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Abstract. We present a real-world deployment of secure multiparty
computation to predict political preference from private web browsing
data. To estimate aggregate preferences for the 2024 U.S. presidential
election candidates, we collect and analyze secret-shared data from nearly
8000 users from August 2024 through February 2025, with over 2000
daily active users sustained throughout the bulk of the survey. The use
of MPC allows us to compute over sensitive web browsing data that
users would otherwise be more hesitant to provide. We collect data us-
ing a custom-built Chrome browser extension and perform our analysis
using the CrypTen MPC library. To our knowledge, we provide the first
implementation under MPC of a model for the learning from label pro-
portions (LLP) problem in machine learning, which allows us to train on
unlabeled web browsing data using publicly available polling and election
results as the ground truth.

1 Introduction

Secure multi-party computation (MPC) is a cryptographic protocol that al-
lows several people to contribute their data toward a collective data analysis
without ever exposing their personal data to any other party. MPC has been
a topic of research for decades [10,29, 62, 71], and through a variety of algo-
rithmic improvements and software implementations (e.g., [13,39,47,51,63]), it
has seen deployments over the past decade in the commercial and public sectors
(e.g., [1,6,11,14,24,44 58]). Recently, there has been a focus on specialized MPC
algorithms for machine learning operations like gradient descent and logistic re-
gression (e.g., [4,28,49,50,52]) with corresponding software implementations like
CrypTen [40].

In this work, we develop and deploy privacy-preserving machine learning in
a real-world application based on political science: namely, the estimation of po-
litical preferences in the United States during the months around the 2024 U.S.
presidential election. To accomplish this goal, we combine MPC-based privacy-
preserving machine learning with the work of Comarela et al. [18], which demon-
strates that web browsing patterns can be used to assess aggregate preferences
in political candidates.
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Background. In more detail, Comarela et al. [18] start from a dataset of web
browsing records of a cross-section of people provided by a media measurement
company. They design a machine learning algorithm based on Learning from
Label Proportions (LLP), shown in Algorithm 1, that uses web browsing data
to infer the same type of information that is generally produced by political
polls: the fraction of voters in each region (e.g., county or state) that prefer a
given candidate at a particular point in time. Hence, this work shows potential
to augment traditional methods of political polling, since its lower cost enables
more frequent and precise polling—an opinion poll can form the initial “ground
truth” in one location at one moment in time, and then LLP on web browsing
data can be used to predict political preferences at other times and/or locations.

This LLP algorithm is remarkably effective at estimating political prefer-
ences, even when given only browsing visits to the most popular websites rather
than the long tail of smaller blogs and personal sites. Nevertheless, data privacy
concerns make it challenging and risky to collect and store sensitive data about
web browsing activity in practice.

Our contributions. In this work, we design, implement, and deploy a privacy-
preserving system that assesses candidate preferences while also providing the
cryptographic guarantee that web browsing data never leaves client browsers in
the clear. In more detail, we contribute the following.

— An MPC system that comprises a client-side browser extension that cal-
culates a daily histogram of visits to popular websites, and a cloud-based
MPC backend built on top of CrypTen [40] that uses these secret-shared
histograms to calculate aggregate political preferences. We detail the system
architectural design in Section 2 and describe our algorithmic innovations in
Section 3.

— A case study of the deployment of our MPC system on a panel of nearly
8000 people during the months around the 2024 U.S. presidential election.
We describe our work in Section 4, and emphasize upfront that we focus in
this paper more on the computational decisions and security considerations
involved in deploying MPC in this setting rather than the political science
insights resulting from the data analysis.

