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ABSTRACT

1. INTRODUCTION

Recent studies observe that vertex degree in the autonomousMany aspects of the Internet’s structure are relatively unknown.

system (AS) graph exhibits a highly variable distribution [14,
21]. The most prominent explanatory model for this phe-
nomenon is the Barasi-Albert (B-A) model [5, 2]. A cen-

tral feature of the B-A model is preferential connectivity —
meaning that the likelihood a new node in a growing graph
will connect to an existing node is proportional to the existing

These gaps in our knowledge pose problems when attempting
to construct representative network topologies for simulation
and modeling. In addition, filling these gaps may shed light on
the forces behind the Internet’s growth and the ways in which
the network may fail.

node’s degree. In this paper we ask whether a more generalOne aspect of the Internet's structure that has drawn great
explanation than the B-A model, and absent the assumption interest is the autonomous system (AS) graph (the graph in

of preferential connectivity, is consistent with empirical data.
We are motivated by two observations: first, AS degree and
AS size are highly correlated [10]; and second, highly vari-
able AS size can arise simply through exponential growth. We
construct a model incorporating exponential growth in the size
of the Internet and in the number of ASes, and show that it
yields a size distribution exhibiting a power-law tail. In such
a model, if an AS’s link formation is roughly proportional to
its size, then AS out-degree will also show high variability.
Moreover, our approach is more flexible than previous work,
since the choice ofvhich AS to connect to does not impact
high variability, thus can be freely specified. We instantiate
such a model with empirically derived estimates of historical
growth rates and show that the resulting degree distribution is
in good agreement with that of real AS graphs.
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which vertices represent ASes and edges represent AS-AS peer-
ing relationships). A particularly surprising aspect of these
graphs is that vertex degree generally possesses a highly vari-
able distribution [14, 21].

In discussing properties of the AS graph, it is useful to draw a
distinction betweehigh variability andpower-law tails. High
variability is a qualitative notion, referring to a probability dis-
tribution showing non-negligible values over a wide range of
scales (typically at least three orders of magnitude). On the
other hand, a distributiop(-) with power-law tails has the for-
mal property that:

«

p(z) ~a~

with @ > 0, and wherea(z) ~ b(z) means thatim,

a(z)/b(z) = c.

Some authors have argued that AS vertex degree is well mod-
eled as having power-law tails [14, 21]. Others have sug-
gested that vertex degree does not clearly exhibit power-law
tails, although it is highly variable [8]. Since such highly-
variable distributions do not arise in simple random graphs,
and since power-law tails do provide a simple (albeit crude)
approximation for the behavior of the true distribution, a num-
ber of papers have proposed mechanisms (more complicated
than purely random connection) that may give rise to power-
law degree distributions in graphs [5, 19, 18].

The most prominent model attempting to explain the emer-
gence of power-law degree distributions is the BasatAlbert
model (or B-A model) [5, 2]. In fact, it has been considered in
a number of papers as a model for AS graphs [3, 7, 26, 23, 31].
The B-A model assumes the network is formed through incre-



mental addition of nodes. In the simplest form of the model, a In summary, in this paper we explore a model for the AS graph
new node forms a connection to an existing node with proba- that is more general than the B-A model, and is based on em-
bility proportional to the existing node’s degree. This prefer- pirical observations of Internet growth dynamics. It allows for
ential connectivity leads to a “rich get richer” phenomenon in inter-AS connections to be formed in a way that need not be
which high degree nodes tend to increase in degree faster thanbased on AS degree. We show that it yields highly-variable
low degree nodes. degree distributions, and that its outputs agree well with em-
pirical measurements of AS graph degree distribution.
In this paper we examine whether explanations more general
than the B-A model may suffice to expldirghly variable de-
gree distributions in the AS graph. We are motivated by two 2. RELATED WORK
observations. First, the authors in [10] point out that AS de-
gree is strongly correlated with AS size (measured in number
of nodes) — and that AS size also shows a highly variable
distribution. Second, we observe that during the last 10 years
or so, the Internet has undergone exponential growth in both
number of nodes and number of ASes. Under such conditions,
we show here that highly variable AS sizes (and, presumably
as a consequence, highly variable AS degrees) may readily
arise due to exponential growth alone.

