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Abstract

This paper deals with the estimation of the tail index � for empirical heavy-tailed distributions,
such as have been encountered in telecommunication systems. We present a method (called the
\scaling estimator") based on the scaling properties of sums of heavy-tailed random variables.
It has the advantages of being nonparametric, of being easy to apply, of yielding a single value,
and of being relatively accurate on synthetic datasets. Since the method relies on the scaling
of sums, it measures a property that is often one of the most important e�ects of heavy-tailed
behavior. Most importantly, we present evidence that the scaling estimator appears to increase
in accuracy as the size of the dataset grows. It is thus particularly suited for large datasets, as
are increasingly encountered in measurements of telecommunications and computing systems.

1 Introduction

The presence of power-law behavior in the tail of a distribution has important implications for
the behavior of a random variable: it may suggest the presence of in�nite moments for example.
For many purposes, the particular value of the exponent in such a power-law is also of prime
importance. In this paper we present a new method for estimating such exponents in empirical
data, and contrast it with previous methods. Our method is based on the scaling behavior of sums
of random variables with power-law tails.

We say here that a random variable X follows a heavy-tailed distribution (with tail index �) if

P [X > x] � cx��; as x!1; 0 < � < 2;

where c is a positive constant, and where � means that the ratio of the two sides tends to 1 as
x!1. This distribution has in�nite variance; and if � � 1 it has in�nite mean.

The particular value of � is important in many practical situations, and a number of methods
are commonly used to estimate �. The simplest and most important method is to examine the
data directly. This can be done by plotting the complementary distribution (CD) function F (x) =
1 � F (x) = P [X > x] on log-log axes. Plotted in this way, heavy-tailed distributions have the
property that

d logF (x)

d log x
� ��;

for large x. Linear behavior on the plot for the upper tail is evidence of a heavy-tailed distribution.
If such evidence exists, one can form an estimate for � by plotting the CD plot of the dataset and
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Figure 1: CD Plot for Web �les transferred over network.

selecting a minimal value x0 of x above which the plot appears to be linear. Estimating the slope
for points greater than x0 then gives an estimate of �.

A second approach to estimating the heavy tail index is by using the Hill estimator [4]. The
Hill estimator gives an estimate of � as a function of the k largest elements in the data set; it is
de�ned as

Hk;n =

 
1

k

k�1X
i=0

(logX(n�i) � logX(n�k))

!�1

where X(1) � ::: � X(n) denote the dataset's order statistics, that is, the data items arranged
according to size. In practice the Hill estimator is plotted against increasing values of k; if the
estimator stabilizes to a consistent value this provides an estimate of �.

These two methods, while important, have the disadvantage that one must determine some point
x0 in the tail at which power-law behavior begins. This can be di�cult, because often datasets
do not show clear demarcations between power-law and non-power-law behavior in their empirical
distributions. The proper choice of x0 is important because it can have a signi�cant impact on the
estimate of � obtained using either the Hill or slope estimation methods.

As an illustration of this di�culty, consider the dataset shown in Figure 1. The Figure shows
the CD plot of the sizes of �les transferred through the World Wide Web (as described in [1, 2]). A
straight line has been �tted to the tail of the distribution, using least squares �tting to only those
points greater than 104 (i.e., x0 was chosen by eye to be 104).

Note that the �tted line deviates from the empirical distribution at both ends. Some deviation
on the right is expected because there are very few sample observations in that range. However the
deviation on the left presents more di�culty; the point at which the deviation begins depends on
the choice of x0. More importantly the slope of the line (an estimate of �) depends on the value of
x0 as well. Since the empirical CD plot shows gradual curvature in this region the proper choice of
x0 is not clear.

These problems associated with estimating � for empirical datasets motivate the work described
in this paper. We present a method that helps identify the portion of a dataset's tail that exhibits
power-law behavior. The method is based on the fact that the shape of the tail of a heavy-tailed
distribution determines the scaling properties of the dataset when it is aggregated. By aggregating
a dataset of n observations Xi; i = 1; :::; n we refer to the process of summing non-overlapping
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blocks of observations of size m:

X
(m)
i =

imX
j=(i�1)m+1

Xj :

By observing the distributional properties of X(m) we can make inferences about where in the
tail power-law behavior begins. Based on these determinations we have the basis for forming an
estimate of the tail index �.

While our method (called the scaling method) is useful in detecting and measuring heavy tailed
behavior in a dataset, it can only suggest that such behavior is present; it cannot conclusively
con�rm heavy tailed behavior. It should be used in combination with inspection of the dataset. In
order to support this mode of analysis we show how to use the estimation method graphically. We
have developed a tool that outputs such graphical aids to assist in analyzing data; in particular, it
can show the segment of the tail over which heavy-tailed behavior appears to be present.