Ethics. We conclude this section with a brief but important discussion of the
ethics of this type of research. We caution that the use of MPC cryptographic
technology does not automatically ensure adherence to social, ethical, or legal
obligations to protect privacy [68], and as a result we have taken multiple steps
to ensure that our deployment respects personal autonomy and social norms
of privacy. First, we received approval from an Institutional Review Board to
deploy this system, and we provided clear and simple methods for panelists to
learn about their data privacy rights and to opt-out of participation at any time if
desired. Second, we made sure to design our privacy-preserving machine learning
algorithms to reveal only the overall fraction of people in a region (e.g., a U.S.
state) that have a particular political preference, and not to infer or reveal any
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Fig. 1. The OPPS system design. The tools used for each component are included in
the upper corner of the component.

information about which people have that preference. Third, we designed the
client browser extension so that it becomes “dormant” after the end of the study
period: in other words, it automatically stops observing and transmitting secret-
shared web browsing data even if the panelist never deletes the extension. Fourth,
we provided fair compensation to panelists for their participation (as approved
by the IRB), and we partitioned our own research team so that the researchers
who connected with the panelists and observed their payment information were
unable to access any other part of the system, and vice-versa.

2 System Design and Software Architecture

We perform our analysis using MPC in the honest-majority three-party setting
with semi-honest security. We operate in the outsourced MPC setting, where
users upload secret shares to a set of non-colluding servers who carry out the
computation. Concretely, our system contains three components: (i) a browser
extension used by the clients, (ii) a webserver to handle client interaction, and
(iii) a set of three non-colluding compute servers to carry out the MPC.
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2.1 Browser Extension

We develop a custom Chrome browser extension to monitor users’ web browsing
behavior. Emulating the ideas in Comarela et al. [18], the extension tracks (i)
how many times each user visits each of the most popular 517 websites and (ii)
how many times they were referred to each of the top 517 websites from popular
social media websites. See Section 4.1 for details on how we obtained the list of
websites.

The visit and referral histograms are secret-shared in the browser on the
client side, and the shares are encrypted under the public keys of the three MPC
servers. We implement secret-sharing and hybrid public-key encryption (with
RSA and AES) using the JavaScript Web Crypto APIL. Once per day, the plugin
secret shares, encrypts, and sends the histograms to the webserver.

2.2 Webserver

We use a continously running webserver to handle all communication with the
clients and to eliminate the need to have the more expensive computing servers
active at all times. The webserver, written in NodelS, is lightweight and can
process many concurrent connections while running on a small machine in the
cloud. When a client uploads their encrypted secret shares, the webserver stores
them to be retrieved by the computing servers. We emphasize that the webserver
exists to simplify the interaction with the clients, but the secret shares are end-
to-end encrypted from the client to the computing parties, so the webserver itself
learns nothing.

2.3 Computing Servers

We implement the MPC data analysis on top of the CrypTen Python library [40].
The three MPC servers retrieve and decrypt their individual secret shares of the
web browsing data from the webserver, and they collectively (and obliviously)
train a model or perform inference with a previously trained model.

In order to use CrypTen out of the box, all three MPC servers must be ac-
cessible by a single AWS account, which presents an obvious privacy challenge.
To overcome the challenge, we place all three servers in the same AWS account,
and the three server operators are collectively locked out of the account. Compu-
tation is performed using an automated process that allows server operators to
communicate with the servers without giving any of them the ability to see any
server or its internal state after the lockout procedure. Specifically, the server
operators submit an agreed-upon program to the servers, which evaluate the
program and publish the result to the server operators.

3 Secure Computation of an LLP Algorithm

In this section, we describe the LLP problem considered in the work of Comarela
et al. [18], and then we describe our process to transform this into a secure multi-
party computation protocol with data-oblivious control flow.
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3.1 The LLP Problem

Learning from Label Proportions (LLP) is a weakly supervised machine learning
problem in which the data is divided into groups or bags [57]. For each bag, only
the proportion of labels is known, i.e., no individual label is available. The goal
of LLP is to train a model that can correctly predict a label given a feature
vector as input.

