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SUPPLEMENTARY INFORMATION

S1 Methods
S1.1 Parameter choice For all regularized Laplacians, we
used a value of λ=0.05. We found that the resulting
relationship between Resnik similarity and MUNK similarity
score did not vary significantly for λ values between 0.005 and
0.1.

S1.2 Function Prediction Methods We assess prediction
accuracy using leave-one-out cross validation. LetKs={ksij}
denote the regularized Laplacian for species s. For GO term g,
let Gsg be the set of proteins in species s that are annotated with
g. The same-species annotation score for a given protein p and
GO term g is:

cs(p,g)=
1

|Gsg |
∑
i∈Gsg

kspi

in which p is excluded from the sum (i.e., if it is contained
in Gsg). We also construct a cross-species annotation score for
each protein, in which MUNK scores with respect to proteins
in the other organism are used:

cs0,s1(p,g)=
1

|Gs1g |
∑
i∈Gs1g

dpi

where dpi=D12(p,i) is the MUNK score for protein p in
species s0 and protein i in species s1. The prediction score is
then h(p,g)=αcs0(p,g)+(1−α)cs0,s1(p,g). To use multiple
cross-species annotations, say n, we generalize h(p,g) to a
convex combination of the same- and cross-species annotation
scores: h(p,g)=α0c

s0(p,g)+
∑n

i=1αic
s0,si(p,g) such that∑n

i=0αi=1.
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We evaluate predictions using area under the receiver
operating curve (AUC) and maximal F-score (over all
detection thresholds). Since we are concerned with predicting
rare GO terms, we find that maximal F-score is generally a
more discriminative metric. We set the convex coefficients
{αi} via cross-validation.

S1.3 Phenolog Discovery Our method matches that used in
(1), using protein pairs with high MUNK similarity scores
rather than homologs obtained from Homologene. (Note that
none of the landmarks (which are a subset of the homologs)
are used to discover new phenologs.) Specifically, let P1 be
the genes associated with the phenotype in species 1 and
P2 be the genes associated with the phenotype in species 2.
Our contingency table consists of the counts of the number
of ‘MUNK-homologs’ involving P1∩P2, P1\P2, P2\P1,
and (Ω\P1)\P2, with Ω denoting the set of all close
pairs. We used a Fisher exact test to measure significance,
and considered the match significant if the uncorrected P -
value was less than 0.05. We corrected for multiple testing
using a Bonferroni correction; there were 1,278,312 possible
phenotype matches so we set the significance level at 3.9×
10−8.

S2 Data
S2.1 Protein-protein interaction networks We constructed
protein-protein interaction (PPI) networks in S.c., S.p., mouse,
and human. The S.c. and S.p. networks were obtained from
the Biological General Repository for Interaction Datasets
(BioGRID) (2) version 3.4.157. Mouse and human PPIs were
obtained from the STRING database version 9.1 (3). PPI
networks obtained were processed by mapping the protein
names to the same namespace. Genes that could not be
mapped via the UniProt database were removed from the PPI
networks entirely. We provide further details of the network
processing below. Table S1 shows summary statistics for the
PPI networks before and after processing.

S2.2 Synthetic lethal interactions We constructed datasets
of synthetic lethal interactions (SLI) in S.c. and S.p. from
published epistatic miniarray profiles (E-MAPs). E-MAPsc© 2019 The Author(s)
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include genetic interactions scores for pairs of genes, where
the magnitude of the score reflects the strength of the
genetic interaction. We downloaded E-MAPs for S.c. from
the supplementary information of Collins, et al. (4), and for
S.p. from the supplementary information of Roguev, et al. (5).
We classified each pair of genes in each E-MAP as SLI, non-
SLI, or uncertain. We used the thresholds from the Collins,
et al. (4) supplementary information to classify pairs in S.c..
Given a pair with E-MAP score ε, we classified it as SLI
if ε<−3, uncertain if −3≤ε<−1, and non-SLI otherwise.
Similarly, we used the threshold for synthetic lethality from
the Roguev, et al (5) supplementary information and used the
same threshold for uncertainty, classifying S.p. pairs as SLI if
ε<−2.5, uncertain if −2.5≤ε<−1, and non-SLI otherwise.
We also remove pairs of genes in which either gene is not
found in the corresponding PPI networks described in the main
text. The resulting datasets included 7,165 SLI and 123,507
non-SLI in S.c., and 5,599 SLI and 97,541 non-SLI in S.p.

We also constructed datasets of SLI from BioGRID (2)
(v3.4.157). For both S.c. and S.p., we extracted interactions
of type ‘Synthetic Lethality’ only (i.e. ignoring other negative
genetic interactions), yielding datasets of 13,645 and 908 SLI,
respectively.