We present results showing the performance of the scaling estimator on synthetic datasets
of various lengths and drawn from a variety of distributions. Typical results indicate that on
datasets of length 1,000, the estimator can produce a reasonably accurate estimate. Furthermore,
when used on datasets of length 10,000 or 100,000 it is generally quite accurate. This property
(increasing accuracy with increasing sample size) is especially important for datasets resulting
from measurements of data communication and computing systems, since the nature of the data
collection process in these systems allows for datasets of very large size (hundreds of thousands to
millions of measurements) to be easily collected.

We also empirically compare the performance of the scaling estimator to that of Hill estimator
(for �xed values of k). Our results show that the Hill estimator is more accurate than the scaling
estimator on Pareto distributions; this is to be expected since for such distributions the Hill es-
timator is very accurate, and the choice of k generally has little e�ect on its value. However, for
�-Stable distributions, we show that the scaling estimator is more e�ective over a broader range of
� values than is the Hill estimator for any �xed k.

2 Measuring Scaling Properties

2.1 Background

We use the notation X
d
= Y to indicate that the random variables X and Y have the same

distribution. Then X
d
= aY + b means that the distributions of X and Y di�er only by location

and scale parameters. For any random variable X we de�ne �n as a random variable that is the
sum of n independent random variables each with the same distribution as X.

The usual central limit theorem describes the behavior of sums of random variables, but applies
only to random variables with �nite variance. For heavy-tailed distributions with tail index �,
similar limit theorems may be formulated showing that sums of such variables converge to a stable
distribution with the same � [3, 5, 6].

A distribution is stable (in the strict sense) if for each n there exist constants cn > 0 such that

�n
d
= cnX:

Note that the Normal distribution with zero mean is strictly stable with cn =
p
n. This

follows from the addition rule for variances, and the central limit theorem implies that the Normal
distribution is the only stable distribution with �nite variance. However, other stable distributions
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exist, and the constants cn are always of the form n1=�. For any strictly �-Stable distribution S�
the following holds:

s1=�X1 + t1=�X2
d
= (s+ t)1=�X (1)

whenever s and t are non-negative, and X;X1; and X2 have distribution S�. When � = 2, the
strictly stable distribution S� is the normal distribution N(0; �2).

Consider then a set of random variables drawn from a strictly stable distribution S�. Then
Equation 1 implies

�n
d
= n1=�X: (2)

We refer to this property as the scaling property of sums of stable random variables.
The implication of Equation 2 is that the tail index is unchanged when independent stable

random variables are summed. Furthermore, the relevant limit theorems state that, asymptotically,
the tail index is unchanged when heavy-tailed random variables are summed. This e�ect can be
observed in empirical data and is the basis for our method.

2.2 Observing the Scaling Property in Practice

It is relatively straightforward to observe the scaling property in the tail of the distribution. Figure 2
shows an example. In this example we started with 100,000 samples from a Pareto distribution
with � = 1:1. The Pareto distribution has complementary cumulative distribution function

F (x) = P [X > x] = (k=x)� x � k; �; k > 0

and so is power-law over its entire range. After subtracting the empirical mean (which in this case
was 8.107), the dataset was successively aggregated by factors of two (i.e., adjacent points were
summed). This process was repeated nine times, resulting in ten datasets. The complementary
distribution of each dataset was then plotted on log-log axes.

The qualitative e�ect on which our method is based can be observed in the �gure. Tails of
successive datasets are approximately parallel, with slope approximately ��.

2.3 Using the Scaling Property to Estimate �

The di�culty in applying a method based on the scaling property in practice lies in determining
(1) the best aggregation factor to use and (2) where in the tail to measure �. Our approach is
based on the following argument.

Suppose �rst that Xi is a set of i.i.d. random variables whose distribution is S�, a strictly

�-stable distribution with 0 < � � 2. Form X
(m)
i as before, that is,

X
(m)
i =

imX
j=(i�1)m+1

Xj

and let X(m) denote any of the X
(m)
i . We shall plot the complementary distribution P [X(m) > x]

as a function of x and consider two curves for di�erent values of m: m1 < m2. This situation is
shown schematically in Figure 3. Then we can de�ne two quantities, � and � , corresponding to the
horizontal and vertical distances between the CD curves taken from a point (lnx1; lnP [X

(m1) > x1])
on the m1 curve.

