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Abstract

Abstract Multidimensional scaling (MDS) is a technique used to produce two- or three-dimensional visualizations
of similarities within datasets consisting of multidimensional points or point distances. Metric MDS can also be
applied to the problems of graph embedding for approximate encoding of edge or path costs using node coordinates
in metric space. Thus, MDS can be used both as a visualization tool and as a data embedding algorithm.
Recent works have noted that for certain datasets, hyperbolic target space may provide a better fit than the tradi-
tionally used Euclidean space. In this paper we present several numerical examples of low-stress embedding of
synthetic and real-world datasets in the hyperbolic plane. We demonstrate that the hyperbolic plane often but not
always accomodates a better fit for the embedded data compared to the Euclidean plane. Therefore, we conclude
that the suitability of the hyperbolic space for low-stress data embedding cannot be attributed solely to the properties
of the hyperbolic space, but also to the conformity of datasets produced by natural interaction with the structure of
the hyperbolic space. The embeddings we present are produced with PD-MDS, a metric MDS algorithm designed
specifically for the Poincaré disk (PD) model of the hyperbolic plane.

Keywords Dimensionality reduction, hyperbolic embedding, hyperbolic multidimensional scaling, network graph,
steepest descent, visualization, Poincaré disk, approximate line search

1 INTRODUCTION

When points are given by coordinates in a metric space of some dimension, it is trivial to calculate the distance between
any two of those points using the distance function of the space. The inverse problem is often times of interest as well:
Knowing the distances for all or some pairs of points, choose a metric space of suitable dimensionality and find in it
point coordinates such that the distances for pairs in the space are as close as possible to the corresponding known
distances. Problems of this type are dealt with by a class of algorithms known as metric multidimensional scaling
(MDS) [1, 2].

In the setting of metric multidimensional scaling, the given input distances are termed dissimilarities, and for a
chosen target metric space of some dimensionality, the set of output coordinates, termed the output point configu-
ration, is calculated by the algorithm. The distances induced by the output configuration ought to match the input
distances as close as possible. To arrive at an optimal configuration, MDS usually calls for a numerical iterative
optimization procedure. A suitably chosen badness-of-fit (or stress) measure serves as an objective function of the
minimization. Ideally, the final output configuration is a point of global minimum of the objective function. The
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badness-of-fit ought to be as small as possible, and is ideally zero – when the output configuration coordinates match
the input pairwise distances.

When the input to MDS represents weights of edges of a given graph, MDS can be viewed as a graph embedding
algorithm, producing coordinates for the graph vertices which encode ideally or approximately the edge weights of
the given graph. Additionally, when the target space is 2- or 3-dimensional, e.g. the Euclidean plane or space, the
output configuration or graph embedding can also be visualized to graphically represent possible clusters of similarity
in the input data.

Traditionally, MDS uses Euclidean space as target. A generalization of MDS to curved surfaces can be viewed as
MDS restricted to a subspace in Euclidean space [3]. MDS on constant-curvature Riemannian spaces was studied in
[4], using the hyperboloid model. The suitability of the hyperbolic plane for practical data and graph embedding was
investigated for the tasks of network embedding for path cost estimation [5] and routing [6, 7, 8, 9, 10, 11]. These
works indicate that the hyperbolic space accommodates embeddings with a better fit than the Euclidean space of the
same dimensionality.

In this paper we seek to demonstrate that 2-dimensional hyperbolic space i.e. the hyperbolic plane can be used to
embed naturally generated graphs using MDS and obtain configurations which encode the input data with a smaller
loss (stress) compared to the MDS in the Euclidean plane. The target model for this purpose is chosen to be the
Poincaré disk (PD) model of the hyperbolic plane and the PD-MDS algorithm [12] is used to carry out the numerical
experiments. This target space, being a model of the hyperbolic plane, is 2-dimensional. However, unlike its Euclidean
counterpart, the hyperbolic plane has the known property of ’exponential’ expansion of available space as one moves
toward infinity, thus allowing for a better fit of the input data. We also discuss the insights that naturally generated
graph data are intrinsically suited to low-stress embeddings in hyperbolic space. To help clarify these insights further,
we present a well-rounded set of numerical results for synthetically generated graph data, and compare the results.

