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Abstract

Proteins play an essential role in the vital biological processes governing cellular

functions. Most proteins function as members of macromolecular machines, with

the network of interacting proteins revealing the molecular mechanisms driving the

formation of these complexes. Profiling the physiology-driven remodeling of these

interactions within different contexts constitutes a crucial component to achieving a

comprehensive systems-level understanding of interactome dynamics. Here, we apply

co-fractionation mass spectrometry and computational modeling to quantify and pro-

file the interactions of ∼2000 proteins in the bacterium Escherichia coli cultured under

10 distinct culture conditions. The resulting quantitative co-elution patterns revealed

large-scale condition-dependent interaction remodeling among protein complexes

involved in diverse biochemical pathways in response to the unique environmental

challenges. The network-level analysis highlighted interactome-wide biophysical prop-

erties and structural patterns governing interaction remodeling. Our results provide

evidence of the local and global plasticity of the E. coli interactome along with a rig-

orous generalizable framework to define protein interaction specificity.We provide an

accompanying interactivewebapplication to facilitate the exploration of these rewired

networks.
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1 INTRODUCTION

Microorganisms abundantly exist across all types of ecological envi-

ronments, but the molecular basis for these adaptive responses is
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not fully understood. In the laboratory, certain bacterial strains can

be cultured in a variety of conditions spanning a range of tempera-

tures, pH, and media compositions resulting in different phenotypes

and growth rates (µ). For example, Escherichia coli can propagate in the

Luria-Bertani (LB) mediumwith a near maximal generation time (µmax)

of ∼20 min at 37◦C. However, in its natural environment which can

be nutrient-deficient, the growth rate is significantly reduced. Under

nutrient deprivation, microorganisms like E. coli can maintain contin-

uous but extremely slow growth rates (µ << µmax) called “near-zero
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growth” (NZG) [1, 2]. Accurate descriptions of the molecular mecha-

nisms supporting these vastly different physiological states in different

environments is crucial to elucidating the fundamental relationship

between genotype and phenotype.

While bacteria are known to regulate biochemical responses

through transcriptional control of gene operons, post-translational

regulation is also thought to mediate their adaptation to changing

physiological demands [3–5]. Proteomics research therefore plays a

particularly important role in elucidating the physiological state of

bacteria due to the crucial role of proteins in executing essential cel-

lular functions. Comparative proteome studies have found that the

distribution of protein resources in bacteria is related to their growth

rate [3]. Peebo et al. used a chemostat to isolate E. coli within a

range of µ = 0.2–0.9 h, and found that more proteins in slow-growing

cells were used for energy generation, carbohydrate transport, and

metabolism, whereas most proteins in fast-growing cells functioned

in biological processes closely related to protein synthesis pathways

[4]. More recently, Schmidt et al. measured the relative abundance of

more than 2300 proteins in E. coli under 22 culture conditions and

found that growth ratewas positively correlatedwith amino acid trans-

port and ribosomal biogenesis, and negatively correlated with energy

generation pathways [5].

Proteins do not function in isolation in the cell, rather they selec-

tively interact to form large multi-subunit complexes that are collec-

tively known as the “interactome.” Elucidating the composition and

overall network properties of the interactome is key for revealing the

molecular mechanism of cell growth and environmental adaptation

on a proteome-wide level. Butland et al. and Hu et al. used affinity

purification mass spectrometry (AP-MS) to define a dense network

of protein-protein interactions (PPIs) among the soluble protein com-

plexes of E. coli cultured in LB medium [6, 7], while Babu et al. [8]

reported PPIs among membrane-associated proteins under a single

static growth condition.

Multiplex co-fractionation mass spectrometry (mCF-MS) is a flexi-

ble approach for detecting and comparing protein complexes and PPI

networks under different cellular contexts [9]. In mCF-MS, cellular

lysates are biochemically fractionated prior to mass spectrometry-

based shotgun sequencing and relative protein quantification. Ion-

exchange chromatography (IEX) is a particularly effective method to

resolve complexproteinmixtures [9–11],while sophisticated computa-

tional analysis tools are then used to assign proteins to a given complex

based on the similarity of their co-elution profiles [12–14]. Due to its

quantitative high-throughput nature, mCF-MS technology allows for

direct comparison of interactome differences between distinct sam-

ples after controlling for spurious variance using biological replicates.

The protein interactome is a dynamic system that changes in

response todifferent stimuli andenvironments. Studies on thedynamic

response of S. cerevisiae PPIs to environmental disturbances showed

that more than half of the PPIs only existed under specific culture

conditions [15]. Changes in a single protein or a small amount of pro-

tein would lead to changes in PPIs, and some protein modifications

would also lead to changes in interactions [15]. Other studies have also

revealed that the location and abundance of proteins in S. cerevisiae

Significance Statement

The protein interactome contains the network of physical

interactions that enable the functions of most proteins. Pro-

tein interactions can be disrupted by many triggers, such

as pathogen infection or mutations in protein-coding genes,

yet most studies in the field focused on characterizing the

interactome in a static manner, with few devoted to inves-

tigating the dynamic nature of these interactions. In this

study, we profiled the dynamics of the Escherichia coli inter-

actome in response to changes in its growth environment.

Our results shed light on the mechanisms governing protein

interaction remodeling, while also providing a rigorous ana-

lytical framework for quantifying interaction dynamics on

an interactome-wide scale, representing an important step

toward accuratemodeling of dynamic biological systems.

cells influence PPI formation [16, 17]. The proteome profile of bacte-

ria similarly varies under different conditions, and so it follows that

the bacterial interactome is expected to exhibit dynamic assembly pat-

terns.However, therehasbeenno systematic study yet on thebacterial

interactomeunder different conditions, with the existing E. coli interac-

tome only constructed for the LB medium. [18] While protein interac-

tions are rewired in response to different environment-specific factors

such as changing gene expression and protein abundance patterns, we

sought to explore the global patterns andmechanismsunderlying E. coli

interactome rewiring as opposed to specific environmental responses.

In this study, we used mCF/MS along with a customized data

analysis pipeline to compare differences in the PPI networks of E.

coli cells grown under 10 different culture conditions. We defined

and investigated extensive condition-dependent remodeling predicted

by this dataset. Projecting this PPI remodeling against evolutionary

and biochemical traits allowed us to pinpoint key biological factors

driving protein interaction dynamics, while statistical assessment of

the dynamic networks revealed fundamental mechanistic principles

underlying interactome plasticity. Along with a robust computational

framework to support future studies of this nature, we developed an

interactive web application to facilitate exploration of these results by

the broader research community.