We �rst evaluate the horizontal distance

� = lnx2 � lnx1; (3)
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Figure 2: Scaling behavior in a synthetic dataset.
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where x2 is such that P [X(m2) > x2] = P [X(m1) > x1]. Because of the scaling relation (2) one has

1

m
1=�
2

X(m2) d
=

1

m
1=�
1

X(m1)

or

P [X(m2) >

�
m2

m1

�1=�
x1] = P [X(m1) > x1]:

Therefore x2 = (m2=m1)
1=�x1 and thus

� = lnx2 � lnx1

= 1=� ln
m2

m1
+ lnx1 � lnx1

= 1=� ln
m2

m1
: (4)

The horizontal distance � can be estimated by using the empirical distribution functions of
X(m1) and X(m2) and evaluated at di�erent points x1. In principle, one could use any value of
x1, measure the corresponding �, and then use Equation (4) to obtain an estimate for �. Using
an arbitrary x1 makes sense only for perfectly scaling distributions (such as the stable or normal
distributions) for which Equation (2) holds strictly (that is, throughout the body of the distribution:
P [�n > x] = P [n1=�X > x] for all x). Since we want to use the method for distributions that have
asymptotically power tails, and that may therefore only be in the domain of attraction of a stable
distribution, we shall restrict the range of possible x1 values. We will require x1 to be in the tail
of the distribution, and in addition, that the vertical distance

� = lnP [X(m2) > x1]� lnP [X(m1) > x1]; (5)

falls in a suitable range. In order to evaluate this vertical distance � , we have to distinguish between
the heavy-tailed case 0 < � < 2 and the Normal case � = 2.

a) Consider �rst the heavy-tailed case � < 2. If P [X > x] � cx�� for large x, then

P [X(m) > x] � mcx�� for large x (6)

(see [3, p. 278]).

A plot of the complementary distribution of X
(m)
i on log-log axes will then show a line in the

portion of the tail exhibiting the scaling property that is determined by:

lnP [X(m) > x] = ln c+ lnm� � lnx:

Therefore, for a large family of heavy-tailed distributions if x is large enough, we have:

� = lnP [X(m2) > x1]� lnP [X(m1) > x1]

= (ln c+ lnm2 � � lnx1)� (ln c+ lnm1 � � lnx1)

= lnm2=m1: (7)

In principle, if x1 is large enough to be in the scaling part of the tail of both X(m1) and X(m2);
� could be estimated by the slope �=�, where � and � are measured using the empirical distribution
functions of X(m2) and X(m1). The idea behind our method is to use only those x1 for which � is
close to lnm2=m1 (see Equation (7)) and then estimate � by

�̂ = ln(m2=m1)=�: (8)
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In this way one recovers the estimate one would use for the stable distribution. By focusing on the
tails of the distribution, we can even consider small values of m1 and m2. This is because Equa-
tion (6) and the relation P [X(m2) > x2] = P [X(m1) > x1] imply that � approaches 1=� lnm2=m1

as x1 and x2 tend to in�nity.
Thus, each point along the tail of X(m1) might potentially be used to form an �̂. This is the key

to our method, because it allows us to identify a portion of the tail of X(m1) for which the scaling
property is holding.

If we set m2=m1 to a �xed aggregation step size f , Equation 8 becomes

�̂ = (ln f)=� (9)

and Equation 7 reduces to
� = ln f: (10)

b) Finite-variance variables, when aggregated, will tend to a Normal distribution. The scaling
relation (2) (self-similarity) holds when � = 2 for the Normal distribution and hence we could
forget about the � criterion, estimate � at arbitrary points x1, and then use Equation (8) to
obtain the corresponding estimate �̂. Recall, however, that our method uses only points for which
� � lnm1=m2: This is �ne for the Normal distribution, but if X has an arbitrary distribution with
�nite variance, and if the number of points is not large enough to allow m1 and m2 to be large,
and hence for the central limit theorem to hold, the corresponding estimate can be unreliable. As
we will show below (see Section 2.6) our estimator allows one to discount spurious situations by
assessing visually the region where scaling occurs.

2.4 An Algorithm

An algorithm employing this method is as follows (the algorithm is given more formally in Figure 4).
Starting from an input data set Xi of length n and mean X , subtract the mean from each value
in the dataset, yielding new values for Xi. (Thus for the rest of this discussion X will refer to
the original dataset with its mean subtracted.) Next choose an aggregation step size (f) and some
number of aggregations to use (l). Then form X(f i) for i = 1; :::; l. For example, taking f = 2 and
l = 10, form X(2);X(4); :::;X(1024) . Thus f is equal to the ratio m2=m1 as discussed in the previous
paragraphs. In our experiments we use f = 2 since it is the smallest useful value, although larger
values of f are permissible. The length of the most highly aggregated dataset will be approximately
n=f l; keeping this value large enough to form a reasonable CD plot helps suggest a value for l.

