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Abstract

Prediction of protein–protein interactions (PPIs) commonly involves a significant com-

putational component. Rapid recent advances in the power of computational methods

for protein interaction predictionmotivate a review of the state-of-the-art.We review

the major approaches, organized according to the primary source of data utilized:

protein sequence, protein structure, and protein co-abundance. The advent of deep

learning (DL) has brought with it significant advances in interaction prediction, and we

show how DL is used for each source data type. We review the literature taxonomi-

cally, present example case studies in each category, and conclude with observations

about the strengths andweaknesses ofmachine learningmethods in the context of the

principal sources of data for protein interaction prediction.
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1 INTRODUCTION

Proteins are the basic building blocks of organisms, but a protein

does not function solely on its own. Rather, proteins interact physi-

cally and specifically with one another to perform particular cellular

processes. These interactions occur through either transient or stable

non-covalent bonds between amino acid side chains, which guide the

quaternary superstructure of macromolecular complexes and enable

functional properties [1].

Because of their biological complexity, identifying protein–protein

interactions (PPIs) remains amajor challenge for researchers.

Understanding which proteins interact with each other, either in

a pairwise fashion or as components in a multi-subunit complex,

is an important task because these interactions reveal basic func-

tional mechanisms and suggest the potential druggability surfaces of

molecules for pharmacological modulation.

Traditionally, as for 3D protein structure determination, PPIs have

been mapped using a diversity of experimental techniques [1]. There
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exist many experimental methods such as yeast two-hybrid and pro-

tein microarrays to find PPIs [2, 3]. Some of these methods are

high-throughput, being able to test many PPIs at the same time, but

experimental elucidation of PPIs requires time and resource dedica-

tion, and these strategies are subject to diverse sources of technical

errors [4]. As a result of these drawbacks, recent effort has gone into

the development of computational methods to predict PPIs. In concert

with advances in3Dstructureprediction [5, 6], computationalmethods

have now emerged as a viable technique to infer PPIs because of their

advantage of being scalable with less resource dedication.

Computational methods, in this context, refer to the prediction

methods used to convert a source of biological data to a PPI prediction.

The field has mainly been using machine learning (ML) algorithms to

convert the biological data to predictions, so this paperwill be covering

the ML methods used and what advances have been made in the PPI

prediction field.

Because of the recent increase in the use of computational methods

to predict PPIs, there exists a need for a review of current approaches
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to the problem. This paper will review the recent progress in compu-

tational methods used to predict PPIs. We categorize the work in the

PPI prediction field based on the data inputs to the prediction mod-

els. There are three main data inputs used in the PPI prediction field:

protein sequences, protein structure, and co-fractionation mass spec-

trometry data. In the body of this paper, we review work using each

of these data sources, and we present case studies exploring methods

that use each of these data sources. Table 1 presents an overviewof the

computational methods we survey.

From Table 1, it is shown that the datasets used to train and bench-

mark models are generally consistent. Saccharomyces cerevisiae, Mus

musculus, Homo sapiens, Caenorhabditis elegans, Escherichia coli, and

Helicobacter pylori are all well-studied organisms and are common

benchmark datasets for PPI predictionmodels. Some researchers have

made their own datasets using PPIs from the organisms mentioned

above to create more balanced datasets for training and testing.

Therefore, the Dsets we see in the table are also prevalent in the PPI

prediction field. The datasets mentioned are curated from publicly

available datasets and their respective description and statistics on

how the datasets were optimized to allow for good performance

are available through the corresponding citation in Table 1. It is

important to note that between models that datasets taken from

the same organism can be different depending on considerations

made by the different authors, so statistics and performance can vary

depending on the considerations the authors took into account. Dsets

mentioned in the table are curated datasets from specific organisms

by other researchers, so Dsets are the same when mentioned in the

table.

2 METHODOLOGICAL BACKGROUND

PPI prediction models aim to use some source of protein data to pre-

dict known interactors. Before reviewing these computational models

for predicting protein interactions, we provide a brief overview of

concepts to provide background on themethods discussed.

2.1 Machine learning

ML is a subfield of artificial intelligence that focuses on using data to

learn associations and make predictions [68]. In this review, we focus

on the methods of ML that use supervised learning for classification

since these are the most relevant to PPI prediction. Supervised ML

refers to the use of labeled training data, in which data items having

associated features that are equipped with labels. For PPI prediction,

these labels are strictly binary: whether the two input proteins are

interactors. In this setting, the goal of classification is to construct

a model that infers labels for test data – that is, data coming from

the same distribution as the training data, but without labels. In the

context of PPI prediction, the input to anMLmodel is two protein rep-

resentations, and the label associated with the input is whether the

two proteins are known interactors. Essentially, the ML model tries to

extract the relevant features from each of the protein representations,

and then, use these features for a PPI prediction.

In supervised ML, training data is used to adjust model parame-

ters toward settings that tend to predict known interactors accurately.

Once trained, we expect themodel to predict labels in the training data

accurately. Test data, that serves as unseen data, provide information

on how well the ML model performs on data it has not seen to test the

model’s ability to generalize.

2.2 Classical machine learning

We use the term classicalML to refer to algorithms developed before

the advent of deep learning (DL) techniques (which are discussed fur-

ther below). Classical ML methods include decision trees, support vector

machines (SVMs), and random forest classifiers (RFCs). Decision trees

construct a tree-structured partition of the data’s feature space [69].

Eachnode in the tree represents a single logical test of a single data fea-

ture’s values – such as the presence of an alpha helix in a protein and so

splits the data space based on that feature. Leaves in the tree are asso-

ciated with a label and correspond to predictions. In contrast, SVMs

non-linearlymap input feature vectors to a high-dimensional space and

construct linear decision boundaries in that space to assign labels for

classification [70]. Finally, RFCs use an ensemble method comprised of

many decision trees constructed from random samples of the training

data and uses a voting system among these decision trees to determine

the predicted classification [71].

2.3 Deep learning

DL is a subset of the ML field that refers to the use of artificial neu-

ral networks (ANNs) for tasks such as classification [72]. The basic

building block of a neural network architecture is the use of artificial

neurons which typically take in a weighted sum of inputs and then

applies a nonlinear transformation to produce an output that is shared

with other neurons downstream. Neurons are organized into layers,

and each layer consists ofmultiple neurons that takes their input either

from data or from a previous layer’s output. Learning occurs by adjust-

ment of the weight parameters in a manner that seeks to achieve good

classification performance. In the context of PPI prediction, weights

would be optimized to maximize the number of correct predictions

of known interactors and non-interactors. A neural architecture refers

to the particular number of layers and interconnection pattern link-

ing those layers. A number of well-studied neural architectures are

typically found; in the following subsections, we discuss architectures

prominently used in protein interaction prediction.