2 RESULTS

2.1 Experimental design

Wegrew E. coliBW25113 under 10 alternate growth conditions repre-

senting different types of environmental variations (Table 1): (i) growth

on two distinct types of complex medium, (ii) growth on defined (mini-

mal) mediumwith one of three different carbon sources, (iii) growth on

glucose minimal medium with two different stress (anerobic growth,
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TABLE 1 List of 10 different growth conditions of E. coliBW25113

Growth conditions (Abbr.)

Complexmedium 1 LB (LB)

2 Glucose+Amino acids (AA)

Carbon sources 3 Glucose (Glc)

4 Galactose (Gal)

5 Xylose (Xyl)

Stress conditions on

glucose

6 Anaerobic (Ana)

7 42◦C (T42C)

Fixed growth rate on

glucose

8 chemostat µ≈ 0 (NZG)

9 chemostat µ≈ 0.8 (Max)

Starved cell 10 Stationary 1 day (SP)

heat shock) conditions, (iv) growth in glucose-limited chemostat cul-

tures with varying growth rates (NZG, µ ≈ 0; Max, µ ≈ 0.8), and

(v) stationary phase. The reasoning behind selecting these particular

growth conditions is elaborated upon in the Section 4.

2.2 Generation of condition-dependent CF/MS
proteome profiles

We used multiplex co-fractionation mass spectrometry (mCF/MS; see

Section 4) to generate proteomic profiles encompassing 1937 E. coli

proteins, in replicate, across 96 IEX-HPLC fractions for each of the

10 growth conditions (Figure 1A). We used isobaric Tandem Mass

Tag (TMT) stable isotope chemical labeling to quantify the condition-

specific protein elution profiles for just under half of all curated

protein-coding genes (Figure 1B). These mCF/MS profiles consisted

of quantitative measurements of each protein relative levels in each

fraction, using summed precursor (MS2) ion intensity as a proxy for

protein abundance (Figure 1C). The proteins profiled in this dataset

represent strong coverage (>70%) of the five largest functional anno-

tation pathways in the KEGG [19] database (Figure 1D), with all

pathwayswell-representedwith>53% coverage on average. Addition-

ally, chromatograms showed excellent reproducibility between HPLC

runs (triplicate technical injections are shown in Figure 1E). Given

a key premise of mCF/MS is that physically-interacting proteins dis-

play similar elution profiles, we found that pairs of proteins with

high-confidence experimental evidence of interacting in the STRING

database [20] had significantly higher correlations in our dataset than

random protein pairs (p < 2.2 e-16; Figure 1F), demonstrating strong

recovery of canonical protein interactions.

2.3 Computational strategy for profiling
interactome remodeling from dynamic CF/MS data

A key challenge of the mCF/MS routine is that the multiplexed mea-

surements are made at the peptide-level, after in vitro-digestion of

the protein fractions, while quantitative inferences must be assigned

at the higher protein-level. Moreover, while our dataset was expected

to be dynamic, existing tools such as EPIC [12], PrInCe [13], and

CCprofiler [14] were devised for analyzing static PPI networks using

standard non-multiplexed CF/MS data, with each proposing differ-

ent pre-processing strategies. Thus, we developed a pre-processing

workflow starting from the peptide-level with the optimal set of

steps and parameters for our data that led to the best recapture of

literature-reported PPIs (see Section 4).

Figure 2 outlines the computational analysis pipeline we developed

to profile dynamic protein interaction remodeling based on conditional

mCF/MS data. The pipeline consists of twomodules, with the first ded-

icated to pre-processing the mCF/MS data (Figure 2A), and the second

responsible for quantitatively scoring protein interaction remodeling

(Figure 2B).

The second module is concerned with quantitatively profiling pro-

tein interaction remodeling from the pre-processedmCF/MSdata. Our

strategy begins by computing conditional similarity scores for eachpair

of interacting proteins within a reference interactome predicted from

themCF/MSdata using established algorithms (see Section4).We then

leveraged the quantitative nature of the 10 mCF/MS reporter chan-

nel measurements to quantify the nature and extent of remodeling

exhibited by each putative binding partner in response to each growth

environment based on changes in the similarity of the interactor

mCF/MS profiles. This allowed us to profile changes in the interac-

tion patterns at different levels of biological organization, starting from

individual pairs of proteins and multi-protein complexes, through to

whole interactome, in response to the different growth conditions.

Our pipeline enabled the identification of key pathways and molecu-

lar mechanism driving interactome remodeling, as described in later

sections, while providing a rigorous generalizable framework for inter-

actome remodeling using mCF/MS data. A detailed breakdown of each

step in the analysis pipeline can be found in Section 4.

Prior to applying this pipelinee, we first predicted a reference inter-

actome spanning 6,152 high-confidence pairwise interactions among

the quantified E. coli proteins in the mCF/MS data by combining

and scoring all 10 datasets using the established EPIC software [12]

(see Section 4 and Table S1). This unified interactome was shown to

be highly modular (Louvain modularity = 0.89), encompassing 267

putative multi-component complexes ranging in size from just three

subunits to a large ribosomal assembly consisting of 35 polypeptides

(Table S2). While most proteins (68.3%) were assigned to a single com-

plex, several “moonlighting” proteins were predicted to function as

members of multiple distinct complexes, with nine proteins operating

in asmanyas four complexes, includingmolybdopterin cofactors (moaE,

mobA,modE,moeA) and rRNAmethylases (rlmA, rlmB, rlmG).

2.4 Extent of global remodeling of E. coli
interactome

We used the standard LB growth medium as a baseline condition to

quantify the extent of interactome remodeling occurring in response
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F IGURE 1 Profiling E. coli interactome dynamics. (A) Experimental design. Quantitative CF/MS data was generated from E. coli cultured under
10 different media. (B) E. coli proteome coverage. Fraction of E. coli protein-coding genes quantified in our dataset. (C) Coverage of largest E. coli
pathways in the KEGG database. (D) Dynamic CF/MS profiles. Heatmaps visualizing the CF/MS data generated for each of the growthmedia. (E)
Reproducibility of data. Overlap of replicate HPLC data. (F) Recovery of known E. coli interactions. Comparison of Pearson correlation between
pairs of proteins known to interact in the STRING database and all possible pairs of proteins in our dataset.

to the other nine different environmental perturbations (as summa-

rized in Table 1). By scoring each constituent interaction’s conditional

remodeling relative to the LB reference, we placed the predicted

protein complexes on a spectrum of stable-to-disrupted complexes

detected within each growth medium, with complexes whose under-

lying mCF/MS profiles showed the largest increase in dissimilarity

being assigned higher remodeling scores (see Section 4). We found

that while individual complexes reacted differently depending on

the specific culture conditions, the overall extent of interactome

remodeling was remarkably similar across all conditions, with most

complexes (57.8%on average) remaining quantitatively unchanged rel-

ative to the LB baseline, whereas only a small <5% fraction exhibited

high (>0.5) remodeling scores suggestive of disrupted interactions

(Table S2).