We then standardized the datasets by mapping genes names
to Uniprot Accession IDs (6). Genes that could not be mapped
via UniProt were excluded for this study, as were those
that were not found in the processed PPI networks. For the
BioGRID SLI dataset, we followed Jacunski, et al. (7), by
sampling an equivalent number of non-SLI pairs from genes
PPI networks that do not partake in SLI in the BioGRID
dataset. Table S2 shows summary statistics of the SLI datasets
before and after processing.

S3 Results
S3.1 Associations of MUNK scores with functional
similarity for other pairs of species We associated MUNK
similarity scores and functional similarity for pairs of
proteins in additional pairs of species, using the methodology
described in the main text. Figures S1 and S2 show the results
for embedding human into yeast, and mouse into yeast.

S3.2 Evaluating the generalization of synthetic lethal
interaction classifiers to held-out genes Predicting synthetic
lethal interactions between gene pairs using features
constructed for individual genes is an example of a pair-input
classification problem. A challenge with evaluating classifiers
trained on pair inputs with held-out data is that, for a given pair
(u,v), it is possible that the features for only u, only v, both u
and v, or neither u and v, can be found in the training data (8).
Thus, information concerning genes found in the held-out data
may be ‘leaked’ to the classifier during training. To evaluate
the effect of this issue, Park & Marcotte (8) suggest evaluating
classifications for gene pairs which contain one, two, or no
genes in the training data separately. This is analogous to
holding out individual genes instead of gene pairs at training
time and, thus, we evaluate the effect of pair-inputs by
repeating the experiments above but hold out genes instead
of gene pairs for evaluation. We report the results in Table S7.
We find that the classifiers are able to predict SLI for genes
not found in the training data, but with a significant change

in performance compared to genes found in the training data.
On the BioGRID dataset, the classifiers achieve an AUROC of
0.872 in S.c. (0.823 in S.p.), an AUPRC of 0.875 (0.814), and
maximum F1 of 0.797 (0.772). On the chromosome biology
dataset, the classifiers achieve an AUROC of 0.701 in S.c.
(0.691 in S.p.), an AUPRC of 0.160 (0.207), and maximum
F1 of 0.202 (0.285). We hypothesize that the larger drop in
performance on the chromosome biology data is due to the
matched nature of the S.c. and S.p. datasets. We also find
similar drops in performance for SINATRA when holding out
genes instead of pairs (also in Table S7).
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S4 Supplementary Tables

Table S1. Summary statistics of PPI networks. We processed the graphs to restrict to the two-core of the largest connected component.

Species Source Processing Nodes Edges
Baker’s yeast (S.c.) BioGRID (2) Before 5,961 99,539

After 5,609 95,997
Fission yeast (S.p.) BioGRID (2) Before 2,888 9,433

After 1,865 7,712
Human STRING (3) Before 15,129 155,866

After 12,872 153,609
Mouse STRING (3) Before 6,596 18,697

After 4,217 16,318

Table S2. Summary statistics of synthetic lethal interaction datasets.

Species Reference Processing Total SLs Non-SLs Uncertain
Baker’s yeast (S.c.) Collins, et al. (4) Before 150,636 7,240 125,927 17,469

After 129,385 7,112 122,273 0
BioGRID v3.4.157 (2) Before 16,630 16,630 0 0

After 27,050 13,525 13,525 N/A
Fission yeast (S.p.) Roguev, et al. (5) Before 118,248 5,754 101,595 10,899

After 24,214 2,556 21,658 0
BioGRID v3.4.157 (2) Before 1,020 1,020 0 0

After 1,316 658 658 N/A

Table S3. GOC of aligned gene pairs computed from MUNK-similarity scores and network alignment algorithms HUBALIGN and ISORANK.
The GOC scores reported are for non-homologs only (pairs with weak sequence similarity). Homolog pairs recovered from the alignments are
removed from the analysis above. For these results, the algorithms are restricted to only use the same amount of sequence information (BLAST
scores for the 400 ‘landmark’ homolog pairs used by MUNK). The reported results for MUNK are for embedding the smaller of the two
networks into the larger one. Note that the ISORANK software did not produce an alignment for human-baker’s yeast with restricted sequence
information.

Species Algorithm Non-homologs matched GOC
human→ mouse MUNK 3696 0.126

ISORANK 3623 0.145
HUBALIGN 4041 0.103

human→ S.c. MUNK 5292 0.135
ISORANK – – – – – –

HUBALIGN 5294 0.098
S.c.→ S.p. MUNK 1457 0.204

ISORANK 1642 0.229
HUBALIGN 1756 0.171
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Table S4. Functional consistency (FC) of aligned gene pairs computed from MUNK similarity scores and network alignment algorithms
ISORANK and HUBALIGN. For ISORANK and HUBALIGN, FC scores are computed for alignments computed using the same amount of
sequence similarity information as used for MUNK (BLASTscores for only 400 landmark pairs). Following (9), FC scores are computed using
the specific gene-to-term GO labels given in the Gene Ontology gene-to-term file.