The rest of the presentation is organized as follows. Section 2 discusses the existing works on low-stress graph
embedding in Riemannian manifolds of constant curvature. Section 3 briefly reviews notions from hyperbolic geom-
etry and Riemannian constant curvature manifolds, and subsequently explains PD-MDS, the embedding method used
in this paper to obtain low-stress graph embeddings in the Poincaré disk model of the hyperbolic plane. Section 4
presents numerical examples and results pertaining to multidimensional scaling of synthetic Euclidean, spherical, and
hyperbolic graphs in the PD model. Section 5 presents and discusses the results of the embedding of real-world graphs
in the PD. Concluding remarks are given in Section 6.

2 RELATED WORK

The advantages of using the hyperbolic instead of the Euclidean plane for data embedding, along with the applicability
of various numerical optimization methods, were initially investigated in several works.

The applicability of metric multidimensional scaling to mapping of synthetic and real data in the Poincaré disk
model of the hyperbolic plane was studied by [13]. The use of MDS in [13] inherently generalized the applicability
of the method from tree structures to continuous-valued multidimensional data or pair distances. It was noted that the
“exponential growth of the available space” in the hyperbolic models as one moves towards infinity, makes planar hy-
perbolic embedding a suitable choice for both hierarchical and high-dimensional data. However, a concrete statement
of the used algorithm was not provided.

[5] studied hyperbolic embeddings of the Internet graph for distance estimation and overlay construction. [5]
tried to argue that models of the hyperbolic space with circular symmetry may be better suited than Euclidean spaces
for embedding network graphs with core-and-tendrils structure. Their work concentrated on applications specific to
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communication networks where dissimilarities for each pair of points are derived from the lengths of the shortest
paths in the graph. For such applications, the authors’ insight about the choice of the Poincaré disk model was that
the shortest paths in the studied networks often pass through the core and are therefore longer than the straight-line
distance, and this observation empirically matches the behavior of distance function in the chosen model. In order to
avoid the constrained nature of the coordinates in the PD, the authors eventually resorted to the hyperboloid model of
the hyperbolic plane, omitting the details.

The “big-bang simulation” (BBS) numerical method used in [5], is discussed in [14]. BBS is a variant of a steepest
descent method that models the point configuration as an inertial system in a force-generating field. Termination is
guaranteed by introducing empirical dampening in the mechanical system. The initial configuration in BBS is always
chosen to be a single point in which all particles are collocated, ensuring a fair initial amount of potential energy.
Another heuristic feature of BBS is that the objective function changes several times during the minimization in
a way that increases the error sensitivity of the penalty terms. The particle inertia in BBS in conjunction with a
stepwise changing objective function possibly allows the method to escape a few local minima before termination.
However, the advantages of these heuristics in avoiding local minima, compared to a computationally simpler, single
phase minimization procedure, were not clearly demonstrated. It is conceivable that the inertial minimum-avoiding
mechanism, which comes at an increased computational cost, may as well cause the configuration to leave the global
minimum, or a lower local minimum before stopping in a higher one. Finally, since BBS can only be started from one
possible initial configuration, it has a deterministic outcome once the heuristic parameters such as friction and time
slice are chosen; with this choice, the possibility that the final result is improved by restarting from different initial
conditions, is eliminated.

An interesting account of the connections between hyperbolic geometry and the topology of complex networks
is given in [15]. It is argued that complex networks are underpinned by naturally arising hierarchies which can be
approximated by tree-like structures. The metric properties, of these hierarchies then, allow for successful embedding
into hyperbolic spaces. Examples studied in [15] to support these assumptions include social networks, citation net-
works, biology networks and the evolution of the Internet AS graph. These findings are in accord with the observations
we make in Sections 4 and 5 of this paper.

3 PD-MDS: MULTIDIMENSIONAL SCALING IN THE POINCARÉ DISK

To embed graph data in hyperbolic space, in this work we use the Poincaré disk (PD) model of the hyperbolic plane
as target and apply the PD-MDS algorithm [12] to the input.