Figure 3 shows the interactome-wide patterns of protein com-

plex remodeling seen among select representatives of the four major

test conditions evaluated in the comparative experiment. We high-

light an example complex from each condition based on both bio-

logical relevance and being impacted by relatively high levels of

PPI remodeling. The quantitative nature of the mCF/MS measure-

ments enabled deciphering the nature of the intra-complex remodeling

occurring (e.g., subunit loss versus changes in overall macromolecular
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F IGURE 2 Computational pipeline for quantifying interactome remodeling from dynamic CF/MS data. (A) CF/MS data processing. Pipeline for
processing peptide-level CF/MS data leading to generation of protein-level profiles. (B) Profiling protein interaction remodeling. Analysis workflow
for quantifying interactome remodeling under different conditions.

abundance relative to LB), and we show the underlying mCF/MS data

for a representative remodeled interaction per complex.

For example, in the condition where galactose was the primary car-

bon source, we found evidence of extensive formation of a protein

complex composed mainly of galactose metabolism enzymes, where

the assembly extends from one large unit into two distinct subunits

connected by the galM epimerase protein. Additionally, the dynamic

association of garD, a galactarate dehydrase, suggests a peripheral role

for this protein with the core complex. Together, these remodeling pat-

terns suggest the presence of condition-dependent macromolecules

driven by the availability of galactose and simultaneous trimming of

less essential interactions.

In response to high temperature (42◦C), we found that one of the

top remodeled complexes showed evidence of decomposition into two

separate subcomplexes, with one consisting of the heat shock response

proteins from the “hsl” family, and the other consisting of hydroge-

nase proteins from the “hya” family of genes. Meanwhile, the dimeric

histone-likemaster transcriptional regulatorshupA and hupB and chap-

erone protein htpG dissociated entirely from a prominent assembly

seen in LB. A potential explanation for this behavior could be induction

of a heat shock transcriptional response for the organism to cope with

the high temperature.

A striking example of the influence of highly-connected hub pro-

teins on complex remodeling was observed when E. coli was cultured

in a chemostat at near-zero growth rate. The complex with the high-

est remodeling score in this condition involved several transporter

proteins, with the respiratory enzyme glpB playing a central role by

being the only member that physically interacts with all complexmem-

bers. Both the downregulation and elution shifting of glpB under the

near-zero growth condition coincided with the destruction of all its

intra-complex interactions and the consequent loss of this complex,

demonstrating the dynamic nature of complexes with reliance on

highly-connected subunits for their structural integrity.

Finally, another complex that had a high remodeling score was

detected preferentially among starved cells, showing extensive disrup-

tion primarily due to the loss of interactions involving the two highly-

connected subunits ade and add. Proteins in this conditional assembly

have been associated with multiple types of post-translational pro-

tein modifications, including phosphorylation and acetylation [21, 22],

implying altered activity of an upstream signaling mechanism as a key

response to the starvation condition, presumably triggering energy

conservationmechanisms.

2.5 Biological pathways driving interactome
remodeling

Using annotated pathway membership information from the EcoCyc

curation database [23] combined with our reference EPIC-derived

interactome, we quantified the extent of conditional remodeling

detected in each condition among interaction partners mapping to

38 major biochemical pathway families, classifying them according
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F IGURE 3 Global patterns of interactome remodeling. (A) Leftmost network plots visualize protein complexes predicted from the dynamic
CF/MS data. Nodes represent protein complexes color-coded by quantitative extent of remodeling in given condition compared to base growth
media (LB) and sized according to number of member proteins. Middle network plots visualize example complexes selected due to high level of
remodeling and biological significance. Rightmost plots visualize CF/MS profiles of example intra-complex pairwise protein interactions with high
remodeling scores.
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to the spread of remodeling scores around the baseline LB condi-

tion (Figure 4A). While most (61.5%) biosynthesis pathway families

showed relatively stable behavior across conditions compared to

LB, notable exceptions included strengthening of genetic machinery

involved in cell replication in conjunction with consistent weakening

of interactions related to the synthesis of polyprenyl and tetrapyr-

role, which are known to be growth inhibitory. Interestingly, metabolic

regulator biosynthesis displayed a wide range of dynamic remodel-

ing, being strengthened in some conditions and weakened in others.

Dissecting the interaction behavior showed that these changes are pri-

marily driven by changes in the elution profiles of the proteins rather

than changes in relative abundance, suggesting possible biochemical

alterations to the structures of these complexes.

In contrast to the biosynthesis pathways, only one-third of path-

ways associated with biomolecule degradation were relatively stable

across conditions. Reactive oxygen species degradation, a hallmark

stress response, was consistently impacted across all changes in the

media, alongside changes in the machinery linked to the degradation

of amino acids and aldehydes. On the other hand, we observed a rel-

ative weakening in assemblies linked to degradation of fatty acids

and lipids, aromatic compounds and alcohol, with alterations primarily

driven by abundance changes. Additionally, interactions involving sig-

nal transduction pathways were elevated concomitant with increased

activity of signaling cascades in response to the environmental per-

turbations (Figure 4A). A similar pattern was observed for enzyme

assemblies linked to metabolic detoxification and glycan formation.

Conversely, persistent global weakening of interactions among com-

ponents of the protein modification and energy generation pathways

was seen under non-conventional environments, reflecting a shift to

increased conservation.

We also identified pathwaysmost influential in driving the remodel-

ing within each growth condition. We consequently examined assem-

blies linked to the top four strengthened and weakened pathways

detected within each culture (Figure 4B). Consistent with the global

trends (Figure 4A), the protein modification machinery was among

the most consistently and severely impacted systems across all con-

ditions relative to LB, indicative of the key role played by dynamic

post-translational modifications. Interestingly, acid resistance (ability

to withstand pH < 2.5) was among the most-strengthened pathways

detected under near-zero growth yet one of the most weakened in

starved cells, despite being generally associated with the stationary

phase in the literature.

Hypergeometric enrichment tests revealed that amino acid degra-

dation, cofactor biosynthesis, and precursor metabolite generation

pathways are significantly enriched (FDR < 0.01) among both the top

5% remodeled and top 5% stable proteins on average across conditions

(Figure 5C,D). Amine degradation and aromatic compound biosyn-

thesis were exclusively strongly represented among the most stable

proteins (Figure5D),while a larger set of 13pathways spanningdiverse

biological mechanisms were enriched among the most highly remod-

eled proteins, indicative of the multi-faceted nature of interactome

disruption across the diverse growth conditions.