Having formed the datasets X(f i); i = 1; :::; l, the next step is to construct the empirical log-log
complementary distributions (CD) of each dataset. (For a given dataset, P [X > x] is estimated by
the proportion of data points exceeding x.) Then, repeat the following process for each CD plot:

1. For each point in the tail of the CD plot (which we de�ne to be the upper 90th percentile of
the dataset) measure the values � and � (the horizontal and vertical distances to the CD plot
for the next higher aggregation level). These are de�ned in Equations (3) and (5) respectively.

2. Use � to calculate a trial estimate of � using Equation 9, namely

�̂ = (ln f)=�:

3. Compare � to ln f (see Equation 10); if they are close enough (we use a relative error of � =
10%) then accept the trial estimate of �. Thus

Accept �̂ if j� � ln f j < � ln f (11)
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When this process has been completed for all l CD plots, report the average value of the trial �
values that were accepted.

2.5 Discussion

The method takes into account:

(a) regions where there is power law shape, and

(b) regions where the distribution, properly rescaled, is invariant under aggregation (self-similarity).

For perfectly scaling distributions such as the Stable or Normal, one can forget about (a), and
(b) will hold everywhere. For imperfectly scaling distributions (those that belong to the domain
of attraction of a Stable distribution) the regions where (a) and (b) hold can be found, in theory,
far in the tail and for large levels of aggregation m. In practice, when m is large, inaccuracies
abound because one does not have many points. The method provides a compromise by using the
relative error factor � (see Equation 11). Because of the presence of �, we can identify regions where
(a) approximately holds when m is very small. Thus, for the Pareto distribution, the estimator
yields reasonably good estimates even for small m. For the Stable distribution, while the power
law shape (a) occurs only far out in the tail, e�ect (b) occurs over the whole distribution at all
levels of aggregation.

Another issue a�ecting the robustness of the estimator is the operation of subtracting the
empirical mean of the dataset at the outset of the estimation procedure. When � > 1, a dataset
with non-zero mean will not yield accurate estimates unless the empirical mean is subtracted at
the outset. This is because the \central limit theorem" for random variables in the domain of
attraction of a Normal or Stable distribution with � > 1 requires the subtraction of the mean.
Numerically, as the dataset is aggregated, its mean shifts, which can obscure the scaling relation
used to estimate � (Equation 4). On the other hand, when � < 1, the central limit theorem
calls for no subtraction. Subtracting the empirical mean in this case is undesirable, because, if,
for example the data is positive, it can result in making a large fraction (even the vast majority)
of the data values negative. Negative values can not contribute to the estimate since the method
operates on the upper tail of the distribution. Thus there is need for care in applying the estimator,
and deciding about whether to subtract the empirical mean, when � is near 1 (i.e., when � might
be larger or smaller than 1). In this case it is important to examine the graphical output of the
estimator to make sure that enough points are used to form a valid � estimate. (In tables and
�gures below, the empirical mean is subtracted even when � < 1.)

2.6 Using the Method

In practice, power-law shape should exist over a signi�cant fraction of the tail in order for the
dataset to exhibit heavy-tailed behavior. Using the estimator described here it is possible to
discount spurious cases by assessing visually which region of the dataset's distribution exhibits
scaling, and by determining whether that scaling is occurring in the tail of the distribution.

In Figure 5 we show that same dataset as in Figure 2, but here we plot also the points used by the
method in obtaining its � estimate. That is, those points are plotted for which j��ln f j= ln f < 0:10.
This highlights the region of the dataset's tail over which the scaling property is holding. As can
be seen from the �gure, this region encompasses the majority of the tail, spanning three orders
of magnitude (which is to be expected since this dataset is indeed drawn from a heavy-tailed
distribution).
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Inputs

Input data points: Xi i 2 1; ::; n; X = 0
Aggregation Step Size: f (default: f = 2)

Number of Aggregation Steps: l (default: l = 10)
Maximum Allowable Relative Error

in Forming � Estimate: � (default: � = 0.10)

Algorithm

1. For d 2 1; :::; l [Form Aggregated Datasets]

(a) Let m = fd

(b) Form X(m): X
(m)
j =

Pjm
i=(j�1)m+1Xi

2. For d 2 0; :::; l [Form Log Complementary Distributions]

(a) Let m = fd

(b) Let U (m) be the unique elements in X(m), in increasing order

(c) Let um = the number of elements in U (m)