2.3.1 Convolutional neural networks

The convolutional neural network (CNN) is one of the most popular

architectures used in DL [72]. A CNN architecture uses convolutional
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TABLE 1 Overview of computational methods comprehensive list of PPI prediction pipelines.

Name of pipeline Data inputs MLmodels used Datasets/species used

DeepFE-PPI [7] Text embedding Fully connected network S. cerevisiae [8], Human [9], C. elegans, E. coli,H.
sapiens,M.musculus,H. pylori [10]

DeepPPI [11] Metric extractions (amino acid

composition, dipeptide

composition, etc.)

Fully connected network S. cerevisiae [12],H. pylori [13, 10], Human [9], C.
elegans, E. coli,H. sapiens,M.musculus [10]

SGPPI [14] AF protein database structures Graph convolutional network Profppikernel dataset [15], Human Reference

Interactome [16], Pan’s dataset [17]

TAGPPI [18] Protein sequence, AF output Convolutional neural network,

graph attention network

S. cerevisiae [19], E. coli, C. ele-gans [10],D.
melanogaster, multi-species dataset [20],

multi-class dataset [21]

GRAPHPPIS [22] PDB structures Graph convolutional network Dset 186, Dset 72 [23], Dset 164 [24]

DPPI [25] Protein sequences Convolutional neural network H. sapiens, S. cerevisiae, S. pombe,M.musculus,D.
melanogaster, C. elegans, A. thaliana, B. subtilis, B.
taurus, E. coli, R. norvegicus [26]

PIPR [20] Protein sequence encoding, amino

acid embedding

Convolutional neural network Guo’s dataset [8], Multi-species dataset (C.
elegans, E. coli,D. melanogaster), STRINGH.
sapiens dataset [21], SKEMPI dataset [27]

EnsDNN [28] Metric extractions (auto

covariance, multi-continuous

descriptor, etc.)

Fully connected network S. cerevisiae [11], C. elegans, E. coli,H. sapiens,M.
musculus,H. pylori [10]

SDNN-PPI [4] Metric representations (amino

acid composition, conjoint triad,

auto covariance)

Fully connected network,

attentionmechanism

S. cerevisiae [8], Human [29], Human- B. Anthracis,
Human-Y. pestis [30], C. elegans, E. coli,H.
sapiens, M. musculus [31]

Jha et al [32] PDB structures Graph attention network Pan’s dataset [17], S. cerevisiae

Sun et al [33] Metric extractions

(autocovariance, conjoint triad)

Autoencoder Pan’s dataset [17], 2010HRPD dataset, 2010

HRPDNR dataset, DIP dataset [8], HIPPIE

dataset, inWeb inbiomap, 2005Martin dataset

[17], E. coli,Drosophila, C. elegans [8]

DeepCF-PPI [34] Metric extractions (amino acid

composition, pseduo-amino acid

composition, etc.), text

embedding

Fully connected network,

attentionmechanism

S. cerevisiae [35], Human [9], C. elegan, E. coli,H.
sapiens,H. pylori,M.musculus [36], CD9,Wnt,

Cancer [11, 37, 38]

ctP2ISP [39] Protein sequence, metric

extractions (biophyical

information)

Convolutional neural network,

transformer

Dset 186, Dset 72 [23], Dset 164 [24], Dset 448

[40], Dset 355 [41], Dset 70 [42]

GOSeqPPI [43] Text embedding, one-hot encoding Recurrent neural network,

convolutional neural

network, attention

mechanism

S. cerevisiae, SHS27k, SHS148k

ISPRED-SEQ [44] One-hot encoding Convolutional neu-ral network Dset 335 [41], Dset 448 [40], HomoTE, HeterTE

[45]

SECAT [46] CF/MS PyProhetML algorithm [47] HeLa-CC SEC-SWATH-MS dataset, HEK293-EG

SEC-SWATH-MS dataset

ADH-PPI [48] Text embedding Long short-termmemory,

convolutional layer,

attentionmechanism

S. cerevisiae,H. pylori, Saccharomyces, C. elegans,H.
sapiens,M.musculus, E. coli

CCprofiler [49] CF/MS Leo Breiman. “Random

Forests”. In:Machine Learning
45.1 (2001), pp. 5–32. issn:

0885-

Peak detection algorithm Composite SWATH/DIA dataset [50]

Topsy-Turvy [51] Feature embedding, metric

extraction

Convolutional neural network Human,M.musculus,D. melanogaster, C. elegans, S.
cerevisiae, E. coli [52, 21]

Ahmed et al [53] Metric extractions(amino acid

triplets, quadruplets, etc.)

Fully connected network Human [54], B. anthracis [55, 56]

(Continues)
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TABLE 1 (Continued)

Name of pipeline Data inputs MLmodels used Datasets/species used

Struct2Graph [57] PDB structures Graph convolutional network,

attention

S. cerevisiae,H. sapiens, E. coli, C. elegans, S. aures
from IntAct [58], STRING [59]

PrInCE [60] CF/MS Protein clustering algorithm

(ClusterONE) [61]

Four co-fractionation datasets [62, 63, 64]

EPIC [65] CF/MS SVM, RFC C. elegans

DeepPPISP [42] Metric extractions

(position-specific scoringmatrix,

secondary structure), raw

protein sequence, encoding

Convolutional neural network Dset 186, Dset 72 [23], PDBset 164 [66]

PITHIA [67] Multiple sequence alignment,

metric extractions

Transformer Dset 72, Dset 186 [23], Dset 164 [24], Dset 448

[40]

F IGURE 1 Example architecture of a convolutional neural network (CNN) for PPI prediction. Adapted fromAlzubaidi et al. [72].

layers, which are layers that employ a kernel to transform output of the

previous layer. The kernel is a matrix of learned weights that “moves”

over the input data and performs a dot productwith the corresponding

region in the input. Because of this calculation, the kernel condenses

the input into a smaller size. In contrast, a network having an individual

weight for each element in the input – referred to as a fully connected

layer – can suffer fromexcessivememory size andoverfitting (toomany

parameters compared to the training data size). CNNs address this

issue by only using a limited set of weight (those in the kernel); hence

the weights in a CNN are referred to as shared weights. CNNs are

capable of identifying long-range interactions in data; this capability is

important for protein sequences as amino acid residue interactions in

a protein sequence are long-range and can be captured by a CNN. One

architectural challenge in usingANNs is the question of how to process

inputs of variable length (such as sequence strings).