2.6 Structural and functional properties of
interactome remodeling

Our mCF/MS data enabled the capture of two distinct types of data

patterns suggestive of interaction remodeling: (1) qualitative: elution

(HPLC retention time) shifts, that is, impacting the overlap of the pro-

teins’ cross-fraction co-elution patterns, and (2) quantitative: intensity

fold-changes, that is, the ratio between protein relative expression

(co-abundance) between conditions (Figure 2B). While we opted for a

single integrative analysis strategy designed to generate a single score

combining the changes seen in both patterns (see Section 4), we also

compared the patterns of each reference interaction and found that

the magnitude of changes in interactors’ co-abundance tended to be

significantly greater than that exhibited by coelution changes, sug-

gesting that expression-level regulation plays a prominent role as the

dominant mechanism influencing downstream interaction remodeling

(Figure 5A).

To identify biological properties that distinguish proteins based

on their levels of interaction remodeling, we computed associations

between diverse protein traits and their corresponding averaged inte-

grated remodeling score within each growth condition separately. A

negative correlation between remodeling scores and summed protein

intensities indicated that low-abundance proteins were more prone to

remodeling (Figure 5B), consistent with past findings frommammalian

interactome remodeling studies [24]. Classifying the proteins based

on their evolutionary age also revealed that certain conditions, includ-

ing near-zero growth and stationary phase, favored ancient protein

interaction stability, implying that adaptation to certain types of envi-

ronments, such as growth on xylose-richmedia, is amodern adaptation

(Figure 5C). Strikingly, we found that membrane proteins were rela-

tively more stable than their cytosolic and periplasmic counterparts

(Figure 5D), while proteins subject to phosphorylation were likewise

generally more stable (Figure 5E). Counter-intuitively, proteins anno-

tated as containing intrinsically disordered structures had a lower

median remodeling score (Figure 5F), suggesting they tend to form

constitutive assemblies. Similarly, highly-connected hub proteins that

participated in many (six or more) interactions weremore stable, likely

due to their persistent and essential role in maintaining interactome

structure (Figure 5G), while unexpectedly the number of complexes a

protein participates in was less influential (Figure 5H).

We explored the overarching structural patterns of interactome

remodeling by examining the relationship between the integrated

remodeling scores and the mathematical properties at both the pair-

wise interaction level and the protein complex level. We found no

correlation between each interaction’s betweenness score within the

interactome and its corresponding remodeling propensity (Figure 5I).

This indicates that unlike hub proteins, individual central interactions

have the same tendency to be remodeled as more peripheral ones.

Meanwhile, tightly-connected protein complexes had relatively lower

remodeling scores on average than those with sparser intra-complex

connections, suggesting higher structural resilience to changes in the

surrounding environment (Figure 5J).
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F IGURE 4 Biological pathways driving interactome remodeling. (A) Average remodeling scores of main E. coli pathway families. Boxplots
represent distribution of each pathway family’s remodeling scores in each of the growthmedia. Pathway families colored according to spread of
remodeling scores around base growthmedium (LB). (B) Top remodeled and stable pathways across conditions. Top four strengthened and
weakened pathways for selected growth conditions based on remodeling scores. (C) Pathways enriched among top remodeled proteins. Results of
hypergeometric enrichment test for top 5%most disrupted proteins based on averaged remodeling scores. (D) Pathways enriched among top
stable proteins. Results of hypergeometric enrichment test for top 5%most stable proteins based on averaged remodeling scores.
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F IGURE 5 Structural and functional properties of interaction remodeling. (A) Boxplots comparing distribution of co-elution and co-abundance
remodeling scores across all interactions. (B) Relationship between summed proteinMS2 intensities and averaged protein remodeling scores. The
downward trend suggests higher remodeling scores for lower abundance proteins. (C) Confidence intervals of averaged protein remodeling scores
for two categories of proteins based on evolutionary age using information from the GenOrigin database. Some types of environmental changes
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3 DISCUSSION

Here, we present the results of a multi-factorial perturbation exper-

iment investigating the global robustness and localized dynamics of

the E. coli interactome in response to different types of environ-

mental perturbations. We cultured a K-12 laboratory strain under

10 different growth media and generated high-throughput mCF/MS

data to enable comparative protein interaction prediction and quan-

titative profiling of interactome dynamics. We found rewired protein

complexes that were altered preferentially, or even exclusively, in cer-

tain physiological contexts that highlight key players in environmental

adaptation responses. These included a galactose metabolism com-

plex forming in response to the availability of galactose, remodeling

of a heat shock complex under high-temperature, and destruction of

a complex associated with post-translational modifications in starved

cells.

We also pinpointed macromolecules and their associated biological

pathways driving this remodeling in comparison to crucial (housekeep-

ing) assemblies that remain universally unaltered (stable core).Notable

pathway remodelingpatterns included strengtheningof cell replication

pathways alongside weakening of growth inhibitory pathways, consis-

tent weakening of protein modification and energy generation path-

ways across the different environments, and elevated levels of signal

transaction pathways. Our integrative scoring approach also revealed

interactome-wide biological, biophysical, and structural patterns gov-

erning the tendency of bacterial interactions to become disrupted

or strengthened. Notably, we found that high-abundance proteins,

phosphorylated proteins, and highly-connected proteins tended to

form more stable assemblies that were resistant to environmental

perturbations.

Our experimentalworkflow included freeze-thawing and sonication

of the E. coli cells prior to co-fractionation (see Section 4), and while

we acknowledge that this aspect of the experiment could potentially

affect the integrity of the protein interactions, thismethod has demon-

strated strong results in our previous CF/MS-based protein-protein

interaction studies (e.g., Havugimana et al., 2012 [10], Wan et al., 2015

[11], Pourhaghighi et al., 2020 [25], Havugimana et al., 2022 [9]). We

also note that while each of the experimental perturbations explored

in this study presents richmaterial for biological explorationwithin the

larger context of E. coli studies, we focused our analysis primarily on

the large-scale interactome remodeling patterns, and present our data

in an accessible manner to enable specialized in-depth follow up stud-

ies on the different conditional responses captured here. To facilitate

exploration of the results, an interactive web application visualizing

the dynamic E.coli mCF/MS profiles is available at https://bnfweb.bu.

edu/EcoliDynamicInteractome/. Finally, we note that the experimen-

tal and computational pipelines reported here provide a generalizable

workflow for future studies of interactome dynamics in other settings.