The Poincaré disk (PD) model is suitable for our considerations because it is a planar model with circular symmetry
having a closed form distance formula [16]. The distance dD (z j,zk) between two points j and k in PD is given by

dD (z j,zk) = 2atanh

∣∣z j− zk
∣∣∣∣1− z jzk
∣∣ , (1)

where z j and zk are the complex coordinates of the points in the PD

D= {z ∈ C | |z|< 1} ,

and () is the complex conjugate.
The points on the disk D with |z|= 1 make the boundary at infinity (or the horizon) for this model. These points

are termed ideal points.
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Figure 1: Geodesics (hyperbolic lines) the Poincaré disk and steepest descent direction

In the Poincaré disk model, the paths that realize the hyperbolic distance (1), that is, the hyperbolic lines (or
geodesics) appear as arcs of Euclidean circles in D that are orthogonal to the horizon at their ideal points (See Fig. 1).

PD-MDS iteratively moves a chosen initial point configuration so as to minimize a badness-of-fit measure. For-
mally, the algorithm consists of a descent method suited to the Poincaré-disk model and an approximate, binary
hyperbolic line search, that together make a simple and computationally efficient minimization method for this model
of the hyperbolic plane.

The badness-of-fit (i.e. stress or embedding error) measure to be minimized by PD-MDS is a least-squares function
proposed by [17]. The Sammon stress represents a normalized sum of the squared differences between the original
dissimilarities δ jk and the embedded distances of the current point configuration d jk. In this work we use the least
squares error function of the type

E = c
n

∑
j=1

n

∑
k= j+1

c jk
(
d jk−aδ jk

)2
. (2)

Eq. (2) [12] is a general form from which several special embedding error functions can be obtained by substituting
appropriate values of the constants c, c jk, and a. Examples include :

• Absolute Differences Squared (ADS)

E =
n

∑
j=1

n

∑
k= j+1

w jk
(
I jk
(
d jk−aδ jk

))2 (3)

• Relative Differences Squared (RDS)

E =
n

∑
j=1

n

∑
k= j+1

w jk

(
I jk

d jk−aδ jk

aδ jk

)2

(4)

• Sammon stress Criterion (SAM)

E =
1

a
n

∑
j=1

n

∑
k= j+1

I jkδ jk

·
n

∑
j=1

n

∑
k= j+1

w jk

(
I jk
(
d jk−aδ jk

))2

aδ jk
(5)
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where w jk are individual weights that can be assigned to the input dissimilarities in the most general case, and I jk are
indicators to allow for missing dissimilarities in the input.

The objective function can optionally be normalized per pair by dividing with the number of summands
(
n2−n

)
/2.

Ideally, the objective function should be chosen to be scale-invariant in the sense that scaling the input dissimilar-
ities and the coordinates of the point configuration with some constant a does not change the embedding error. This is
possible for Euclidean space since the Euclidean distance function scales as the point coordinates:√

∑
s
(a · y js−a · yks)2 = a ·d jk.

In the Euclidean case, (4) and (5) are scale-invariant, but (3) is not. In the hyperbolic case (i.e. when d jk is the
hyperbolic distance function (1)), none of the (3)–(5) are scale-invariant. Therefore, the simplest ADS error function
(3) may be a preferable choice for reducing the computational cost in the hyperbolic case. Nevertheless, for our
numerical experiments we choose to apply the Sammon criterion (5) so as to facilitate numerical comparison between
the final embedding errors for the Sammon map in the Euclidean plane and PD-MDS.

The lack of scale-invariance of the hyperbolic distance formula (1) implies an additional degree of freedom in the
optimization of the embedding error – the dissimilarity scaling factor. In Eqs. (2)–(5) this extra degree of freedom
is captured via the parameter a that scales the original entries of the dissimilarity matrix. The dependency of the
embedding error of PD-MDS on the dissimilarity scaling factor a varies with the type of input data and is investigated
in more detail in Section 4.

Following the specification of PD-MDS described in details in [12], we successfully implemented PD-MDS with
the error function (5). In the following sections we show illustrative results of our experimental study using PD-MDS
on synthetic as well as real-world data. Some of the methods we used to verify the correctness of our specification are
also discussed below.