To be more specific, the machine learning task associated with this work
can be characterized as follows. The input is composed of a set of pairs D =
{(x4,b:)}¥; and a vector p, where: each x; is a feature vector, representing the
web domains visited by an individual in a given period; b; denotes the bag, or
group, that the individual belongs to (in our work b; is the individual’s state
of residence); and p is a vector of proportions, indicating the proportion of in-
dividuals with preference for (without loss of generality) the Democratic Party
candidate in each state. From this characterization, it is implied that each in-
dividual has a label: label 1 for a Democratic Party preference; and label 0 for
a Republican Party preference. However, the individuals’ labels are unknown.
Hence, the goal of the LLP problem is to learn a model that can predict the
label of individuals from D and p. For the interested reader, a more detailed
presentation of LLP and its possible variants can be found in the work of Franco
et al. [26].

There are many algorithms for training machine learning models in LLP
setups. In this work, we follow the approach presented by Comarela et al. [18],
mainly for two reasons: first, it has been successfully used in similar contexts;
and second, it is suitable for implementation in the employed MPC framework
(as discussed in Section 3.2). In summary, the algorithm has three steps. The
first step is label initialization, which can be performed randomly or according
to proportions in each bag (i.e., U.S. state). The remaining two steps employ
an iterative procedure that is repeated until convergence. In the second step,
we train a logistic regression model using the previously assigned labels. Finally,
in the third step, we refine the logistic regression model obtained in the last
iteration and use it to compute updated predictions. More specifically, the default
threshold (0.5) used to transform the model’s probabilities into labels is changed
on a per-bag basis, so that the predicted proportion of 1’s in each bag (in the
training set) matches the expected proportion (from the problem’s input). We
repeat the second and third steps until the predictions in consecutive iterations
have converged.

The algorithm is formally defined in Algorithm 1, where we have combined
Algs. 1 and 2 from Comarela et al. [18] for ease of presentation. As input, the
algorithm takes the following:

— a data matrix U, where each row is a user, and each column is a feature,

a region map R, where R(u) denotes the region to which a user u belongs,
a proportion map B, where B(r) denotes the fraction of users with label 1
for a region r, and

a learning algorithm A, which we instantiate with a logistic regression model.
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As output, the algorithm produces a trained model ®. The algorithm uses two
labeling functions: L(u) denotes the true label of a user u, while L'(u) denotes
our current prediction of the user’s label, and P(L(u) =1 | ©) is the predicted
probability that a user has label 1 according to the model ©.

Algorithm 1: Learning Algorithm (from Algorithms 1 and 2 of [18])
Input: U,R, B, A
Output: ©
L'+ {}
foreach row v € U do
i > 0.
) = {1, if B(R(.u)) > 0.5
0, otherwise

N =

repeat
L// — L/
© « train A on (U, L’)
foreach region r € R do
L t, « percentile (1 — B(r)) of P(L(u) =1|©) Vu er

foreach row u € U do

L V) {1, if P(L(u) = 1| ©) > tre)

0, otherwise

© 0 N o w s

10

11 until L' =~ L"”;
12 return ©

3.2 Implementation Under MPC

Here we present a method of realizing Algorithm 1 under MPC, which is, to our
knowledge, the first instantiaton of a model for the LLP problem under MPC.
We use and build upon the CrypTen [40] library. To simplify the following pre-
sentation, we freely and implicitly convert between an arithmetic secret sharing
and a boolean secret sharing (in both directions) as needed. In practice, this is

done using arithmetic-to-boolean and boolean-to-arithmetic conversions under
MPC (see e.g., [22,49,55]).

Initialization (Lines 1-3). Initialization can be done in plaintext, as both the
state proportions and the users’ reported states are known in the clear. One
could imagine secret sharing the users’ states as well. In that case, initialization
would entail obliviously selecting the correct state proportion and obliviously
comparing it with 0.5.

Model Training (Line 6). Training the underlying model is one of the two cruxes
of the computation. We instantiate the underlying learning algorithm A with
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a logistic regression model. Logistic regression is supported out-of-the-box by
CrypTen, allowing us to use standard features of the library to train ® at each
iteration.