(d) For i 2 1; :::; um

i. P
(m)
i = log(P [X(m) > U

(m)
i ])

ii. L
(m)
i = log(U

(m)
i )

3. Let c = 0

4. For d 2 0; :::; (l � 1) [Collect trial �s]

(a) Let m = fd

(b) For i = 1; :::; um

i. If P
(m)
i > log(1=10) goto next i [Only consider the 10% tails]

ii. At point (L
(m)
i ; P

(m)
i ), measure � and � [see Figure 3]

iii. Let Ac = log(f)=� [trial �]

iv. Let Ec = j� � log(f)j= log(f) [relative error of log(f)]

v. Increment c

5. Let I = fijEi < �g [Form �̂]

(a) If jIj = 0
return fail

else

return �̂ =

P
i2I

Ai

jIj

Figure 4: Algorithm for � estimation.
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Figure 5: Power-Law shape region of tail for Pareto dataset.

Consider a Symmetric �-Stable distribution with � = 1:8 (See Figure 6(a)). The points in the
tail of the distribution for which j� � ln f j= ln f < � with � = 0:10 are again highlighted. Observe
that the vast majority of them do not lie in the far tail of the distribution. As it is well-known,
a Stable distribution with an � close to 2 exhibits power-law shape only in the tail extremes.
Nevertheless, the resulting estimate �̂ = 1:793 is quite good. If we increase � to 0.90 many more
points are included in the estimation (See Figure 6(b)). Because the scaling relation (2) holds
precisely for such a distribution, the estimate improves slightly and becomes �̂ = 1:801. Too large
a value of � would worsen the estimate because points where the empirical distribution functions
behave erratically would also be included. As a rule it is best to use the default 10% value.

The Normal distribution case (see Figure 7) displays a highlighting pattern similar to that of
the Stable distribution with large � (Figure 6(a)), but with no highlighting in the extreme tails.
When faced with a highlighting of the type of Figure 7, it is best in practice to conclude that there
are no heavy tails. If � is less but close to two and one notices highlighting in the extreme tails
(as in Figure 6) one may suspect a Stable distribution. To con�rm this, it is best to follow up with
a parametric test (one that assumes that the distribution is exactly Stable) and then compare the
respective estimates of �.

Finally, we show an example where the estimator highlights many points where j�� ln f j= ln f <
0:10, although the underlying distribution is not strictly heavy-tailed. Figure 8 shows the behavior
of the estimator on a dataset of 100,000 samples drawn from a Lognormal distribution, in which
lnX is normally distributed with � = 0 and � = 2. In this case the tails of the dataset are so heavy
that it appears to exhibit power-law shape over a large portion of the tail.

2.7 Using the Program

The scaling method has been implemented by the authors as a program written in C for use on
Unix systems and called aest.1 In this section we describe some details of the program's use.

An example invocation of the program might be:

1Source code for the program can be obtained from http://www.cs.bu.edu/faculty/crovella/aest.html.
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Figure 6: Scaling region of Symmetric-�-Stable; (a) � = 0:10; (b) � = 0:90.
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Figure 7: Scaling region for Normal dataset.
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Figure 8: Power-Law region of tail for Lognormal dataset.

aest -f datafile -n 5000 -a 2 -l 10

This command means: run the estimator on the dataset contained in datafile, which contains
5000 points; use an aggregation factor f = 2, and aggregate over l = 10 levels. The result of
running this command is output like:

Estimate: 1.068391

Subtracted mean: 8.107132

which reports the resulting � estimate and the empirical mean that was subtracted from all data
points in the �rst step.

It is important to inspect the range of the distributional tail over which the scaling method
appears to detect power-law behavior. For this reason the program outputs data suitable for direct
plotting using the gnuplot plotting package. Invoking the program with the -w option will output
�les necessary to create all of the CD plots used by the program; adding the -g option will also
show those points that met the relative error criterion and were used in forming the estimate. Since
the data needed to create these plots can be large (larger in size than the original input dataset)
the program accepts the -s option which will subsample the CD plots, yielding the same shape
on visual inspection but eliminating redundantly plotted points. Thus, to form �gures like those
shown in this paper, a typical command would be:

aest -f datafile -n 5000 -a 2 -l 10 -w -g -s

This command will generate a set of �les; each �le consists of the x,y pairs for a single CD plot.
There is also one �le that contains x,y pairs for all of the points used in forming the � estimate
(dark points in Figure 8). These �les are referenced in the generated �le datafile.aest.gp which
includes commands for the plotting program gnuplot. For example, in order to view a �gure like
Figure 8 on the screen the user can simply run gnuplot and execute the command:

load "datafile.aest.gp"
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To aid further exploration, the program can output the average of the trial �̂ values at each
level of aggregation. The program can be also compiled in a form suitable for dynamic loading into
the Splus statistical analysis package. This allows it to be used in conjunction with the other data
analysis methods present in Splus.