Figure 1 is a general pipeline for a CNN architecture for PPI predic-

tion. The convolutional layer incorporates a weight matrix (kernel) to

identify long-range relationships in the input data – in this case, two

protein representations. An activation layer applies a nonlinear func-

tion to convert the numbers in the convolutional layer to something

more interpretable for the neural network. Common examples of non-

linear functions includeReLu and sigmoid. The pooling layer condenses

the activation layer – this can be done by taking an average or max

across the window of values. In the fully connected layer, the vectors

generated in the previous layer are stacked on top of each other to

create one vector and is then used to find a prediction of whether the

two proteins are interacting. It is important to note that the activation,

pooling, and fully connected layers are not unique to CNN architec-

tures but are included to help process the outputs from the CNN layer

into a prediction.

2.3.2 Recurrent neural networks

Early attempts to handle variable length inputs led to the recurrent

neural network (RNN) architecture. In an RNN, feedback loops exist

between layers, so that data can be input in sequence, and previously

seen data can affect the classification of subsequent data [72]. RNNs
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F IGURE 2 Example architecture of an unrolled recurrent neural
network (RNN) for PPI prediction. Adapted fromAlzubaidi et al. [72].

are capable of identifying relationships between the different inputs,

making them optimal for applications in video processing and natural

language processing. Because the protein sequence-to-PPI prediction

problemcanbe seenas aderivationof problems in thenatural language

processing field, protein sequence models have a solid foundation of

text models and research to adopt from for PPI predictions. Just like

words in a sentence need context to understand their meanings in

a sentence, amino acid residues need context from other amino acid

residues to understand their roles in the protein sequence. Therefore,

text-based architectures are a good fit and have been used for the

protein sequence to PPI prediction problem.

Figure 2 is a general pipeline for an RNN architecture for PPI pre-

diction. In this example, the RNN is displayed in its “unrolled” state.

Because RNNs are cyclical, RNN diagrams are displayed in an unrolled

state over the input sequence (protein amino acid sequence) to dis-

play its architecture. This example RNN is referred to as amany-to-one

RNN as it takes an input sequence and generates one output (PPI

prediction value).

Unfortunately, due to the presence of feedback loops, RNNs are

subject to the vanishing gradient problem, meaning that the network

can sometimes fail to propagate useful information from the early lay-

ers of the network during training. The long short termmemory (LSTM)

architecture has been developed to overcome this issue; it introduces

gates within the architecture to better control the flow information

from layer to layer [72].

Nonetheless, training an RNN or LSTM with variable-length pro-

tein sequence data is computationally expensive since the network

requires long training time to capture long-range amino acid residue

interactions in the input sequence.

2.3.3 Transformers and attention

The attention mechanism is the key advance leading to the trans-

former neural architecture [73]. Similar to RNNs, transformers are an

encoder-decoder architecture but use semi-supervised learning, unlike

the previously discussed methods. Transformers were developed to

address the problems with RNNs and LSTMs: while RNNs process the

input sequentially leading to long training times, transformers process

all elements in the input simultaneously, allowing for faster compu-

F IGURE 3 Example attentionmechanism. Each element in the
weight matrix is the result of the dot product of the corresponding
vectors. Adapted fromVaswani et al. [73].

tations. Google first introduced the attention mechanism with the

transformer architecture. Simply, the attention mechanism represents

each sequence in the input as a numerical representation of the other

sequences in the input. This vectorization of each sequence assigns

relationships to each other sequence input, giving the neural network

context for each sequence. Transformers use these contextualized vec-

tors to decode into a new representation. Because of this, transformers

are popular in language translation models as they can capture the

individual meaning and context of each word in a sentence and trans-

late it to a different language. Both the transformer architecture and

the attention mechanism have applications for PPI prediction. The

transformer architecture takes in sequential data, like a protein’s pri-

mary sequence, and produces an output representation. However, as

discussed in the coming sections, the attention mechanism has been

ubiquitous in the PPI prediction field and for good reason. Future sec-

tions will discuss the application of attention in the PPI prediction

field.

Figure 3 is a general example for an attentionmechanism. The input

aminoacid sequence is converted toavector through someembedding.

The weight matrix is then constructed taking the dot product of the

vectors. The weight matrix can then be multiplied by the output vec-

tors from the embedding to create an amino acid representation that is

context aware.

2.3.4 Embeddings and encodings

Embeddings are representations of feature-rich inputs that are scaled

down to reduce the dimensions from the input. This scaling down pro-

cess highlights important features within the network. Embeddings

come from pre-trained neural networks that generate feature repre-

sentations as an output. For example, Word2Vec is a neural network

architecture that represents words in a sentence as vectors in a sen-

tence that capture their semantic and syntactic attributes [74]. It is

important to note that embeddings are of a fixed length; therefore,

the method that produces the embedding can take a variable length

input and yet still produce a fixed-length output. Word2Vec and other

relevant embedding architectures that have been adapted for protein

representations will be explained further below.
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In this review, we use the terms embeddings and encodings inter-

changeably. Embeddings and encodings refer to data transformations

that either approximate or provide a direct one-to-one transforma-

tion of an input. We briefly describe some examples of encodings and

embeddings that will be referenced in future sections. An example of

an encoding is the one-hot encoding. The one-hot encoding converts

categorical data, like amino acids in a protein sequence, into an n × L

dimensional vector, where n is the number of categories and L is the

length of the input. For example, a one-hot encoding of a protein’s

amino acid sequence would be a 20 × L dimensional vector, where 20

is the number of categories (amino acids) and L is the length of the pro-

tein’s amino acid sequence. This encoding has a direct map allowing

conversion back to the input.

Word2Vec: Word2Vec is a neural network architecture that, as the

name suggests, converts words into a vector. The network learns word

associations by training on a body of text and represents these word

associations in vectors. The goal of this vectorization is to be able to

perform simple algebraic operations to combine the associations of dif-

ferent words. For example, with Word2Vec, it has been shown that

vector(King)− vector(Man)+ vector(Woman)≈ vector(Queen) [74].

FastText: FastText is similar to Word2Vec in that its goal is to pro-

duce a vectorization of words. However, FastText’s main contribution

lies in its architecture: words are represented as a combination of vec-

tor representations of characters. This approach makes FastText, as

suggestedby its name, a fastermethod for training andproducing these

vector representations [75].