4 METHODS

4.1 Strain

Thewild-type E. coliK-12 strain BW25113 [8]was stored in the lab and

used to generate the data for all 10 culture conditions.

4.2 Media

Chemical reagents for media preparation were purchased from Sigma-

Aldrich unless specified otherwise. The LB broth miller was purchased

from Fisher BioReagents™. Twenty-five grams of LB broth power, with

tryptone 10 g, yeast extract 5 g, and NaCl 10 g, was suspended in

1 L of Mini-Q water and sterilized by autoclaving. The LB plates were

produced by adding 1.5 g agar to 100 mL LB medium mixture before

autoclaving.

M9minimalmediumwithout carbon sourcewas prepared in the fol-

lowing ways: 200 mL of 5 × M9 salts (Na2HPO4 33.9 g/L, KH2PO4

15 g/L, NH4Cl 5 g/L, NaCl 2.5 g/L), 1 mL 1 M MgSO4 solution, 0.1 mL

1 M CaCl2 solution, 1 mL of Trace elements (ZnSO4⋅7H2O 0.5 g/L,

CoCl2⋅6H2O 0.5 g/L, (NH4)Mo7O24⋅4H2O 0.5 g/L, CuSO4⋅5H2O

0.5 g/L, H3BO4 0.1 g/L, MnCl2⋅4H2O 0.5 g/L). The resulting solution

was filled up to 980mLwith water and then filter sterilized (Nalgene™
Rapid-Flow™ Sterile Disposable Filter Units with PES Membrane,

Thermo Fisher Scientific, USA). Different carbon source stocks were

prepared with glucose 20%, galactose 10%, and Xylose 20% and filter

sterilized. Before use, each carbon source was added tominimal media

with a final concentration of 4 g/L to achieve an equal concentration

of carbon atoms in each medium. FeSO4⋅7H2O solution was prepared

with5g/L (10,000×), filter sterilized, frozen in−20◦Candadded0.1mL

to 1 LM9minimal medium before use.

favored the stability of ancient proteins while others themodern proteins. (D) Confidence intervals of averaged protein remodeling scores for
proteins from different cellular compartments. Membrane proteins tended to be themost stable across conditions. (E) Confidence intervals of
averaged protein remodeling scores for proteins with andwithout evidence of phosphorylation in the dbPSP database. Phosporylated proteins
weremarginally more stable across conditions. (F) Confidence intervals of averaged protein remodeling scores for proteins with andwithout
evidence of intrinsically disordered structures in the DisProt database. No dominant pattern was observed among intrinsically disordered
proteins. (G) Confidence intervals of averaged protein remodeling scores based on number of interactions. Hub proteins with higher number of
interactions weremore stable across conditions. (H) Confidence intervals of averaged protein remodeling scores for proteins based on number of
complexes. Despite the higher stability of hub proteins, there was no strong association between protein complexmembership and remodeling. (I)
Relationship between edge betweenness score of interactions relative to the interactome structure and remodeling scores. Consistently near-zero
correlation suggests that central interactions exhibit the same amount of remodeling as periphery ones. (J) Relationship between protein complex
density and averaged protein remodeling scores. The downward trend suggests tightly-connected complexes are less prone to remodeling.
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The Amino acid medium (AA) was made by supplementing the

mediumwith glucose with a final concentration of 4 g/L, and the amino

acids solution (50×), which was purchased from Sigma (R7131), was

used to replace NH4Cl in the M9 medium as the nitrogen. The amino

acids solution consisted the following individual amino acids: Arginine

10.0 g/L, Asparagine 2.84 g/L, Aspartic Acid 1.0 g/L, Cystine 2.5 g/L,

Glutamic Acid 1.0 g/L, Glycine 0.5 g/L, Histidine 0.75 g/L, Hydroxy-

L-Proline 1.0 g/L, Isoleucine 2.5 g/L, Leucine 2.5 g/L, Lysine 2.0 g/L,

Methionine 0.75 g/L, Phenylalanine 0.75 g/L, Proline 1.0 g/L, Serine

1.5 g/L, Threonine 1.0 g/L, Tryptophan 0.25 g/L, Tyrosine 1.16 g/L,

Valine 1.0 g/L. Other supplement salt mixture in AA was the same

as M9 minimal medium. For chemostat growth, 3 g/L glucose in M9

minimal mediumwas used.

4.3 Media list

Media list Growth conditions andwhywe choose them

Complexmedium 1 LB Themost commonlymedia used for E. coli cultivation.
For comparisonwith published protein complex to illustrate BPmethod

used in this project is good and credible for E. coli protein complex

studies.

2 Glucose+AA Amino acids replaced ammonium as nitrogen source.

MinimalMedium

(MM)with

different carbon

sources, NH4Cl

as nitrogen

source

3 Glucose Glucose as carbon inMM, as a standard in all 10 conditions.

4 Galactose The slowest growth rate in selected batch culture conditions.

Showed different proteome data with glucose when analyze reference (1)

data.

5 Xylose Pentose, different with glucose. Special D-xylosemetabolic process,

significantly upregulated genes were found (1).

Highest growth rate in selectedMM. (1.18-fold than glucose). In (1) data,

E. coli have almost the same growth rate both in glucose and xylose.

Stress conditions on

glucose

6 42◦C 42◦C high temperature stress.

High temperaturemakes E. coli fragile.When put E. coli culture from 42◦C

to refrigerator and then put back to 42◦C, E. coli almost cannot grow

(death cell precipitation appear). It did not happen in 37◦C

(37◦C-4◦C-37◦C, grow normal).

When E. coli grown in 42◦C, some flasks grow faster and some flasks grow

slower, not uniform.Maybe growth heterogeneity happened in high

temperature stress.

7 Anerobic E. coli is facultative anaerobic strain.
In chemostat anerobic condition, plan to design growth rate/dilution rate

D= 0.25 h.

We also have “E. coli grown in chemostat aerobic condition with the same

growth rate” sample, can do proteome comparison if necessary.

Fixed growth rate

on glucose

8 Chemostat

µ= 0.8

D= 0.8 h, themax growth rate in chemostat. In (1) D= 0.12 h, 0.2 h,

0.35 h, 0.5 h were chosen.

Chemostat is different with batch, and commonly used in bacterial

cultivation to get high growth rate and high density. Studying E. coli
grown in chemostat withmax growth rate can help people better

understand E. coli growth process and guild people to use E. coli for
biotechnology applications.

9 Chemostat µ= 0

(near-zero

growth, NZG)

NZG in chemostat continuous culture vessel, simulate E. coli grown in
nature environment.