Computing Thresholds (Lines 7-8). The other crux of the computation is de-
termining the threshold for each state, because it requires oblivious sorting.
Oblivious sorting is a complex and expensive operation under MPC. More im-
portantly, it is not natively supported by CrypTen. We implement a vectorized
Bitonic sort [7] on top of CrypTen that uses the library’s efficient primitives for
batched operations to minimize round complexity. We sort each state’s predic-
tions separately, meaning we never sort more than several hundred values in a
single call to the sorting algorithm. As a result, we prioritize ease of implemen-
tation over maximizing performance.

Given an oblivious sorting implementation, computing thresholds becomes
rather straightforward. We compute P(L(u) = 1 | ©) for each row u € U
and sort the results. Since the state proportions are known in the clear, we can
compute the target index in plaintext and retrieve the (secret-shared) result at
that index in the list. We remark that it would certainly be possible to compute
thresholds even if the state proportions were not known in the clear, but in this
work we assume the proportions are public information and do not need to be
protected.

Computing the New Predictions (Lines 9-10). Updating the predictions with the
newly-computed model and thresholds is straightforward. For all rows u € U,
we compare the secret-shared inference result P(L(u) = 1| ©) with the secret-
shared threshold. We can perform the comparisons in a single batch using a
vectorized oblivious comparison. We store the secret-shared prediction bit for
each user in L'.

Checking Convergence (Line 11). The last step in the algorithm is to check for
convergence. We have two lists of secret-shared predictions, L’ and L”, and we
need to determine their similarity. We first compute an elementwise (vectorized)
oblivious equality to obtain a vector of secret-shared bits. The value we wish to
compute is the number of those bits that are 1’s, and we wish to compare it to
some convergence threshold. We sum the vector to obtain a secret sharing of the
number of 1’s, and we obliviously compare it with the convergence threshold.
We open the comparison result, and if the value is greater than the threshold,
the opened value is 1, so we terminate the algorithm. If it is 0, we continue to
another iteration. The only information revealed by the opening is whether the
model has converged or not.

In summary, we implement Algorithm 1 step-by-step while ensuring that each
step follows a data-oblivious control flow. We use CrypTen out-of-the-box where
possible and implement new functionality where needed.
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4 Data and Results

In this section, we describe our case study application of the MPC-for-LLP
technique to analyze web browsing data of several thousand participants during
the months before and after the November 2024 U.S. presidential election.

4.1 Panelist Data and Metadata

We recruit users through an advertisement on Amazon Mechanical Turk, with an
emphasis on recruiting panelists who live in “swing states”: that is, states that are
likely to have close outcomes in the 2024 U.S. presidential election. Throughout
the study, which lasted from August 2024 to February 2025, we collected data
from 7926 total unique users, with over 2000 users contributing data daily for
the majority of the study.

We collect both web browsing behavior and basic demographic information.

— In terms of web browsing data, the client browser extension contains a list
of 517 popular websites, which we obtained by taking the union of the Alexa
Top 500 list and the Semrush Top 100 list [61], removing advertising websites.
The Alexa Top 500 list is no longer published, so we use the same version
as Comarela et al. [18]. The extension records the number of visits that the
panelist makes to the website, as well as the number of visits that resulted
from referrals from one of the nine most popular social media websites. For
all website visits, the extension records only the website’s domain, not a
complete URL. On a daily basis, the browser uploads the histogram vector of
web visits to the web server. Each data upload consists of the three encrypted
secret shares of a vector of 1034 elements, along with plaintext metadata
described next.

— In terms of demographic metadata, we collect the panelist’s Mechanical Turk
ID, their self-reported state and ZIP code, the number of total visits to
websites in the list, and the number of total referrals to websites in the list.

The Mechanical Turk ID is used to compensate the panelist for their partic-
ipation. In each data upload, this ID is encrypted using message-locked encryp-
tion [9] that is only accessible to a member of our research team who processes
the payments; this team member did not have access to any of the MPC com-
pute servers. The MTurk ID is never provided as input to the machine learning
algorithms discussed in Section 3, although the team member responsible for
payment processing used the MTurk IDs to attach an anonymous ID to each
upload for the purpose of anonymously aggregating data from the same user
over several days. We discuss anonymous payments in Section 6.2 as a potential
avenue for minimizing the trust required in the payment process.