Until recently, Internet topologies have been generated using
random and hierarchical models. Among the more significant
of these is work due to Zeguehal. [32]. That paper proposes
generating smaller domain-like networks and connecting them
together to create a hierarchical structure whose properties are
specified by input parameters. Unfortunately, these random
and hierarchical approaches fail to capture many significant
attributes of Internet topology as well as the power-law models
[31, 23] discussed below.

Since attention was drawn to power-laws in Internet topologies
by [14], modeling efforts have shifted to reproducing these
power-law properties. The most notable effort in this direction
has been the Barabi-Albert preferential attachment model
[5]. This model was first formulated and solved by Simon
[28] and further developed by Price [11, 12]. In this model,
the network is formed through incremental addition of nodes.
The model’s key assumption is that a new node forms a con-
nections to an existing node based the existing node’s degree.
The probability that a new node will connect to an existing
nodes is proportional td1(:) = k; /X ;k;, wherek; is the de-
gree of node. The resulting rate at which nodes acquire new
edges is given byk; /ot = k;/2t, wheret is the time elapsed
from the start of the process. The resulting degree distribution
exhibits a power-law tail, with a fixed exponent@f= 3.

We explore these observations in this paper by constructing a
simple growth model for AS graphs. Our model makes three
assumptions: (1) exponential growth in the number of hosts in
the network; (2) exponential growth in the number of ASes in
the network; and (3) an approximately proportional relation-
ship between AS size and degree. The resulting model shows
that highly variable AS degrees may easily arise without pref-
erential connectivity, and in fact without any global knowledge
of network state by individual ASes. Indeed, in our model, the
methods by which ASes select peering partners can be freely
unspecified.

In our model,M (the total number of hosts) amd (the to-

tal number of ASes) are described by the simple linear growth
equationsiN/dt = ¢N anddM/dt = pM + gN, whereg
andp are the growth parameters. We show that in the asymp-
totic time limit, this model leads to a stationary size distribu-
tion with power-law tails. We then show that if these growth
rules are used to construct a graph, such that as each AS grow:
it forms links to other ASes in approximate proportion to its
own size, then the resulting degree distribution also shows
high variability.

Later work has built upon and extended the B-A model. The
same authors in [3] extended the model to allow re-wiring, in
hich edges may also be deleted or moved at each timestep;
his allows the exponent to vary. The work in [26] investi-
gates the case where only a subset of all nodes in the network
are available for connection. With only slight modifications
to the B-A model they show that a power-law degree distri-

. e . bution emerges. Additionally, a “generalized linear prefer-
We validate the degree distributions produced by this simple ence” model is proposed in [7] that better matches the cluster-

model using empirical measurements of AS degree distribu- . . L
tions. For this purpose we use measurements from BGP tables'9 behavior and path lengths OT empirical Interm_et_r_neasure-
stored at Routeviews [27], as well as overlay maps produced ments. These exterj5|ons have 'mpFOVe.d the f|e>§|b|||ty of the
by mapping routers from the Mercator [16] and Skitter [29] _B-A model, albeit with a corresponding increase in complex-
datasets to their corresponding ASes. We find that the result- ity.

ing degree distributions in our simulated graphs are in good

agreement with empirical data. The generation of power-laws through random graph models

has also received considerable recent attention. An overview
of existing models appears in [1], along with a method which
generalizes all of them; this family of models is analyzed in
[20]. In these models, nodes are periodically added to the
graph with some probability and are initially assigned an in-
weight and out-weight of. At each timestept, with some
fixed probability, a new directed edge is created between nodes
1 andj. The probability of selecting an edge franto j is in