BERT: BERT is amasked-languagemodel that aims to predict amiss-

ing word in a sentence. BERT is trained using sentences with a masked

tokenon somewords. BERTwill then try topredict thesemaskedwords

given context from the other words in the sentence [76].

2.3.5 Autoencoders

Autoencoders are different from the previously mentioned architec-

tures because they use unsupervised learning. Simply, autoencoders

try to project their input into a different dimensional feature vec-

tor (encoding) and then use this feature vector to recreate the input

(decoding). The goal of this architecture is to create an encoder that

is capable of projecting an input to a different dimension. Most com-

monly, autoencoders are used to project data into a lower dimension

in order to enhance signals, highlight features, and reduce noise. This

attribute of autoencoders is important for mass spectrometry data,

which will be discussed in a future section.

2.4 Training and testing data partitioning

Since the goal of ML is to be able to make predictions on unseen data

(i.e., generalization), one commonly splits available data into training

and testing sets,withmodel training takingplaceon the training set and

model testing performed using the (previously unseen) test set.

However, performing the train/test split requires care in the con-

text of PPI predictions. One must avoid “leaking” information from the

training data to the testing data. If the set of interactions are simply

partitioned, typically many proteins will appear in both the training

and testing set, thereby leaking information from training to testing.

For example, if a highly connected protein appears in both testing and

training, theMLmodel may learn to simply predict that the protein has

further interaction partners without taking into account the proper-

ties of the partners. This can lead to unrealistically high accuracies. To

address this issue, the best practice is to partition the available data

based on proteins themselves and not on PPIs. This split means that

proteins in the training set will not be seen in the test set, giving more

confidence in themodel’s ability to generalize [77].

3 PROTEIN SEQUENCES FOR PPI PREDICTIONS

Having covered the necessaryML background, we now turn to the use

of protein sequences and the computationalmethods used to integrate

these sequences into a PPI prediction pipeline. PPI prediction models

that use protein sequences are plentiful mainly because of how readily

available protein sequences are. Below, we discuss the current general

pipeline and give examples of existing pipelines in the field.

Protein sequence refers to the primary structure of proteins: the

amino acid sequence. The amino acid sequence is a 1D chain of

twenty possible amino acids. This specific arrangement of amino acids

is referred to as the protein’s primary structure [1]. While this 1D

sequence’s relationship to the protein’s 3D structure is not easily

apparent, there exist patterns, such as certain amino acid combina-

tions, within the protein sequence that define folding motifs (e.g.,

alpha-helix, beta-fold) within the protein’s structure. The goal of using

computational methods with protein sequences for PPI prediction is

to capture these patterns from the interfaces of known interacting

polypeptides to predict PPIs based on the similarity between other

proteins’ sequences. Here, we discuss the computational work that has

been done to assess the interaction between two candidate proteins

based on their sequences alone.

Much of the work that focuses on computational methods for PPI

predictions uses protein sequences as its sole input. These protein

sequences are far more readily available as compared to the 3D pro-

tein structural models: there are around 189million protein sequences

available on UniProt, while there are only a little more than 200,000

protein structures deposited in the Protein Data Bank (PDB) [78, 79].

The plethora of protein sequences and the ease of accessing them has

contributed to an abundance of computational models that predict

PPIs based solely on protein sequences alone.

When it comes to training data for PPI prediction based on refer-

ence protein sequences, researchers can access a diversity of experi-

mentally derived PPIs based on well-studied organisms [4, 11, 20, 33,

34, 80]. They can split these into and training and test (hold out) sets to

demonstrate that a particular model is able to performwell, capable of

getting high accuracy and not overfit to one particular reference study.
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F IGURE 4 General pipeline of PPI predictionmodels using protein sequences. The input is the primary amino acid sequence. A feature
extraction step is used to distill important features from the amino acid sequence. This step includesmetric representations, embeddings,
encodings, or some use of the original protein sequence. A network architecture then integrates the two separate protein feature vectors and
outputs a binary prediction.

Commonly referenced datasets include S. cerevisiae [4, 11, 34], E. coli

[34], and Human datasets [4, 11, 34].

Early sequence-based PPI prediction techniques have used well

known ML tools such as SVMs and RFCs, but the field started to shift

toward novel DL within the past few years because of the advan-

tages neural networks offer in terms of performance. Coupled with

the recent advancements with the attention mechanism, neural net-

works have become significantly more powerful compared to classical

ML algorithms. Indeed, the vast number of architectures developed

for text-based problem such as text mining and language translation

can be leveraged toward PPI prediction. Strategies used with neural

networks such as transfer learning [81] and model adaptation allows

for an easy transition from text-based models to PPI predictions using

pairs of protein sequences as input [42, 48]. In addition, research has

shown that data processing such as using metric representations or

embeddings (see Sections 3.1 and 3.2) for neural networks can reduce

experimental noise or unimportant features and highlight important

features in the data, which leads to a reduced training time [82,

83].

Below, we discuss the shift toward neural network-based mod-

els in the protein sequence-to-PPI prediction field and the different

strategies taken by different authors to improve predict performance.

Sequence-based models can be distinguished mainly on what repre-

sentation of the protein sequences is used as inputs into the neural

networks. Since input features affect the neural network architectures

that canbeused, careful considerationneeds tobegiven tohowonhow

best to represent interacting polypeptides. When it comes to repre-

senting protein sequences for input into neural networks, the field has

developed three different encoding strategies: metric representations,

text or neural network embeddings, or simply rawprotein sequences as

input. Figure 4 illustrates the general pipeline of many models that use

protein sequences solely.

3.1 Metric representations

Distillingprotein sequences tometric representationsnotonly reduces

training timebut also avoids deeper networks, which are usually neces-

sary to capture interactions. It is important to mention that extracting

these features from protein sequences is a relatively simple task. Met-

ric representations involve distilling the raw protein sequence into

statistical, physical, or chemical properties and seems to be the most

popular method in the field currently. These representations include

properties such as hydrophobicity, secondary structures, backbone

angles, amino acid composition (AAC), andmanyother features [11, 20,

28, 33, 34, 42–44, 80, 84–87]. Other commonly used features includ-

ing AAC and conjoint triad (CT) provide a global representation of the

protein, while also fixing the length of the input feature [4, 34]. While

a fixed-length input is important for most neural network architec-

tures, RNNs do not require a fixed-length input. When one considers

the higher payoff and lower effort needed to generate thesemetrics, it

becomes evident why this approach is among the most popular in the

field.