3 Empirical Evaluation

This section presents the results of applying the algorithm shown in Figure 4 to a variety of synthetic
datasets.

Table 1 shows a summary of the results of applying the algorithm to datasets drawn from a
variety of heavy-tailed distributions: the Pareto distribution (de�ned in Section 2.2) with k = 1
and � = 0.7, 0.9, 1.1, 1.5, and 1.8; and the symmetric �-Stable distribution with median zero, and
� = 0.7, 0.9, 1.1, 1.5, and 1.8 (obtained using the rstab() function in Splus).

The estimator was applied to datasets of length 1,000, 10,000, and 100,000. In each case the
estimator was applied to 250 di�erent datasets. The table shows under \% Estimates" the percent
of times in each case that the estimator returned an estimate, and for those cases in which it did
so, it shows the sample mean and sample standard deviation of the � estimates returned.

The table shows a distinction between stable and non-stable distributions. For stable distribu-
tions the estimator is fairly accurate over a wide range of � values and sample sizes. However, for
the non-stable Pareto distributions, there are two trends: the accuracy of the estimator increases
as datasets grow larger, and the accuracy of the estimator increases as � grows smaller. For the
Pareto datasets, it appears that when � is small (close to or below 1), the estimator is usually
fairly accurate except when datasets are quite small. As � approaches 2, the estimator shows some
downward bias.

Table 2 shows the performance of the estimator when applied to datasets drawn from a variety
of non-heavy-tailed distributions. Again, each row corresponds to the results of 250 trials, and the
\% Estimates" column counts the percent of times the estimator returned a value.

The �rst two sections of Table 2 show the estimator's performance on Normal distributions with
unit variance and the exponential distribution with CDF P [X � x] = 1 � e��x for � = 1. This
shows that �nite-variance distributions, which tend to Normal when aggregated, can show scaling
behavior with � close to 2.

The next two sections of Table 2 shows the estimator's performance on the Lognormal distri-
bution:

X = e�Z

where Z � N(�; �). For these distributions � (the mean of lnX) was 0 and � (the standard
deviation of lnX) was either 1 or 2. Note that when � = 2 the estimator cannot distinguish the
asymptotically Normal scaling taking place from heavy-tailed scaling.

The �nal section of Table 2 shows the estimator's performance on the Weibull distribution with
CDF P [X � x] = 1� exp(�(x=a))b. In these tests a = 1 and b = e�1.

The performance of the estimator on Pareto datasets is summarized in Figure 9. In these �gures,
the distribution of di�erences between the estimated value of � and the true value of � is plotted
using boxplots. In these boxplots, the central line shows the median value; the surrounding box
shows the limits of the middle half of the data; and the whiskers show the full data range.

The �gure shows that for large datasets drawn from Pareto distributions with small values of
�, the estimator is usually accurate. For example, in the �= 0.7 case, the estimator always returns
a value within 0.05 of the true value more than 50% of the time, as indicated by the range of the

13



Distribution � Samples % Estimates ��̂ ��̂

Pareto 0.7 100,000 100 0.711 0.059
Pareto 0.7 10,000 98.8 0.765 0.157
Pareto 0.7 1,000 92 0.820 0.287

Pareto 0.9 100,000 100 0.911 0.052
Pareto 0.9 10,000 100 0.960 0.109
Pareto 0.9 1,000 94.8 1.014 0.251

Pareto 1.1 100,000 100 1.086 0.041
Pareto 1.1 10,000 100 1.121 0.112
Pareto 1.1 1,000 98.4 1.153 0.253

Pareto 1.5 100,000 100 1.380 0.037
Pareto 1.5 10,000 100 1.398 0.107
Pareto 1.5 1,000 100 1.344 0.212

Pareto 1.8 100,000 100 1.560 0.039
Pareto 1.8 10,000 100 1.561 0.102
Pareto 1.8 1,000 100 1.510 0.252

Symm-�-stable 0.7 100,000 99.2 0.761 0.136
Symm-�-stable 0.7 10,000 94.7 0.839 0.247
Symm-�-stable 0.7 1,000 82.9 0.860 0.352