The remaining metadata is used within the machine learning operation: the
self-reported state is used to partition the data into bags for each state, and
the total visits are used in order to convert counts into fractions. In principle,
these operations could be performed under MPC as well (albeit with increased
runtime). The state and ZIP code are also used within the data integrity check,
described in Section 4.3.
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Fig. 2. State-level inference results at three points in time. One point is well before the
election (top left), another is the week before the election (top right), and the last is
after the election (bottom right). For comparison purposes, we also show the ground-
truth election results (bottom left).

4.2 Empirical Results

We use the panelist data together with the actual vote tally in the U.S. presiden-
tial election on November 5, 2024 to estimate political preferences at different
points in time. As described in Section 3, our machine learning algorithm trains
on the ground truth election results and corresponding web visits on November 5
and the surrounding days in order to produce model weights for the influence of
each web domain on political preferences and state-by-state ‘cutoff’ thresholds
to assess candidate preferences. From this model, we use the web visit data to
infer aggregate political preferences on other days, both backwards and forwards
in time.

Findings. An example of our state-level inference results is shown in Figure 2.
Here we aggregate up the individual level candidate support scores for a set
of states with ample respondents at each of three weekly periods: early in the
campaign, election day, and the presidential inauguration. We have colored each
state according to the degree of support for each party’s candidate, with red
indicating more Republican and blue more Democratic.



10 Buxbaum et al.

While a detailed analysis of the results from a political science perspective is
outside the scope of this work, we observe that our data show a general swing
toward the Republican candidate before the election and a swing in the op-
posite direction after the election. Indeed, our indicators suggest a substantial
movement towards the Republican candidate over the course of the campaign,
with strong support in many of the swing states by the week of the election.
In addition, our results suggest that the so-called honeymoon period of new
presidents—where they typically enjoy high approval for the first few months
of their presidency—was either totally missed or extremely short-lived in many
states for the new president. The results suggest a number of avenues of future
research for political science, which typically relies on polls that are limited in
number and locales in these periods.

Performance. This case study also serves to demonstrate the viability of our
methods for performing meaningful data analysis privately. An end-to-end train-
ing run including data for the week before and the week after the election takes
approximately 70 minutes. Additionally, running inference for a single day’s data
takes between 1 and 5 minutes, depending on the number of users in the sam-
ple on that day. All analysis took place on moderately powerful mbn.2xlarge
AWS instances with 8 vCPUs and 32GB of memory. We emphasize that we did
not seek to maximize performance, but only to make all computation run in a
reasonable time frame of several hours. If we were to process, say, an order of
magnitude more data, the present performance may become impractical, and
more aggressive tuning and optimization would be necessary.

4.3 Data Integrity

For our inference of aggregate political preference to be accurate, it is critical that
we correctly partition panelists into the bags for each state. For this reason, we
ask panelists to self-report their state. However, we found that this self-reporting
is not always accurate; for instance, our first Mechanical Turk advertisement was
only open to people who live in swing states, which may have created an incentive
for people to misrepresent their location. Although subsequent advertisements
rewarded participants equally regardless of their reported state, the potential
for dishonest reporting remains a concern. Future deployments should be careful
to avoid incentive structures that encourage dishonest reporting. To examine
the integrity of self-reported location information, we use geolocation data that
allows us to draw conclusions about the validity of the sample.

Privacy considerations. We exercised care to balance the data integrity goal
with our overall privacy commitment. We design a validation process with the
overarching objective of never having long-term storage of IP addresses or of
location data beyond the ZIP code level. When the browser extension connects
to the webserver to upload data, we use the connecting IP address and the IP
locating service ipgeolocation.io to infer the panelist’s state and ZIP code
and compare to the self-reported data. By performing this check at the time of
upload, we do not need to store IP addresses.
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Fig. 3. Fractions of users who are honest and dishonest about their state of residence
when filtering by a minimum number of days that the user is in the sample. The left
and right plots consider a user honest if they are in the correct state for more than 0%
or 90% of their total days in the sample, respectively.