We conclude that, for topology generation, it is not necessary
to incorporate preferential connectivity in order to generate
highly variable AS degree distributions. This leaves the door
open for more practically justified bases for forming inter-AS
links, eg., based on economic and geographical considera-
tions.



proportion toi's out-weight andj’s in-weight, respectively. Using these tables, we can measure the number of AS num-
Then, the out-weight of and the in-weight of are increased bers allocated at any point in time. The result is shown in
by 1; hence, at every timestep the total in-weight in the system Figure 1, on (a) a linear scale and (b) a semi-log scale. Here
is exactlyt. This general method can generate graphs with ar- we assume that allocations provide a good estimate for rate
bitrary degree distributions, but are not proposed as realistic of growth in total number of ASes (since we are primarily in-
models for the dynamics of Internet growth. terested in the overatlate of growth). Fitting a line to this
logscale plot shows that, over the recent past, AS numbers
In contrast to the approaches above which focus on reproduc- have indeed been allocated at an exponentially growing rate.
ing statistical properties, another family of models explores We estimate the rate of growth by the slope of the linear re-
the implications of optimization-based algorithms for network gression fit to the curve, or approximatedyr x 10~* (units
structure. One such model has been suggested in [13]; it as-areln(ASes)/day).
sumes that nodes arrive uniformly at random within some Eu-
clidean space, and the newly created edges attempt to balancélhe registries provide a good record of AS births, but it is in-
the distancel from its new neighbour with the desire to min-  accurate to use their records of allocated IP blocks to estimate
imize the average number of hopsto other nodes. A new growth of hosts in the Internet, because most IP blocks are
nodei forms an edge tg by minimizing the weighted sum not fully utilized. The best estimate of the number of Internet
v-di; +hj. The resulting degree distribution exhibits a power- hosts seems to be that of the widely cited Internet Software
law tail. A second optimization-based model is described in Consortium’s “Internet Domain Survey” (IDS) project. The
[4]; this paper explores a similar heuristic but at the ISP level. host count they develop is based on a reverse DNS process;
details can be found at [17].
The investigation in [10] evaluates the merits of the B-A model
and its applicability to the Internet. The authors conclude
that, while the B-A family of models do succeed in produc-
ing power-laws, the model itself is not representative of the

Using the numbers published by IDS, we plot host growth in
Figure 2 (again, (a) is linear scale, and (b) is semi-log scale).
Although the linear regression of the whole curve fits reason-

dynamics that drive Internet evolution: its growth processes
(preferential connectivity) do not match those observed in the

ably well, we note that the slope of the curve starting about
1996 is noticeably different from the slope before that point.

Internet. Also, they present evidence to suggest that AS-level Using the linear fit shown in the figure, we estimate the the

degree distribution is not a pure power-law, though it is still

more conservative growth rate (the rate post-1996) to be about

highly variable. Based on these observations, together with 1.1 x 10~2 (units areln(hosts)/day).

evidence in [30] which links degree to size, [10] suggests that

other (perhaps simpler) mechanisms decide the evolution of We emphasize that while host count may well underestimate

the Internet. the actual number of hosts on the Internet, we are primarily
interested in estimating the rate of growth represented by the

The work in this paper shows that preferential connectivity, or slope of the curve.

indeed any dependence on degree in making connection deci-

sions, is not necessary for power-law degree distributions to Figures 1 and 2 provide strong historical evidence of exponen-

emerge. Furthermore, our paper is the first model that mod- tial growth both in size of the Internet and number of ASes.

els highly variable degree distributions as well as the size and Next we construct a simple evolutionary model which relies

growth of autonomous systems themselves. on the observation that both measures grow exponentially.