Symm-�-stable 0.9 100,000 100 0.878 0.217
Symm-�-stable 0.9 10,000 98.4 0.959 0.150
Symm-�-stable 0.9 1,000 100 0.878 0.217

Symm-�-stable 1.1 100,000 100 0.954 0.361
Symm-�-stable 1.1 10,000 100 1.141 0.101
Symm-�-stable 1.1 1,000 96.8 1.225 0.292

Symm-�-stable 1.5 100,000 100 1.506 0.018
Symm-�-stable 1.5 10,000 100 1.524 0.055
Symm-�-stable 1.5 1,000 98.4 1.583 0.232

Symm-�-stable 1.8 100,000 100 1.804 0.026
Symm-�-stable 1.8 10,000 100 1.809 0.072
Symm-�-stable 1.8 1,000 99.2 1.863 0.233

Table 1: Summary of Performance of �-estimator on heavy-tailed distributions (250 trials each
case).
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Distribution Samples % Estimates ��̂ ��̂

Normal � = 1 100,000 100 1.998 0.023
Normal � = 1 10,000 100 1.995 0.076
Normal � = 1 1,000 98.8 2.009 0.262

Exponential � = 1 100,000 100 2.328 0.061
Exponential � = 1 10,000 100 2.330 0.171
Exponential � = 1 1,000 99.2 2.214 0.314

Lognormal � = 1 100,000 100 2.078 0.048
Lognormal � = 1 10,000 100 2.026 0.130
Lognormal � = 1 1,000 99.2 1.876 0.273

Lognormal � = 2 100,000 100 1.384 0.031
Lognormal � = 2 10,000 100 1.381 0.092
Lognormal � = 2 1,000 99.6 1.336 0.220

Weibull b = e�1 100,000 100 2.097 0.054
Weibull b = e�1 10,000 100 2.023 0.128
Weibull b = e�1 1,000 100 1.785 0.267

Table 2: Summary of Performance of �-estimator on non-heavy-tailed distributions (250 trials each
case).

box. As � increases for large datasets, the estimator's variance decreases slightly, but it begins to
show signi�cant bias for � � 1:5.

Figure 10 shows the corresponding results obtained when applying the estimator to datasets
drawn from Symmetric �-Stable distributions. This �gure shows that the estimator has better
performance on Stable distributions than on Pareto, which is to be expected. The �gure shows
that when the underlying dataset is drawn from a Stable distribution, the performance of the
estimator is relatively una�ected by the particular values of �, except for a slight decrease in
variance as � grows. In general, for datasets of size 100,000, the estimator nearly always returns a
value within 0.1 of the true value, regardless of the particular value of �.

An important feature of the estimator evident from Figures 10, 9, and Table 1 is that both bias
and variance decrease with increasing sample size. This feature makes it especially attractive for
use on datasets taken from computing and telecommunications systems, where large sample sizes
are common.

We also compare the e�ectiveness of scaling estimator to that of a commonly used alternative:
the Hill estimator (as de�ned in Section 1). Using the Hill estimator requires the speci�cation of
k; the Hill estimator uses the k largest values in the dataset in forming its estimate. We consider
three possible settings of k: either 0.01, 0.05, or 0.1 times the number of data points in the sample.
These values correspond to applying the Hill estimator to the upper 1%, 5%, or 10% tail of the
dataset.

In Figure 11 we show the performance of the Hill estimator side by side with that of the scaling
estimator. The values for the scaling estimator are the same as shown in Figures 9 and 10 and are
repeated for reference. In these plots the results for the scaling estimator are denoted by \S", and
results for the Hill estimator using 1%, 5%, or 10% of the upper tail are denoted by \H1," \H5,"
and \H10" respectively.

The plots on the left side of the �gure compare the two estimators for Pareto datasets. These
plots show that the variance of the scaling estimator is larger than any version of the Hill estimator,
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Figure 9: Distribution of �̂� � for Pareto datasets.

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

100K 10K 1K  100K 10K 1K  100K 10K 1K  100K 10K 1K  100K 10K 1K

Stable 0.7              Stable 0.9               Stable 1.1              Stable 1.5               Stable 1.8

Figure 10: Distribution of �̂� � for �-Stable datasets.
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and that the scaling estimator exhibits some bias for large � that the Hill estimator does not show.
These results are not surprising; since the Pareto distribution has the same power-law shape over
its entire range, the Hill estimator yields a consistent value for nearly any choice of k. For such
distributions, identifying the � value of the tail is not di�cult in general.