Starved cells 10 Stationary 1 day Starvation condition, different with exponential phase.

4.4 Cultivation

For the preculture, a single colony was picked from the LB plate and

grown overnight in 50 mL LB medium in a 250-mL Erlenmeyer flask

at 37◦C, 200 rpm. For the batch cultures, the cells from a preculture

were washed twice with sterilized ice-cold phosphate-buffered saline

(PBS) and re-inoculated into 100 mL of the appropriate medium in

a 500-mL Erlenmeyer flask and grown at 37◦C, 200 rpm. The cells

were first grown to exponential phase and then transferred into a

second shake-flask containing freshmedium under the respective con-

dition and growing to early exponential phase. The cells undergoing

temperature stress were grown at 42◦C.

A BIOFLO 2000 bioreactor (New Brunswick Sci., USA) was used for

batch and chemostat cultivation under a biocontroller of temperature

(37◦C), pH 7, airflow, pO2, and stirring. The stirring rate varied from

200 to 1200 rpm to keep pO2 above 50% of air saturation. An infrared
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analyzer LI-800 (LI-COR Biosciences, Lincoln, NE, USA) was used to

measure off-gas CO2.

For cell cultivation, frozen glycerol stocks were inoculated into

5 mL LB medium and grown overnight. The precultures were 1:10

diluted with fresh glucose M9 medium, and allowed to grow in the

batch mode to a specific OD before continuous operation initiated.

Then cultures were stabilized in chemostat mode at a dilution rate (D)

(µmin)= 0.00097 h (near-zero growth) until achieving the steady-state.

After sample collection, a continuous increase of D started until cells

could not keep up with the rising D (resulting in culture washout) and

achieved themaximal specific growth rate (µmax) at≈0.8 h.

Starved cells were continuously grown after reaching stationary

phase for 1 day.

4.5 Protein samples extraction

When cells grow to OD600 = 0.2∼0.3, cells under the respective con-

dition were collected by centrifugation at 3197 g at 4◦C for 20 min,

washed twice with ice-cold PBS buffer, harvested by centrifugation

at 10,000 g and the cell pellet was stored at −80◦C until further

processing.

For all batch cultures (totally six culture conditions), each culture

condition generated three independent culture cells that were sub-

jected to three independent protein samples extraction. The cultured

cells under each chemostat culture condition (totally four) had only

one biological replicate and eachwas used to generate protein samples

extraction three times.

4.6 Cofractionation samples preparation

4.6.1 BP (biochemical purification) with ion exchange
chromatography (HPLC-IEX)

Per 100 µg frozen cells were resuspended in 0.5 mL fresh pro-

tein extraction buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl,

0.2 mM EDTA, 10% glycerol, protease inhibitor (PI, Roche, Cat. No.

04693159001), 0.25mMTCEP), and lightly disrupted by sonication on

ice. The soluble proteinswere obtained byCentrifugation at 15,000× g

for 10 min at 4◦C, a small aliquot of the supernatant was taken to

determine proteins concentration using a BCA assay.

An Agilent 1260 Infinity II was equipped with columns PolyWAX

LP 204WX0510 (200 × 4.6 mm i.d., 5 µm, 1000-Å) and PolyCAT A

204CT0510 (200 × 4.6 mm i.d., 5 µm, 1000-Å) (PolyLC INC, MD,

USA). Before sample injection, the columnswere balancedwith 10 bed

volumes of buffer A (0.75 mM AmAc). About ∼2.5 mg of fresh sol-

uble protein sample was injected to the IEC column and separated

by a linear gradient of 4%–30% buffer B (2.5 M AmAc) for 90 min

and 30%–60% buffer B for 30 min, with a flow rate of 0.4 mL/min.

Totally 96 fractions were collected using a 96-deep well plate (Thermo

Scientific™Abgene™AB0564) with 1min intervals.

4.7 Fractionated proteins digestion and peptides
desalting

Take a small aliquot (25 µL) of proteins from each fraction of the 96-

deep well collection plate, to a new 96-well plate to measure protein

concentration using BCA assay in a Bio-tek microplate reader. The

rest of proteins of each fraction were dried by a Savant SpeedVac

SC210A (Thermo Fisher Scientific, USA), resuspended in 100 µL buffer
(8.5Murea-100mMTris-HCl, pH8.0, 5mMTCEP) reduced at 37◦C for

60min, alkylated with 15mM IAA for 60min, diluted with 50mMTris-

HCl with urea <1 M, digested by incubation with sequencing-grade

modified trypsin (1/20∼1/100, w/w) overnight at 37◦C. After diges-

tion, the reaction was stopped by adding FA with a final concentration

of 1%. The peptides were desalted by a Sep-Pak tC18 96-well µElution
plate (Waters,USA,ProductNumber186002318). Before loading sam-

ples, the desalting plate was wetted with 0.5 mL methanol twice and

washed with 0.5 mL 0.1% FA twice. Peptide fractions were loaded on

the plate by centrifugation for 1 min at 100 g. Based on the number

of proteins from each fraction measured with a BCA assay previously,

the total peptides for each fraction loaded to the desalting plate should

not exceed 1% of the sorbent weight (10 mg). The desalting plate was

washed twice with 0.5 mL of 0.1% FA to remove the unbinding mate-

rials and eluted with 150 µL 0.1% FA/60% ACN twice, the elution

samples were collected with PlateOne™ 96-well 0.5 mL polypropy-

lene plate (USA Scientific, USA, Product number 1896–5110). The

fractioned desalted samples in the plate were divided into three low-

profile 96-Well PCR Plates (Bio-rad, USA, Product number HSP9601)

and dried by Speedvac. Dried peptides in one plate were used for fur-

ther TMT-labeling, and the other two plates were stored at −80◦C as

backups.

4.8 TMT labeling

We used 20 µL of 50 mM HEPES buffer to resuspend each fraction of

peptides in a plate, then transfer 4 µg peptides per fraction into a new
low-profile 96-Well PCR Plate and adjust to a final volume of 20 µL
with 50 mM HEPES buffer. Note that for fractions 1–4, each with a

total protein digest of 1 µg, these peptideswere all transferred into the
new96-Well PCRPlate.Using thisway, cells from10culture conditions

generated 30 of 96-well plates of peptide samples.

For the 5 mg TMT label reagent vials (TMT 10plex Isobaric Label

Reagent Set plus TMT11-131C Label Reagent, Thermo Fisher Scien-

tific, catalog number A34808), add 250 µL of ACN to each tube to

make the reagents concentration of 20 µg/µL, took half (125 µL) of the
reagents to new tubes and diluted to 2 µg/µL with ACN.