3.1.1 Case example of metric representations and
attention: SDNN-PPI

As an example of systems that use metric representations, we will

review the design of SDNN-PPI [4]. SDNN-PPI is a neural network-

based method that pre-processes protein sequences into metric

representations before their input to the neural network, producing a

binary PPI prediction output. The three derived features are an AAC,

a CT distribution, and an autocovariance (AC) which considers the

proximity effects of nearby amino acids. To obtain the CT, SDNN-PPI

first clusters the amino acids into seven different clusters based on the
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biophysical properties of their side chains and dipoles: if two amino

acids are in the same cluster, they are treated the same. The CT score

is then calculated as the distribution of amino acid triplets with respect

to these clusters. The AC is determined by replacing the amino acids in

an input protein sequence with a number corresponding to some basic

biophysical property (i.e., hydrophobicity, hydrophilicity, net charge

index, polarity, polarizability, soluble surface area, and side chains).

The AC of each such sequence is calculated and used as the third input

feature to SDNN-PPI.

The SDNN-PPI architecture model architecture is based on a feed-

forward networkwith six fully connected layers. The architecture itself

is simple in that it uses one of the most basic layers in DL – a fully

connected layer that also includes the use of attention. The authors

testedmultiple different encodings of protein sequences andwere able

to get an area under the receiving operator (ROC) curve (AUC) value

of 0.986 when the algorithm was tested on multiple high confidence

PPI datasets. ROC is ametric used for classificationmethods that plots

the true positive rate as a function of the false positive rate. AUC is the

areaunder this ROCcurve– ametric thatmeasures themodel’s perfor-

mance across all thresholds for classification. The highest AUC score

possible is 1.00, meaning the 0.986 achieved by SDNN-PPI is high. The

authors used the S. cerevisiae dataset to evaluate SDNN-PPI’s perfor-

mance. While the authors evaluated across different combination of

metrics, no comparison to other methods of encoding such as neural

network sequences or raw protein embeddings [4].

SDNN-PPI highlights the power of the attentionmechanism, namely

achieving excellent performance in PPI prediction based purely on

sequences and a simple DL architecture. An advancement in attention

networks is influencing the field heavily as themost recent papers have

started to shift to architectureswith the self-attentionmechanism, and

most recent papers have largely shifted to these attentionmechanisms

over the span of a few years. SDNN-PPI also highlights the trajectory in

which protein sequence pipelines are moving: pipelines that leverage

attention mechanisms along with readily available protein sequences

are able to produce remarkably accurate results with only the primary

protein structure. However, as the authors have pointed out, metric

representations do not provide comprehensive protein characteriza-

tion such as structural, evolutionary, and protein-residue relationship

information [4]. In addition, information regarding how the data for

training and test set was not specified, which means that information

leakage, as described previously in the Methodological Background,

could have occurred.

3.2 Embeddings

The next strategy for protein sequence representation is the use of

embeddings and encoders. Encoders such as one hot encodings can

be used to represent protein sequences, while embeddings such as

Word2Vec, FastText, and BERT [7, 34, 43, 44, 48, 67, 88] are com-

monly used to transform the protein sequence into an interpretable

feature for a neural network. The main advantage to this strategy is

that it keeps some resemblance of the entire protein sequence while

also providing an interpretable feature representation for a neural

network [43]. In addition, neural network embeddings can project an

input sequence to a lower dimension. The advantage of this projec-

tion is that it can reduce noise and extract important features from

the input [82, 83]. Conversely, the main drawback to this approach is

the issue of interpretability: while metric-derived features have mean-

ing (since they represent statistical or biophysical representations of

the protein), embeddings from neural networks create features that

lead to output representations that do not have direct interpretation.

While this disadvantage may not affect how well a model predicts

PPI using these embeddings, it causes issues when trying to interpret

the features the model is using to make these predictions (black box

phenomena).

3.2.1 Case example of embeddings and encodings:
GOSeqPPI

An example of embeddings and encodings in a PPI pipeline is GOSe-

qPPI [43]. GOSeqPPI incorporates both a neural network embedding

and a text encoding to represent both the protein sequence and associ-

ated gene ontology (GO) annotations [89, 90] the protein into a neural

network architecture. To represent the protein sequence, GOSeqPPI

uses a one hot encoding, distilling the protein sequence into a (20 × L)

– dimensional feature vector. Twenty for the number of possible amino

acids and L for the length of the protein sequence. A pre-trainedNCBI-

blueBERT model [91], which is a version of the BERT model that was

specifically trained on biomedical text data, was used to distill the GO

annotations into a (768 × N) – dimensional feature vector. The one

hot encoding and the BERT embedding are passed into a CNN layer

and an LSTM layer to combine the features from the protein sequence

and GO annotations to create an embedded representation of pairs

of proteins. Finally these feature representations are passed into a

fully connected network layer with an attention mechanism for a PPI

prediction.

Compared to extracted protein features, GOSeqPPI’s embeddings

and encodings have a distinct advantage: the ability to incorporate

additional information. The BERT model extracted important features

the GO annotations and was able to use them for PPI predictions.

Because neural network embeddings project the input data into a

lower dimension, they reduce noise and capture important features.

Indeed, compared against othermodels such as PIPR, GoSeqPPI shows

improved accuracy across multiple datasets. However, this method

makes the extracted features uninterpretable to the human eye.

3.3 Raw protein sequences

The research in PPI predictions seems focused primarily on global

interactions: a binary output classification onwhether twoproteins are

interacting. However, some of the research looks at local interactions:

determiningwhich residues from a pair of proteins are interacting. The

literature for predicting residue interaction interfaces is not as rich as
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inferring global PPIs. Most models that predict interaction networks

tend to use statistical and physiochemical representations for PPI pre-

dictions. This decision makes sense since global interaction models

are not concerned with the specific residues of the two interacting

proteins. However, models that predict local interaction tend to use

a combination of statistical, physiochemical representations as well

as some representation of the overall protein sequence that captures

local features of the protein (e.g., overall fold or domains). As described

in the previous sections, protein sequence representations encompass

encoding methods such as metric representations, text embeddings,

and neural network feature embeddings, but some groups have also

leveraged raw protein sequences [39, 42, 44, 67, 86, 87]. Using unpro-

cessed protein sequences for PPI prediction creates an issue for neural

network architectures since most models depend on an input of fixed

length. This issue means that the architectures used in these models

must either use RNNs, which can handle variable length inputs or else

somehow fix the input lengths of a given protein sequence. Given the

limitations to using RNNs noted before, efforts in this area opt to fix

the input length of the proteins using neural network embedding mod-

els, text embeddings, or a pre-determined length [39, 44, 87]. Overall,

however, these strategies have seen less success than approaches that

alter the protein sequence.