3. ASIMPLE GROWTH MODEL 3.2 Model Development and Analysis
In this section we first motivate our model using observations We wish to construct a model which builds on the observa-
regarding the rates of growth of ASes and hosts over time. We tions that the number of ASes and the number of hosts in the
then analyze the model and explore its properties. Internet have both grown exponentially in the recent past. Let
N(t) be the total number of ASes add(t) be the total num-
ber of hosts (or ‘mass’) in the system. The simplest growth
model consistent with the observations in the previous section
is mathematically described by linear equations

dN M

— = — =pM N.
dt qiv, dt pM +q

3.1 Exponential Growth

We start by assessing the growth of the number of ASes in the
Internet. For this, we look to a history of routing number al-
locations made publicly available by the Internet registrars
These agencies (ARIN, RIPE, and APNIC) are collectively
responsible for assigning all Internet routing numbers. Each
publishes a table of every AS numbemd IP block it allo-
cates, and the date the allocation was made.

@)

Hereq is the rate of creation of new ASes apds the rate of
creation of new nodes. When a new AS is created, the host is
The strengths and drawbacks of various data sources for AS 9iven that new label, explaining theV term in the left equa-
tracking are discussed in [15]. tion in (1). (We assume that there is no merging of ASes;

*RIPE does not publish AS number allocations, though many moreover, we assume that links do not affect growth processes,
of these allocations have been recorded by ARIN. and that hosts and links never disappear. For a model that in-
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Figure 2: Growth in the number of I nternet Hosts

cludes AS mergers, see [15].) Solving fSrand M gives

N(0)e”,
AeP' + BN(t),

N(t)
M(t)

@)
®)

with A, B being simple functions of the initial data, and the
parameterg andgq. (At the special poinp = ¢ the coeffi-
cients diverged = B = o0), reflecting that the exact solution
is actually a linear combination ef* andt e**.) Thus the av-
erage AS sizés) = M (t)/N(t) could exhibit the following
asymptotic behaviors:

finite whenp < g¢,
() ~¢InN whenp = g, 4
NP=9/a  whenp > q.

In [15] we show that the average AS size grows over time (and
with V), in agreement with measurements showing thatq.

Let N, (t) be the number of ASes withnodes. UnlikeN (¢)
and M (t), Ns(t) is a random variable; however in the large
time limitit becomes highly localized around its average value.
Under the assumption tha (¢) is equal to its expectation, its
size distribution satisfies the rate equation

dN,

7 pl(s — 1)Ns—1 — sNs] + qNds1

Q)

whered, ;1 is the Kronecker delta function. The first term on
the right-hand side accounts for growth that proceeds with rate
p: when a node is added to an AS with- 1 nodes, the number

of ASes withs nodes increases by one; similarly when a node



is added to an AS withs nodes, the number of ASes with We embody the growth model of Section 3.2 and the afore-
nodes decreases by one. The second term on the right-handnentioned link formation process in the following algorithm.
side of Eq. (5) accounts for births of new ASes (with size one) Recall the notation from Section 3.2 wheris time andV (t)
which take place with rate. is the number of ASes in the system. Lt (¢) be the number
of hosts in AS:, andt; be the time AS is introduced into the
We already knowV (t) = N(0)e?". Solving Egs. (5) recur- system.
sively and expressing in terms &f rather thart yields
s This algorithm requires three input parameterandq are the
_ Ar—ip/a growth rates in the number of hosts and ASes, respectively,
Ne=n.N+3 ColN © andz is some fixed probability of an inter-AS edge forming
with each unit of host growth. At each timestepwvo kinds
of events occur: some new ASes are born, and existing ASes
wheren; is the fraction of ASes witts nodes. The coeffi- grow. Starting at = 1:
cientsC,; depend on initial conditions while, are universal.
Asymptotically, only the linear terna; N matters. To deter-

j=1

mine this dominant contribution, we inse¥, (t) = nsN(t) i. Calculatte the tota_LI numl_oerof ASes accordingt¢t) =
into Eq. (5). We arrive at the recursion relation N(0)e”. In our simulations we us&/(0) = 1.
q i. Introduce|N(¢)| — |[N(t — 1)] new ASes with out-
<5 + ;) ns = (s = ns—1 @) degree ofl, where the neighboring AS is chosen uni-

formly at random.