Findings. Our primary takeaway is that while there are significant reasons to be
concerned about the honesty of the users, the concerns ultimately are unlikely
to substantially harm the ability to extract meaningful patterns from the data.

Approximately 98% of the uploads come from users located in the United
States, indicating that the vast majority of web browsing data corresponds to
our target demographic at the highest level. However, the state-level integrity is
much lower. Only 15% of uploads come from users located in their self-reported
state. Furthermore, 15% of uploads contain a self-reported ZIP code that is
not a valid ZIP code for the self-reported state. Taken together, the state-level
integrity and ZIP code validity data paint a picture of a noisy dataset.

However, perhaps surprisingly, the honest panelists provide far more valuable
data. To justify the data sample, we show that not all panelists and uploads are
equal in terms of our ability to learn from them.

First, Figure 3 shows that as we select for panelists who were in the sample
for an increasingly large threshold of days, the panelists become more honest.
We consider two ways of categorizing panelists into honest and dishonest groups:
either we consider any panelist who has ever had their inferred state match their
reported state to be honest, or we consider panelists to be honest if their inferred
state matched their reported state for more than 90% of their uploads. In both
cases, we see that the sample contains a large number of short-lived dishonest
panelists, while consistent panelists tend to be more honest.

More importantly, Figure 4 shows that honest panelists contribute visit and
referral histograms that are significantly more dense than their dishonest coun-
terparts. Using the same method of splitting panelists into honest and dishon-
est groups, we see that in either case, honest panelists and dishonest panelists
contribute similar numbers of total visits, while honest panelists far outpace dis-
honest panelists in their total referrals. This observation is important due to the
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Fig. 4. The fractions of total visits and referrals reported by honest and dishonest
users. The upper and lower plots consider a user honest if they are in the correct state
for more than 0% or 90% of their total days in the sample, respectively.

finding by Comarela et al. [18] that referral data provides a far better signal for
political preference than visits alone do.

We can draw two conclusions from the data and discussion above. First,
detecting lying users and, if possible, obtaining some kind of proof or verification
that a user is honest is of critical importance for ensuring data integrity, and this
is an important direction for future work, as we discuss in Section 6. Second,
while we should aim to maximize the integrity of the data, the fact that the
heaviest users tend to be honest means our learning process is surprisingly robust
to dishonest users.

5 Related Work

This work presents a deployment of privacy-preserving machine learning (PPML).
In this section, we describe and compare with a few different categories of related
work into PPML.

Algorithmic designs. Building upon a long line of research into MPC in gen-
eral, there have been significant advances in the past decade in the design of
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privacy-preserving machine learning algorithms. Some initial work, including
SecureML [50], ABY? [49], and SecureNN [66] built broad support for machine
learning operations under MPC. Next, several works contributed new protocols
for privacy-preserving ML training and inference that collectively offer a variety
of options for the number of parties, adversarial threshold, active vs. passive
threat model, and more [15,17,19, 20, 37,41, 42, 55,56, 67]. A more recent line
of work has explored privacy-preserving algorithms for deep learning operators
like transformers [3,23,30,31,45,48,53,72]. Our work only requires a relatively
simple machine learning algorithm based on gradient descent (see Algorithm 1),
which can be built even from the earlier line of PPML algorithms.

Software and hardware frameworks. There are several software frameworks for
privacy-preserving machine learning. ABY? [49] provides protocols for many
specific fixed-point and vector operations used in machine learning. EzPC [16,
43, 59] provides a compiler from high-level machine learning operators to low-
level crypto protocols. MP-SPDZ [39] is an extensive repository that contains
several machine learning-friendly MPC protocols on its own right, and it is also
used within the cloud-native Carbyne Stack framework [8].