4 EMBEDDING OF SYNTHETIC GRAPHS

To investigate the dependency of the embedding error on the dissimilarity scaling factor a, we used as input the inter-
point distances obtained from random sets of points residing on surfaces of constant positive, zero or negative curvature
(i.e. respectively a sphere, a Euclidean plane and the Poincaré disk model of the hyperbolic plane.) The corresponding
distances (spherical, Euclidean and hyperbolic) for all pairs were used as dissimilarities in this experiment. The
embedding error function was the Sammon criterion (5). We also used noisy inputs obtained by replacing each
original dissimilarity δ jk with a value chosen uniformly at random from the interval

[
(1− em)δ jk, (1+ em)δ jk

]
for a

chosen noise level em < 1.
Fig. 2 shows the typical effects of dissimilarity scaling for several Euclidean, spherical, and hyperbolic graphs.

Cases (a), (c), and (e) illustrate the variation of the embedding error for noiseless input data, with the number of points
as a parameter (20 and 60 points.) Cases (b), (d), and (f) illustrate the variation of the embedding error for noisy input
data and are parametrized by the amount of measurement noise (em = 0,10,20,30%.)

Each point in the diagrams (a)–(f) was obtained as a minimum Sammon stress in a series of 70 replicates of PD-
MDS for different randomly chosen initial configuration in the PD. The smoothness of the obtained curves demon-
strates that for the chosen problems, this number of replicates was enough to approach the global minimum achievable
embedding error for each simulated value of a. The results are drawn on semilogarithmic axes in order to show more
details toward small a values.

Locally, the Poincaré disk model, distance-wise “looks like” the Euclidean plane scaled with some constant factor.
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For example, in the vicinity of a point z0, the hyperbolic distance formula (1) becomes

dD (z j,zk)≈
∣∣z j− zk

∣∣ ·2/(1−|z0|2).

Therefore, for a sufficiently small scaling factor a and sufficiently many replicates, metric MDS implementations for
the PD model and for the Euclidean plane using the same scale-invariant (for Euclidean distances) error function,
should return approximately equal embedding errors for the final configurations. (A sufficiently small value of a is
one that would make the final configuration land in a sufficiently small neighborhood of a point in the PD.)

In this sense, PD-MDS is a generalization of an Euclidean MDS algorithm. We used these observations to verify
that our PD-MDS implementation returned the expected error values for small scaling factors. Indeed, as Fig. 2
shows, for small a values, the Euclidean graphs were embeddable with no error, and the other two graph types had
stress that numerically matched the output of other available Euclidean MDS implementations using the Sammon
stress criterion.

In the cases (e) and (f), the original configurations are residing on a hyperbolic plane, and therefore are embed-
dable with zero stress in the PD model for some value of a (a = 1 in this synthetic example). For this value, our
implementation of PD-MDS was able to find the original configuration up to hyperbolic-distance preserving Möbius
transformations.

The diagrams (b), (d), and (f) (Fig. 2) also demonstrate that relatively high noise levels in the measured data do
not significantly change the suitability for embedding in the PD in the cases when the original dissimilarity matrix has
a natural underlying 2-dimensional space.

5 EMBEDDING OF REAL-WORLD GRAPHS IN THE HYPERBOLIC PLANE

To further demonstrate the ability of the Poincaré disk to accommodate lower stress 2-dimensional embeddings than
classical Euclidean MDS for certain graph types, we applied PD-MDS to dissimilarity matrices obtained from several
real-world datasets.

In this section we summarize the results.

5.1 The Iris Dataset

As a first experiment with real-world data, we apply PD-MDS to the Iris dataset [18]. This classical dataset con-
sists of 150 4-dimensional points from which we extract the Euclidean inter-point distances and used them as input
dissimilarities. The embedding error as a function of the scaling factor a is shown in Fig. 3. Each value in the di-
agram is obtained as a minimum embedding error in a series of 100 replicates starting from randomly chosen initial
configurations.

Minimal embedding error overall is achieved for a ≈ 4. The improvement with respect to the 2-dimensional
Euclidean case is 10%. The Iris dataset is an example of dimensionality reduction of an original higher-dimensional
dataset that can be done more successfully using the hyperbolic plane than the Euclidean plane.

5.2 Political Books

An interesting network was presented by [19], who assembled a connectivity graph of political books frequently
bought together during an election campaign.