When doing TMT labeling, for the 10 plates in a group, took 2 µL
from the same fraction of each plate and put them into a newplate. The

11th plate was a mixture of the 10 plates and used for normalization.

Added 10 µL of 2 µg/µL TMT reagent to each fraction of peptides to

make the TMT/sample= 5:1 (v/v) for labeling. The mixtures were incu-

bated for 1 h at room temperature. After the reaction, added 2 µL 5%
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hydroxylamine incubating at room temperature for 15 min to quench

the reaction. The labeled peptides in the 11 plates were pooled into a

96-well plate and desalted with a Sep-Pak tC18 96-well µElution plate.
The desalted peptides were eluted into a PlateOne™ 96-well 0.5 mL

polypropylene plate and divided to three new low-profile 96-Well PCR

Plate and dried by SpeedVac. These three plateswere stored in−80◦C,

one waiting for mass spec analysis and the others stored as backups.

4.9 LC-MS/MS

The dried peptides were resuspended in 100 µL of solvent A and 15 µL
of each sample was taken and loaded on an EASY nLC 1200 system

coupled to aQExactiveHFmass spectrometer equippedwith anEASY-

Spray ion source (all from Thermo Fisher Scientific, USA). The peptides

mixtures were separated by a C18 Acclaim PepMap 100 pre-column

(75 µm i.d. × 2 cm, 3 µm, 100 Å) hyphenated to a PepMap RSLC C18

analytical column (75 µm i.d. × 50 cm, 2 µm, 100 Å) (all from Thermo

Fisher Scientific, USA). Each fractionated sample was eluted from the

columnwith a 120-min gradient.

4.10 Protein identification with MaxQuant

TheMS/MS raw files were searched using MaxQuant Version 1.6.0.16

against the E. coli database (Uniprot, download data:2018/06/25). The

database consists of four, 313 E. coli proteins as well as known con-

taminants. The extractedMS/MS spectrawere searched against a both

forward (native) and reversed (decoy) sequences, with protein iden-

tification allowing for two missed trypsin cleavage sites, methionine

oxidation and N-terminal acetylation as variable modifications, and

carbamidomethylation of cysteine residues as a fixed modification.

Reporter ions (MS2 spectra) were used for quantification with 10plex

TMT using a matched reporter mass tolerance of 0.003 Da. Peptide

search tolerance was set to 4.5 ppm for MS1, while MS2 fragment

tolerance was set to 10 ppm. Candidate peptide and protein identi-

fications were filtered based on a stringent 1% false discovery rate

(FDR) threshold. Match between runs was active with an alignment

windowof 20min and amatch retention timewindowof 0.7min.Other

MaxQuant parameters were performed using default settings.

4.11 CF/MS data preprocessing

We sought to develop a pre-processing workflow with the optimal

set of steps and parameters for our data that would lead to the

best recapture of literature-reported protein interactions. Starting

from the peptide-level data, the following four steps represent the

pre-processing steps in our final pipeline:

(i) Normalization. To correct for the different number of peptides

identified in each of the 96 fractions (850–5940 peptides per frac-

tion), MS intensity values were normalized within each fraction,

converting the raw intensity of each peptide to its proportion of

all peptides within that fraction, followed by log2-transformation.

(ii) Smoothing signals. Eachpeptide’s 96-fraction conditional profile is

smoothed by taking a moving average of four fractions to smooth

out the short-term fluctuations across neighboring fractions.

(iii) Filter outlier sibling peptides. On average, each protein in this

dataset has 14 peptides mapped to it (IQR 5–19). It is expected

that the peptides that map to the same protein should have sim-

ilar profiles to each other, and as such any peptide that deviates

significantly from its group is likely a faultymeasurement or incor-

rect mapping. To filter out these outlier peptides, we performed

average-linkage hierarchical clustering on the sibling peptides

based on their similarity to each other, split the resulting dendro-

gram into two clusters, and retained the peptides belonging to the

larger cluster as being representative of the protein.

(iv) Construct protein profiles. Finally, we collapsed the sibling pep-

tide profiles into their corresponding protein profiles by averaging

their per-fraction intensities, leading to a final set of 1937proteins

for downstream analysis.

In developing this pipeline, we benchmarked different strategies for

each step as follows:

1. Generate protein profiles from peptide profiles using different sets

of processing parameters.

2. Compute distances between resultant protein profiles.

3. Compare distances to literature-curated PPIs using a ROC analysis.

For step 2, the distances between protein profiles were computed

using threemetrics: Pearson distance, Euclidean distance, andWasser-

stein distance, with Pearson distances eventually leading to the best

performance. This dataset has two replicates, and as such four dis-

tances were computed per protein pair, with the average of these four

distances taken as the representative distance between the two pro-

teins. This distance was then converted into a signal-to-noise ratio by

dividing the distance by the average cross-replicate distance, that is,

noise, of the given two proteins.

For step 3, the following datasets were used as reference protein

interactions to benchmark against:

1. A set of one million pairwise interactions from the STRING

database v11 [20]. STRING is a repository of interactions com-

piled from seven different sources. The dataset was filtered for

high-confidence interactions only (STRING score > 0.7). Only pairs

for which elution data is present in our data for both members

were retained for further analysis, leading to a dataset of 24,912

interactions among 1821 unique proteins.

2. A set of 184,023 interactions from the BioGRID database [26].

BioGRID is a literature-curated database of genetic and protein

interaction data. Only pairs for which elution data is present for

both members in our data were retained for further analysis,

leading to a dataset of 36,204 interactions among 1690 unique

proteins.
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For each set of pre-processing parameters and each reference

dataset, the benchmarking ROC analysis was carried out as such:

1. Compute average distance between each pair of proteins.

2. Sort the protein pairs in ascending order of distances.

3. Label each pair as true or false depending on presence within the

given reference network.

4. Compute the area under the ROC curve using the pairwise dis-

tances as weights.

The pipeline that led to the highest AUC score in this analysis was

selected (Figure 2A).

4.12 Predicting E. coli interactome to probe for
remodeling

The EPIC software [12] was employed to predict protein interactions

in the conditional CF/MS data, representing the E. coli interactome

that we later searched for evidence of remodeling. The software

was run on the pooled CF/MS data across conditions and repli-

cates. The default PPI score cutoff of 0.5 was applied. EPIC used

the following metrics for determining co-elution: mutual information,

Euclidean distance, Jaccard index, Pearson correlation, Pearson cor-

relation with Poisson noise coefficient, apex score, and a novel Bayes

correlation.