3.3.1 Case example of using protein sequences:
ctP2ISP

ctP2ISP [39] is a pipeline that interprets protein sequences to predict

protein interaction sites between a pair of interacting protein at the

individual amino acid residue level. To achieve this precision, ctP2ISP

inputs six different features, representing the physicochemical prop-

erties of each protein to the neural network. The first input, covering

the first 500 residues of a protein consists of a number from 1 to

20, representing different amino acids. If the protein is less than 500

residues, the input feature is padded with zeros. The algorithm then

uses SPIDER3 [92], a protein structure prediction method, to generate

information about a protein’s secondary structure, including its solvent

accessible surface area, and peptide backbone angles. This informa-

tion is presented as a 1D vector to the neural network pipeline. The

other two features are a position-specific scoring matrix, and basic

biophysical properties (such as charge, volume, and hydrophobicity).

ctP2ISP separates itself into a local and global block for seman-

tic feature mining. The global block is the part of the architecture

that uses global metrics of the protein sequence along with the 500

amino acid sequence of the protein. The local block uses the 30 amino

acid fragment for interaction site prediction. Even though both blocks

contain transformer layers, the input to the global block consists of

the entire 500 residue protein sequence, while the input to the local

block is a 30 residue protein subsequence from using a sliding win-

dow. The sliding window allows for data augmentation, generating

more data to train and test themodelwithout accessingmore datasets.

Using protein sequences is not necessary for global PPI predictions but

is most likely needed for determining local protein interactions. The

results are concatenated and sent into fully connected layers for target

classification.

The advantage of ctP2ISP’s architecture means that all pro-

tein sequence inputs are of a fixed-length, allowing the use of

the CNN architecture instead of an RNN, but as noted above,

other workarounds may perform better to represent an entire

protein sequence without sacrificing the ability to use other

architectures.

4 PROTEIN STRUCTURE FOR PPI PREDICTIONS

A protein’s 3D structure is a result of biophysical interactions among

the primary amino acid sequence. The side chains on the amino acid

sequence make energetically favorable contacts with other residues

in the sequence. The types of interactions that drive protein folding

include hydrogen bond formations, electrostatic interactions, and van

der Waals [1]. Experimentally determined protein structures curated

in the PDB display physically interacting residues as a graph structure.

However, deducing protein structures is more complicated than deter-

mining protein sequences, which is why protein sequences are more

readily available compared to protein structures [78, 79]. Neverthe-

less, innovative computational methods based on DL for determining

protein structure has recently become a popular field.

In contrast to physics-based methods like ClusPro [93], which

depend on free energy minimizations for determining how a pro-

tein folds, ground-breaking methods like AlphaFold (AF) use multiple

sequence alignments (MSAs) to gain insight into protein structure [6].

Because of AF’s recent prominent success in the protein structure pre-

diction field, an AF derived Protein Database was produced, consisting

of around 200million protein structure predictions [94].

Recently, the PPI prediction field has started to integrate protein

structures, known ones from PDB or predicted ones from the AF Pro-

tein Database, into computational pipelines to see if they improve

prediction performance. The general idea behind using protein struc-

ture for PPI prediction is that a protein’s structure contains key

features that can be extracted and then used to compare for compli-

mentary (i.e., lock-and-key fit) against another protein’s structure for

PPI prediction.

Below, we discuss how protein structure has been leveraged for PPI

prediction. The field so far has evolved twomain strategies for PPI pre-

diction using structure: PPI prediction using AF-inspired models and

graphical representations based on known protein structures. Figure 5

shows the general pipeline of models in this part of the field.

4.1 AlphaFold

Historically, the implementation of protein structure has been more

challenging compared to the use of protein sequences. However,

the pioneering AF tool [6] has increased activity around structure

for PPI predictions. By demonstrating the power of attention-based

DL, the work in the PPI prediction field has now shifted to using this
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F IGURE 5 General pipeline of PPI predictionmodels using protein structuremodels. The input is the 3D structure of a pair of proteins. Protein
structures consist of experimentally verified or computationally predicted structures. These 3D structures are converted to residue contact
graphs tomake it an interpretable graph for the graph neural network architecture. The graph neural network synthesizes the two graphs into a
feature vector, which is then used for a PPI prediction.

innovative DL mechanism. AF has moved the PPI field forward by

both leveraging the power of DL while also making use of accurate

large-scale protein structuremodels for PPI prediction. Notably, use of

protein structure for PPI prediction is no longer restricted to proteins

with experimentally derived protein structure, rather researchers

can use computational protein structure models for PPI predictions,

leveraging the AF Protein Structure Database collection of about 200

million predicted protein structure [6, 94].

While the advent of the AF Protein Structure Database and AF-

Multimer is inspiring, considerable progress in the PPI prediction field

protein structure-based PPI prediction is still not as extensive as stud-

ies using protein sequences. It is also important tomention that protein

structure models do not have the same vast starting foundation that

protein sequence models had, which draws from extensive previous

researchwith text-based tools, somuchof the field is currentlyworking

with off-the-shelf models. Rather, existing structure-based methods

still depend on protein sequence but use it in conjunction with protein

structure information.

4.2 Multiple sequence alignments

AF’s success comes partly from the power of MSA alignment of three

ormore homologous protein sequences fromadiverse set of species to

bothdefine similar functions indifferentorganismsand identify bound-

aries on sequence variation, which reflect the protein’s 3D structure

[95, 96]. Because of this detectable relationship between homologous

protein sequences, MSAs have been widely used to identify evolu-

tionary relationships needed for protein structure prediction. More

specifically, MSAs can reveal both global and local structural features,

including secondary structures, backbone angles, and even residue–

residue interactions [96]. MSAs and other evolutionary information

have been popular for protein structure prediction for some time

[97–99], but the emergence of the attention mechanism in DL tools

such as AF truly allow this information to be extrapolated for PPI

predictions.