Additionally, there are several frameworks that take advantage of dedicated
hardware. Some works leverage dedicated GPUs [27, 33,35, 36,64, 69] or FPGAs
[25, 34, 54] to improve performance. Other works combine MPC with trusted
execution enclaves in order to provide defense-in-depth [21,46,70].

We use CrypTen [40] in this work due to its ease of use in developing Algo-
rithm 1. That said, there are a number of frameworks listed above that we could
have used instead, several of which also support the three-party setting that we
use in this work.

Deployments of MPC. To the best of our knowledge, this work is the first use
of MPC in the domain of political science. More generally, it contributes toward
the ongoing efforts to increase adoption of MPC in scientific research settings to
derive publicly useful findings from private data.

We provide several examples of prior work on MPC for public benefit. First,
national statistics organizations have used MPC to conduct surveys and to ag-
gregate data across agencies, as documented in a list compiled by the United
Nations global working group on big data [65]. Second, policymakers have used
MPC to gather statistical evidence for data-driven policymaking [2] in domains
like education [12] and health services [32]. Third, healthcare organizations have
used MPC to measure the aggregate spread of COVID-19 [5] and to conduct
clinical research [60]. Finally, civic non-profit groups have used MPC to mea-
sure workplace culture [38] and empower survivors of sexual assault on college
campuses [58].

6 Conclusion and Future Work

In this work, we have built and deployed a system for private analysis of political
sentiment from web browsing data. We use the remainder of the paper to discuss
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some areas for possible improvement and future work based on lessons learned
from the deployment.

6.1 Balancing Integrity Verification with Privacy

As with any data system, the quality of the data is of critical importance. Sec-
tion 4.3 details our experience with measuring the honesty of users in reporting
their residence, an important variable in our ability to make accurate state-
level predictions. Our approach involved using the user’s IP address (which we
will inevitably know by operating a standard webserver) to infer their current
location. We could consider stronger methods of identity verification, but any
strengthening would certainly lead to more invasive data collection, seemingly
contradicting our core privacy goal.

In addition to the privacy element of the data integrity question, there is the
fact that it is not immediately clear what information could be used to prove the
location or residence of a user, even in a plaintext setting. Many companies and
organizations use know-your-customer (KYC) systems for knowing the residence
of their users. Perhaps one could design a private KYC service. We leave the
problem of private residence verification as a challenging open problem.

6.2 Strengthening the Threat Model

The other major direction for future work is broadly to strengthen the threat
model. To begin, the most immediate concern with the current system is the
use of AWS as a single point of failure; this is an unfortunate but immediate
consequence of our out-of-the-box use of CrypTen. While CrypTen provides a
simple interface for running multiparty computation, future work could seek to
build a similarly friendly interface that simultaneously can work across multiple
cloud providers and multiple trust domains.

Another possible avenue towards a stronger threat model is to minimize the
trust required from the user in the core machine learning computation. We can
explore different system architectures and/or cryptographic primitives for the
core computation. In the case of inference, the problem is comparatively easy,
as each user can be treated independently, except for the aggregation of results.
Given a model (either public or private), the user and a server could partake
in a two-party computation to reveal only the prediction of the model on the
user’s private input. Such a two-party computation would be lightweight enough
to be run every day to obtain live-updated polling results. For training, the
problem is more difficult, as individual users’ data can no longer be treated
independently. One potential solution is to strengthen the MPC by incorpo-
rating multiple independent organizations to distribute the trust more widely.
Alternatively, another option is to employ fully homomorphic encryption (FHE),
involving limited client-side work to perform a threshold decryption to obtain
the final results.

A final possible method for strengthening the threat model is the incorpo-
ration of anonymous payments. The payment method employed in this work
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requires knowledge of which Mechanical Turk IDs were active in the sample and
for how many days. An anonymous payment mechanism would add an additional
layer of protection for users beyond protecting their browsing data.
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