This network contains 6152 interactions among 1866 proteins. The

average degree is 6.6 (IQR 4–7). EPIC detected 267 complexes among

this interactomewith anaverage size of 9.2 proteins (IQR6–11). A total

of 1806 proteins (96.8% of all proteins in the interactome) were deter-

mined to bemembers of complexes in this interactome. 68.3% of these

proteinswere amember of just one complexwhile at theother extreme

there are nine proteins that are members of four complexes. 83.6% of

edges in the interactome were within complexes as opposed to across

complexes.

4.13 Computing conditional similarities

We used two different metrics to score the similarity of each pair of

protein profiles in each of the growth conditions (Figure 2B). Each of

thesemetrics captures adifferentmathematical propertyof theCF/MS

profiles which are potentially informative of different mechanisms of

remodeling. To recap, a protein’s CF/MS profile in a given condition is

its relative abundance in each of the 96 consecutive fractions. The two

similarity metrics are:

1. Co-elution. This corresponds to the similarity of the “shape” of the

two protein CF/MS profiles, that is, the patterns of relative abun-

dance across the fractions, and commonly used for inferring protein

interactions from CF/MS data. Computed as the Pearson correla-

tion between the two CF/MS profiles and is independent of the

magnitude of the protein’s relative abundances. Finally, each pro-

tein pair’s correlation within each condition was averaged across

the two replicates.

2. Co-abundance. This corresponds to the ratio between the two pro-

teins’ total relative abundance in each condition. Computed as

intensity fold-changes between each pair of proteins in each of the

10 conditions as follows.We first reversed the log2-transformation

of the CF/MS profiles. We then summed each protein’s MS2 inten-

sity values across fractions. Since protein-protein interactions are

inherently undirected in CF/MS methods, the fold-change for a

given protein pair was consistently computed as the ratio between

the lower summed abundance to the higher one. These ratios were

then log2-transformed. Finally, each protein pair’s fold-change

within each condition was averaged across the two replicates.

We then combined these two scores into one similarity score

as follows. We created a table with the combined coelution and

co-abundance scores for all protein pairs in our predicted E. coli inter-

actome across all conditions. Each row of this table corresponded to

one protein-protein interaction (PPI) in one condition, and the table

has one column with the corresponding co-elution score and one with

the co-abundance score. We then took the first principal component

of the PCA decomposition of this table to represent our final PPI sim-

ilarity scores. This principal component represented 62% of the data

variance. ThisPCAmethodwasused since it computes a score that cap-

tures the information in both similarity metrics without being affected

by their correlation or the differences in their scales.

4.14 Scoring interactome remodeling

We selected the commonly-used LB growth media as a baseline ref-

erence condition to compare the other growth conditions against for

evidence of protein interaction remodeling. For each interaction in

our E. coli interactome, we computed conditional remodeling scores

as the difference between its similarity score in the LB condition and

its similarity scores in the other conditions. As such, each interaction

has one remodeling score per condition. To ensure the remodel-

ing score is higher for PPIs that are considered weakened/disrupted

(“more remodeled”) and lower for those that are considered strength-

ened/conserved (“less remodeled”), the remodeling score is always

computed as score(LB)—score(condition). This way, the interacting

protein profiles that become less similar will have a positive remod-

eling score and those that become more similar will have a negative

remodeling score, while those that remain unchanged compared to the

LB condition will have a score of zero.

These scores were summarized at the level of the 267 protein

complexes detected in the predicted interactome by averaging the

remodeling scores of each complex’s intra-complex interactions,where

an intra-complex interaction is defined as an interaction between two

complex members that was detected in the predicted interactome.

The same strategy was used to compute remodeling scores for the E.

coli pathways from the EcoCyc database [23] that were examined for

remodeling (seeSection4.15). Pathwayswere classified as “weakened,”
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“strengthened,” “stable,” and “dynamic” based on whether their mini-

mumcross-condition remodeling scorewasbelow1standarddeviation

of all remodeling scores, their maximum score greater than 1 stan-

dard variation of all scores, if all the conditional scores were within 1

standard deviation of all pathway scores, or if the maximum and mini-

mumscores both exceeded1 standard deviation in their corresponding

directions, respectively. Finally, the scoreswere also summarized at the

level of the 1866 individual proteins present in the predicted interac-

tome by averaging the remodeling scores of all the interactions that

each protein is involved in.

4.15 Compiling E. coli pathways

Information on 445 E. coli pathways including 1170 protein-coding

genes was downloaded from the EcoCyc database [23]. Three hun-

dred ninety seven pathways containing at least one protein in our

dataset were initially retained prior to downstream interrogation of

interactome remodeling. Finally,wequantified the interactome remod-

eling among the 206 pathways that had at least one intra-pathway

interaction in our predicted interactome.

4.16 Pathway enrichment analysis

We used the hypeR R package [27] to perform hypergeometric

gene set enrichment tests to detect significantly-enriched pathways

(FDR < 0.01) among the proteins of interest in our dataset, using the

compiled pathways from EcoCyc (see Section 4.15) as the background

gene sets.

4.17 Compiling E. coli protein properties

Information on the evolutionary age of 4140 E. coli proteins was down-

loaded from the GenOrigin database [28]. This included the age of

1785 proteins in our dataset, or 95.7% of all quantified proteins. Pro-

tein relative abundance was computed from this dataset by summing

the MS2 intensity of each protein across all CF/MS fractions in each

growth condition. Cellular compartment information for 817 genes in

our dataset was downloaded from EcoCyc [23]. We focused our analy-

sis on the three main cellular compartments: cytosol, membrane, and

periplasmic space. Phosphorylation evidence for 535 E. coli proteins

were downloaded from the dbPSP database [29]. Five hundred five of

these proteins were present in our dataset. Evidence for 101 E. coli

proteins with disordered structures, including 89 in our dataset, was

downloaded from the DisProt database [30].

4.18 Interactive web application

An interactive web application to explore the results was developed

using the R Shiny framework. The web application includes visual-

izations of individual or grouped protein and peptide CF/MS profiles

across the 10 growth conditions and two replicates. It also displays

putative conditional protein interactions for any protein of the user’s

choice based on evidence from our dataset and external databases.

4.19 Associated data

The mass spectrometry proteomics data have been deposited to

the ProteomeXchange Consortium via the PRIDE partner reposi-

tory with the dataset identifier PXD041263. The scripts to perform

the analysis can be found at https://github.com/AhmedYoussef95/

Ecoli-dynamic-interactome. An interactive web application to explore

the results was developed and is available at https://bnfweb.bu.edu/

EcoliDynamicInteractome/.
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