The plots on the right side of the �gure compare the two estimators for �-Stable distributions;
these plots show di�erent results. They show that the Hill estimator, for any of the �xed k values
used, becomes quite inaccurate for distributions with large � values. In contrast, the scaling esti-
mator remains accurate for large �. This e�ect occurs because the body of the �-Stable distribution
does not have a power-law shape, and the Hill estimator's output becomes in
uenced by the shape
of the distributional body.

4 Examples

To give an example of the utility of the scaling estimator in practice, we show its use on two di�erent
datasets.

First, we return to the example dataset introduced in Section 1. This dataset consists of the
sizes of 130,140 �les transferred over the World Wide Web. The CD, Hill, and scaling plots for this
dataset are shown in Figure 12 (the CD plot shown is the same as Figure 1; it is repeated here for
reference).

As noted in Section 1, estimating � from the CD plot is complicated by the need to select the
proper x0. Furthermore, the �gure shows that the Hill estimator shows variability over the range
1.0 to 1.3; it does not consistently settle at any particular value. The scaling estimator gives an
estimate �̂ = 1:08, and shows that scaling behavior is clearly present in approximately the 1%
upper tail.

A contrasting example is shown in Figure 13. This dataset is a record of about 4 weeks of
data transfer activity of the Unitree Mass Storage System at NASA Goddard Space Flight Center,
Greenbelt, MD. This system stores datasets used and generated by large-scale scienti�c computa-
tions. Each data point is the size of one retrieval or storage of an entire �le. Normal tra�c was
about 5,000 transfers a day; this dataset contains 148,852 data points. The CD, Hill, and scaling
plots for this dataset are shown in Figure 13.

Figure 13 shows that for this dataset, there is little evidence of heavy-tailed behavior. The
CD plot shows that the upper tail appears linear, but the slope method yields �̂ = 2:79 | which
indicates a �nite variance condition. The results from the Hill estimator are consistent with a �nite
variance conclusion; its estimates are very erratic, generally in the neighborhood of 2.0. The scaling
estimator returns a value of �̂ = 1:4 and shows that the only signi�cant scaling is taking place in
a region far from the extreme tail. We can, moreover, exclude the possibility that we are dealing
with a Stable distribution with � = 1:4. Such a distribution with 148,852 points would yield a very
di�erent type of scaling plot, as shown in Figure 14.

5 Conclusion

In this paper we have described a new method for addressing a problem that arises in characterizing
empirical datasets: forming an estimate of the heavy tail index �. It has the advantage of being
nonparametric, i.e., it is not necessary to specify the form of the underlying distribution. Since the
method relies on the scaling of sums, it measures a property that is often one of the most important
e�ects of heavy-tailed behavior. Most importantly, the method increases in accuracy as the size
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Figure 12: CD, Hill, and Scaling Plots for Web �les transferred over network.

19



-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6 7 8 9 10

lo
g1

0P
[X

 >
 x

]

log10(File Size)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2000 4000 6000 8000 10000 12000 14000 16000

A
lp

ha
 E

st
im

at
e

kth Order Statistic

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

6 7 8 9 10 11

L
og

10
(P

[(
X

 -
 m

ea
n(

X
))

 >
 x

])

Log10(x)

Figure 13: Slope, Hill, and Scaling plots for Unitree Transfers.
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Figure 14: Scaling plots for Symmetric � Stable with �= 1.4.

of the dataset grows, meaning that it is particularly suited for large datasets, as are increasingly
encountered in measurements of telecommunications and computing systems.

This paper presents a general method for estimating � based on scaling properties of a dataset.
In addition we have described and evaluated a particular algorithm that uses this method in prac-
tice. However, we have not attempted to show that the algorithm we use is the best possible
embodiment of the use of the scaling method for � estimation. A theoretical study of the variance
and bias of our algorithm, and of the scaling method in general, is still required.

Clearly, parametric methods can be more accurate than the scaling estimator, which is to be
expected since they use more information about the dataset. For example, if it is known that
the underlying distribution is �-Stable, one could use � estimation methods based on dataset
percentiles; likewise if it is known that the underlying distribution is Pareto, one could use the
slope of the tail on a log-log plot. In contrast, the scaling method, being nonparametric, has the
advantage of working for any heavy-tailed distribution.

Because this method assumes that observations are independent, its accuracy is a�ected by any
correlations that may exist among the Xi's. For this reason we suggest that the estimator should
be applied a number of times to di�erent random permutations of the dataset, in an attempt to
disrupt any correlation structure present.

The estimator is available as C source code from the authors.2 It can produce graphical output
as an aid to interpretation. It also can be compiled in a form suitable for dynamic loading into the
Splus statistical analysis package.
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