistral-7B-Instruct-v0.2 0-shot 3.54 -0.09 8
0-shot-cot 4.69 0.26 18
2-shot 9.06 2.7 29
2-shot-cot 10.12 0.71 32

Mistral-7B-Instruct-v0.1 0-shot 4.26 0.58 17
0-shot-cot 6.08 0.68 20
2-shot 6.31 -0.44 20
2-shot-cot 6.95 -0.32 22

Meta-Llama-3-8B 0-shot 2.55 -0.1 10
0-shot-cot 1.47 0.18 9
2-shot 7.44 1.2 28
2-shot-cot 8.97 -0.39 24



D GSM8K Plots

In this section we show the plots and tables for the
GSM8K benchmark that were omitted in the main
text due to space constraints.

Figure 5: Density plot of the absolute difference in
accuracy in word and math forms for GSM8K.

Figure 6: Accuracy by model, comparing performance
on word and math questions on the GSM8K exam. Mod-
els are sorted by accuracy on the word-based exam.
While most models show a sharp decline in word-
problem accuracy, some retain strong performance on
math problems.
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