The success of AF has inspired an AF-Multimer model, which pro-

duces medium quality protein docking structures at scale [5]. Because

of its limited reliability, using AF features directly for PPI prediction

was somewhat disappointing initially. Nevertheless, the AF-Multimer

model has been used as a high throughput method to generate candi-

date PPIs and even multi-protein complexes [100]. Researchers have

found that using the AF model in conjunction with paired MSAs yields

the best results, achieving an AUC value up to 0.87 when predicting

PPIs for E. coli [101]. However, AF has a long run time to find the nec-

essary sequences for the MSA needed for the model. This drawback

means that performing modifications to AF architecture to enhance

PPI predictionswill require not only resources to handleAF’s computa-

tionally intensity but also long run times, whichmakes this strategy not

as feasible compared to using pure protein sequences for PPI predic-

tion. Techniques to speed up AF’s MSA generation have been reported

[101, 102], but, the long run time still pose an issue.

In theory, long run times canbe circumventedbyusingprotein struc-

ture predictions in the AF Protein Database, but this strategy means

that the model will not be able to use intermediate computed fea-

tures in AF but rather just AF’s output. Hence, with work in this part

of the field is still in its early stages, literature for using AF-inspired PPI

predictionmodels remains sparse.

4.2.1 Case example of MSAs: PITHIA

An example of a neural network architecture incorporating MSAs

is PITHIA [67], which uses not only MSAs but also uses other side
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features such as embeddings from protein language models and other

representations such as a PSSM. While PITHIA does not exactly make

PPI predictions, it can find protein interaction sites on a singular

protein.

The authors tested the performance of multiple different ML archi-

tectures including a multilayer perceptron, an RNN, a CNN, and a

transformer with self-attention with the latter performing the best.

Surprisingly, however, when testing the impact of additional features

such as a PSSM, physiochemical characteristics, or evolutionary con-

servation, the use of MSAs alone yielded the best results [67]. PITHIA

demonstrates the power of MSAs within the attention mechanism

compared against other architectures and features.

4.2.2 Case example of AF output for PPI
prediction: TAGPPI

Using a slightly different approach, some recent work in the field has

looked at using parts of AF instead of MSAs for protein structure

prediction. TAGPPI, for example, incorporates AF’s protein structure

prediction by creating a residue level contact map to pass onto a graph

neural network with an attention mechanism – referred to as a graph

attention network (GAT), along with a CNN to interpret the protein

sequence after pre-processing. The authors tested multiple variations

of their method, including versions that used the CNN and GAT lay-

ers independently versus together. They found that the addition of the

structure feature provided by AF provided the highest accuracy [18].

It is important to note that this model incorporates both sequence and

structure, and compared against other models such as PIPR, a neural

network model that only uses protein sequences, TAGPPI improved

PPI prediction performance albeit marginally [18].

The combined use of protein sequence and protein structure in

TAGPPI somewhat obscures the impact of protein structure on PPI

prediction accuracy. To assess the role of protein structure for PPI

predictions, it would be helpful to look at a pipeline that does not

look at direct sequence information and how this impacts the model

performance.

4.2.3 Case example of pure protein structure for
PPI prediction: SGPPI

SGPPI uses protein structures from theAFProtein StructureDatabase

and additional information regarding protein secondary structures but

does not use a direct metric representation of the protein sequence.

The protein structure is converted into a contact map and passed onto

a graph convolutional neural network (GCN) for aPPI prediction.While

the authors did not report the overall accuracy of their model, they did

indicate an F1-score of 0.375 by a 10-fold cross validation on Pan’s

dataset [14]. An F1-Score is a function of the model’s sensitivity and

specificity; the closer the score is to 1, the better the model’s per-

formance. Pan’s dataset is a generated dataset based on the Human

Protein References Database and is commonly used for benchmark-

ing [14]. While each model was tested with a different benchmark,

these results suggest using protein sequence has a greater impact

on performance relative to protein structure, again stemming from

the solid foundation provided by previous natural language processing

research. Since protein structure models have lagged behind protein

sequence models, the difference in performance could result from the

individual field being able to move forward more quickly and is not a

representation of the inherent utility for PPI predictions.

4.3 Non-AF methods

Multiple models have used known protein structures instead of puta-

tive structures computationally derived by AF for PPI predictions. The

general methodology is to convert the structures into a graph, usually

a residue contact map, and apply a graph neural network to extract key

features to predict PPIs [22, 57, 103].

4.3.1 Case example of using experimentally
derived protein structures: Struct2Graph

Struct2Graph is a network model that converts experimentally-

derived PDB structure files into graphs. These graphs are then passed

into aGAT to identify similarities in the graphs. The authors report that

Struct2Graph outperforms the other state-of-the-art models using an

attention network with protein structures, achieving a claimed accu-

racy ≥98.89% by five-fold cross validation [57]. These results indicate

that introducing known structures into a PPI prediction model can

increase prediction performance. However, the AF Protein Database

currently has about 200 million proteins, while the PDB consists of

only 200,000 [78, 94]. Hence, models that work with predicted pro-

tein structures have a harder problem since they scale to 100-fold

more proteins. Because PDB is much smaller (fewer proteins to be

trained or tested on), there is inherently less variability that neural net-

work architectures need to capture, so the problem for known protein

structures is an easier task. On the other hand, working with known

protein structures is intrinsically limiting. Therefore, for the field to

move forward and incorporate inferred protein structure, improve-

ments to AF-inspired models are needed for a highly accurate yet

scalable method for PPI predictions.

While still dynamic, a few papers have successfully combined atten-

tion networks with protein structure information [57, 103]. So far,

models that incorporate known protein structures seem to generate

better results compared to those using the predicted protein struc-

tures [57, 103]. Yet, the AF model is an important step forward for

PPI prediction field as it allows structural information to be extracted

for PPIs with only protein sequence available. The attention mecha-

nism seems to provide the best performance – one recent study found

that the GAT outperformed the GCN [103]. However, obstacles hin-

dering faster progress include theMSA alignment because the process

to finding appropriate protein sequences is computationally expensive

[102].
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F IGURE 6 General pipeline of PPI predictionmodels using co-fractionation tomass spectrometry (CF/MS) data. The input is a pair of protein
profiles. A feature extraction step does data processing to reduce the influence of experimental noise. The processed profiles are converted to
correlations and then used as input to some PPI prediction step such as amachine learning (ML) model. The prediction step outputs a PPI
prediction.

5 CF/MS DATA FOR PPI PREDICTIONS

Biochemical co-fractionation to mass spectrometry (CF/MS) is a pow-

erful experimental method for mapping PPIs on a large-scale that

critically depends on extensive computational modeling. In CF/MS

experiments, intact soluble protein complexes in a cellular lysate are

fractionated by high performance liquid chromatography (HPLC) prior

to proteolysis and standard denaturing liquid chromatography mass

spectrometry (LCMS) [104]. Since subunits of stable multi-subunit

complexes are expected to co-fractionate together, bioinformatics

pipelines can be used to compare pairwise sets of protein profiles with

highly correlated pairs used to predict PPIs. One key advantage of

CF/MS is that it can be to examine different experimental contexts.