In the graph version we used, there were 105 nodes representing books and a total of 441 undirected, unweighted
links between books that were frequently bought together. We obtained dissimilarities by assigning self-dissimilarity
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Figure 2: The charts show the embedding error when spherical, Euclidean, and hyperbolic graphs are embedded in
the Poincaré disk using PD-MDS with a varying scaling factor a. Figures (a), (c), and (e) show the error for noiseless
input data with the number of nodes in the graph as a parameter. Figures (b), (d), and (f) show the embedding error
for noisy input data for various amounts of measurement noise.
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Figure 3: The effect of scaling of the dissimilarities on the embedding error for the Iris Dataset [18]. The input
dissimilarities are the Euclidean distances between pairs of original points. This PD-MDS result reveals that the Iris
dataset is better suited for embedding to the hyperbolic plane that to the Euclidean plane.

of 0, dissimilarity of 1 for co-purchased books and a missing (unknown) dissimilarity for the remaining pairs and
applied PD-MDS to the resulting dissimilarity matrix. We also conducted the experiment using only the liberal and
the conservative subgraphs (43 and 49 points respectively).

The obtained minimum embedding error of 150 replicates as a function of the scaling factor a is shown in Fig.
4. We note that there were remarkable gains of using the PD model instead of the Euclidean plane. For the overall
graph, the minimal stress was 7.6 times smaller than the Euclidean stress. The liberal and conservative components
alone achieved improvement of 8.8 and 9 times with respect to the Euclidean case.

5.3 A Citation Network

The citation network that we used in this experiment was compiled by [20] from bibliographies of review articles on
networking. We extracted the largest connected component from the graph which consisted of 379 nodes representing
authors. There were 244 edges in the graph with weights s jk representing the strength of the collaborative ties. We
have calculated dissimilarities from these data using δ jk = const− s jk and applied the PD-MDS algorithm.

The obtained minimum embedding error of 50 replicates as a function of the scaling factor a is shown in Fig. 5.
The overall minimum embedding error was 2.63 times lower than the stress obtained using Euclidean MDS.

6 CONCLUSION

In this paper we presented several numerical examples of low-stress embedding of synthetic and real-world datasets in
the hyperbolic plane. The embeddings we presented were produced with PD-MDS, a metric MDS algorithm designed
specifically for the Poincaré disk (PD) model of the hyperbolic plane. The quality of the embedding was measured
using least squares error functions.

The existence of graphs with a hyperbolic “underlying structure” that are embeddable with notably lower stress
in 2-dimensional hyperbolic than in 2-dimensional Euclidean space was demonstrated in Section 4. It is an important
illustration of the usefulness of MDS in the Poincaré disk. Candidate graphs having such hyperbolic-like structure are
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Figure 4: The embedding error as a function of the input scaling factor for the network of political books [19]. The
input dissimilarities are simply indicators of the presence or absence of links between the network nodes. The political
books network is an example of unweighted, undirected real-world graph data that can be embedded with lower error
in the PD model than in the Euclidean plane.
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Figure 5: The embedding error as a function of the input scaling factor for the network of citations [20]. The network
is an example of weighted graph data that can be encoded with lower embedding error in the PD model than in the
Euclidean plane. The input dissimilarities are capturing the strength of the collaboration between pairs of authors.
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real-world communication or social networks that tend to have a strongly interconnected core and a sparser periphery
of tendrils. PD-MDS can be used in such contexts to investigate the “hyperbolicity” of the input data and arrive at
lower stress dissimilarity embedding.

We demonstrated that the hyperbolic plane often but not always accomodates a better fit for the embedded data
than the Euclidean plane. We noted that for naturally arising networks, in our experiments, the hyperbolic plane was
always able to provide for a better fit of the input data compared to its Euclidean counterpart. We conclude that the
suitability of the hyperbolic space for low-stress data embedding cannot be attributed solely to the properties (i.e. the
less-restricted axiomatic foundation) of the hyperbolic space, but also to the conformity of datasets to the structure of
the hyperbolic space. As noted in this and other works, this conformity is, as a rule, observed in networks arising from
natural interaction of a number of independent entities.
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