Species No. of shared GO terms MUNK ISORANK HUBALIGN

human→ mouse ≥1 55.9 60.6 42.7
≥2 31.3 37.4 19.1
≥3 19.2 24.8 8.9
≥4 14.2 18.8 5.1
≥5 11.4 14.8 3.6

human→ S.c. ≥1 37.1 – 27.4
≥2 15.8 – 9.9
≥3 7.9 – 5.0
≥4 4.3 – 2.9
≥5 2.4 – 1.8

S.c.→ S.p. ≥1 53.8 53.3 38.0
≥2 29.9 26.4 12.5
≥3 17.5 13.9 5.7
≥4 9.3 6.1 2.5
≥5 4.0 3.0 0.8

Table S5. k-functional similarity results for SINATRAand BLAST. For SINATRA, we compute similarity scores using Euclidean distance
following (7). For BLAST, we directly interpret bitscores as similarity scores.

Species Algorithm AUPR
human→ mouse SINATRA 0.043

BLAST 0.064
human→ S.c. SINATRA 0.018

BLAST 0.029
S.c.→ S.p. SINATRA 0.041

BLAST 0.062

Table S6. Results training linear support vector machines to classify synthetic lethal interactions on S.c. and S.p. data simultaneously. We
compute performance separately for each species (indicated by ‘Test species’). For each statistic, we report the average on held-out data from
4-fold cross-validation over gene pairs, and bold the highest (best) score.

Dataset Test species Algorithm AUROC AUPRC Max F1

BioGRID (2) S.c. MUNK 0.953 0.933 0.892
SINATRA 0.798 0.774 0.750

S.p. MUNK 0.714 0.657 0.731
SINATRA 0.786 0.846 0.850

Chromosome biology (4, 5) S.c. MUNK 0.865 0.334 0.396
SINATRA 0.631 0.092 0.156

S.p. MUNK 0.711 0.123 0.208
SINATRA 0.569 0.124 0.214

Table S7. Results training random forests to classify synthetic lethal interactions on S.c. and S.p. data simultaneously. We compute performance
separately for each species (indicated by ‘Test species’). For each statistic, we report the average on held-out data from 4-fold cross-validation
over genes, and bold the highest (best) score.

Dataset Test species Algorithm AUROC AUPRC Max F1

BioGRID (2) S.c. MUNK 0.872 0.875 0.797
SINATRA 0.848 0.852 0.779

S.p. MUNK 0.823 0.814 0.772
SINATRA 0.839 0.855 0.769

Chromosome biology (4, 5) S.c. MUNK 0.701 0.160 0.202
SINATRA 0.681 0.115 0.184

S.p. MUNK 0.691 0.207 0.285
SINATRA 0.723 0.239 0.314
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Table S8. Improvement in functional prediction using two other species.

Target Species AUC F1 score

Human 0.3% 2.6%
Mouse 1.0% 8.6%
Baker’s yeast 0.3% 16.0%
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S5 Supplementary Figures

MUNK MUNK

(a) (b)

Figure S1. Relationship between cross-species Resnik similarity and MUNK homology score, for (a) human (source) - yeast (target) and (b)
mouse (source) - yeast (target) comparison.

0.00 0.05 0.10 0.15 0.20 0.25
Dissimilarity scores

0

2

4

6

8

De
ns

ity

Homolog pairs
Other pairs

0.000 0.002 0.004 0.006 0.008 0.010
Dissimilarity scores

0

100

200

300

400

De
ns

ity

Homolog pairs
Other pairs

(a) (b)

Figure S2. Distribution of MUNK dissimilarity scores for homologs, compared to distribution for all protein pairs, for (a) human (source) -
yeast (target) and (b) mouse (source) - yeast (target) comparison.
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Figure S3. Distribution of node degrees of homologs compared to distribution of non-homologs, for (a) human genes with and without mouse
homologs, (b) mouse genes with and without human homologs, (c) human genes with and without baker’s yeast homologs, (d) baker’s yeast
genes with and without human homologs, (e) baker’s yeast genes with and without fission yeast homologs, (f) fission yeast genes with and
without baker’s yeast homologs.
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Figure S4. GO consistency scores of network alignments using MUNK-similarity scores (landmark pairs found in the matching are excluded
from GOC score computation) using varying number of MUNK-landmark pairs, for (a) human (source) - mouse (target), (b) human (source) -
baker’s yeast (target), and (c) baker’s yeast (source) - fission yeast (target).
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