However, a major challenge is chance co-elution, which can lead to

incorrectly predicting interactions among functionally unrelated pro-

teins. Multiple pipelines have been derived to interpret CF/MS data to

predict PPIs by addressing the issue of chance co-elution [49, 60, 65].

From a computational perspective, the individual protein profiles

recorded by CF/MS can be represented in three different dimensions:

peptides (detected proteolytic sequences), fractions (HPLC retention

times), and conditions (experimental variables) [65]. Two key steps are

data processing to remove inherent sources of experimental noise that

can produce error and protein correlation analysis. ML models such as

SVMs, RFCs, and Naive Bayes classifiers have been introduced to best

interpret CF/MS data [46, 49, 60, 65]. The inputs to these models are

pre-processed MS data to predict PPIs. Some pipelines use additional

information such as functional annotations to aid in eliminating spu-

rious correlations [65]. Below, we discuss some current strategies for

CF/MS data processing and PPI predictions while noting how the field

can leverage recent advancements inneural networks. Figure6demon-

strates the general methodology of models that use CF/MS protein

profiles for PPI prediction.

5.1 Data processing

Data processing is an important step for CF/MS analysis since this step

aims to enhance signal-to-noise during subsequent correlation analy-

sis to better detect PPIs. A multitude of different strategies have been

introduced, including data normalizing, correlation analysis, and signal

processing. For data normalization, the data is scaled to account for

spurious measurement variations. Z-score scaling and fitting Gaussian

models are some examples of ways to reduce experimental variance

[60, 65, 105].

Because interacting proteins co-elute together, a common strategy

is to find correlations between protein elution profiles. Correlation

metrics include Jaccard, Euclideandistance, andBayes correlation [65].

Determining coordinate changes inprotein abundance (e.g.,HPLCpeak

height, width, retention time) is another strategy for characterizing

CF/MS profiles for PPI predictions [46, 60].

5.1.1 Case example of CF/MS pipeline: EPIC

One of the first tools to process CF/MS data, EPIC (elution profile-

based inference of complexes) [65] calculates eight different corre-

lation scores between all proteins profiled in an experiment. These

values are then used as an input to an ML engine (RFC and SVM) for

PPI prediction. These classifiers are trained by using annotated pro-

tein complexes obtained from the CORUM database – if two proteins

are curated to same complex, they are deemed as expected PPI. When

fully optimized, EPIC achieves an overall accuracy score of 0.65 when

applied toC. elegans data [65]. Given the accuracy of EPIC is not as high

as someof the computational due to chance co-elution,CF/MSdata can

be used to reveal dynamic rewiring of PPI networks, which is hard to

infer computationally.
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5.2 Improving performance in CF/MS field

Notably, CF/MS-basedmodels have yet to exploit advanced neural net-

work architectures. Therefore, there is ample opportunity to improve

the accuracy of CF/MS-based predictions by using neural networks

and incorporating other sources of information. The first point to con-

sider is neural networks are capable increasing the signal-to-noise ratio

in CF/MS. Autoencoders and transformers (see Section 2) are unsu-

pervised and semi-supervised architectures, respectively, that reduce

noise present in the inputs. This capability makes them an ideal candi-

date architecture for a CF/MS prediction pipeline as chance co-elution

is one of the leading issues hindering CF/MS bioinformatics pipelines.

Transformers also incorporate attention into their architecture [73].

Another point to consider is the use of additional information to

aid CF/MS predictions. There are multiple examples of PPI predic-

tions pipelines that use additional information to aid in prediction such

as EPIC using functional annotations [65] and GOSeqPPI using GO

annotations [43]. CF/MS data, specifically, can benefit from additional

information in order to reduce chance co-elution. Neural networks are

useful in this instance as they can seamlessly integratemultiple sources

of information into a PPI prediction. As an example, a text-based neural

network model was used to interpret GO annotations in the GOSe-

qPPI pipeline [43], anda similar approach canbedonewithCF/MSdata.

Protein sequence models have shown success, and integrating protein

sequences with CF/MS data is a feasible strategy to improve accuracy

in CF/MS predictions.

6 DISCUSSION

Overall, attention networks have been impactful in the PPI predic-

tion field. The trend in the field is that the current models the field

is publishing involve attention. PITHIA demonstrated that the use of

the transformer architecture with attention yielded the best results

when testing different architectures of the model [67]. Therefore,

for the foreseeable future, in order for models to compete with the

current state-of-the-art, they will need to incorporate an attention

mechanism.

When reviewing the current state of the PPI prediction field, it

seems as though AF has had an important impact on the work being

done. Neural networks that use protein sequence and/or protein struc-

ture have started to use attention in their architectures after AF’s

publication. While AF has been influential with PPI prediction mod-

els using protein sequences and structures, the CF/MS field has barely

started to move toward the use of neural networks. There exists an

opportunity to progress the CF/MS field through the use of atten-

tion networks. Because of chance co-elution, it may be beneficial for

the CF/MS field to expand on PPI prediction architectures that use

protein sequences or protein structures. Protein sequence models

specifically have seen some success, so adapting an architecture and

incorporating CF/MS data through an autoencoder, to enhance the

signal-to-noise ratio, can be an important first step to progress the

CF/MS PPI prediction field.

When comparing PPI prediction models that use protein sequences

versus those that use protein structure models, these models seem

to yield better results, but this is not a reflection of their superiority

over models that use protein structures but rather possibly an artifact.

Protein sequencemodels seem to have amore consistent set of bench-

marking datasets based on well-studied organisms. Along with these

datasets and the wealth of models from the natural language process-

ing field, the protein sequence PPI prediction field has the necessary

tools to create well-performing models. While protein structure mod-

els have not moved as far, the AF Protein Database [94] can make way

for models that aremore applicable tomore proteins.

Overall, the PPI prediction field has moved far within the past

few years and has the potential to move further within the next few

years too. Protein sequence PPI prediction models have leveraged

natural language processing models and created a solid foundation

for the field to move forward. It may be best for future models to

start incorporating multiple sources of information, leveraging the

advantages from each data input: amino acid residue information from

protein sequences, protein characterization from protein structures,

and different experimental contexts fromCF/MS.
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