for s > 2, while fors = 1 we haven: = q/(q + p). The . ) .
solution to recursion (7) reads iii. For each ASi in existence before time

(a) Calculate the number of total hosts within AS

q
g TG (2 + p) according taV;(t) = Ae?* ) 4 BN(t). In our

"= T F(S+1+g> ' ®) simulations we usel = 1, B = 0.
i (b) Insert| M;(t)| — | M;(t — 1) new hosts into AS
1. Each new host creates an inter-AS edge with
Asymptotically, the ratio of gamma functions simplifies to the probabilityz, and if an edge is created, then invoke
power law, a select operation to determine to whom the new
—a AS-t0-AS link is created.
ns~Cs %, 9)

witha = 1+ ¢/pandC = T (2 + %) Thatis, the  Thesdlect operation is left unspecified to emphasize the flex-

model yields an AS size distribution exhibiting a power-law ibility of the link formation process and its dependence only

tail with exponent-(1 + ¢/p). on the AS size. We consider only the simplest selection oper-
ation, where a target AS is chosen uniformly at random.

4. ASDEGREE FORMATION Even though this is a random connection process, ASes that

The previc_Jushsection showetfj thata povyelr-law Sihze ;ji:tributior:j are larger in size will generally have higher out-degree. Thus,
emerges in the presence of exponential growth of ASes an like the underlying size distribution, the degree distribution

QOStS' In this section we extend this idea to incorporate AS 51 results will tend to be highly variable. We show in the
egree. following sections that a highly variable degree distribution
does result, and that this distribution fits well when compared

The key assumption we make is that as an AS grows, it will against distributions observed in the Internet.

establish links with other ASes. We show that if link forma-

tion occurs in rough proportion to an AS’s growth, then the AS

degree distribution will show high variability. More precisely, S. VAL IDATI ON ) . . )

if at each time step a new node is added to an AS it forms We validate Qur_ana_lyss_and S|mulat_|on resqlts against empir-

an inter-AS link to some other randomly chosen AS with a ical degree distributions in the following sections.

fixed probability, then AS degree distribution will show high o

variability. Furthermore, this need only be in “rough propor- 5.1 Empirical Data Sources

tion;” for example, the result still holds if connection proba- There are a number of sources from which we can draw AS-

bility varies with the log of the AS size. level degree distribution. We infer empirical degree distribu-
tion through two distinct methods, applied to three different

Any such link formation process is simple since it only de- sources.

pends on growth, it is flexible since there are no influencing

agents other than size, and no global knowledge of other AS The first method is to infer AS degrees from BGP tables. For

degrees is required to make link formation decisions. this purpose we use BGP tables from the RouteViews project



0 ‘ Source ASes | Edges| Date Method

~ RouteViews - 04/2001-—— Route Views| 10854 | 47847 04/01| BGP
05| Routeviews - 02/2002— 1 Route Views| 12875 57385 | 02/02| _ BGP
Al Skitter 01/2002 1 Mercator 3478 | 13590 | 08/01 | AS Overlay
= 4sl | Skitter 9206 | 38334 | 01/02 | AS Overlay
A
X, 2 1 Table 1: Summary of Data Sources
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Figure 3: Degree Distributions Inferred from 4 Sour ces. Q_’: -2.5 1
D 3 ]
o
[27] collected in April 2001 and February 2002. An entry in -3.5 1
a BGP table consists of an IP block represented by its prefix, 4 ]
followed by a sequence of ASes (an AS path) that must be tra- 45 ‘ ‘ ‘ ‘ ‘ ‘

versed to reach an IP address within that range. We can infer
an adjacency in the AS-level graph for a pair of ASes when-

ever they appear in succession within any path. While this

inference method typically avoids false positives (adjacencies
which are not actually present, but appear to be present), it
suffers from false negatives, since not all AS adjacencies are
advertised across BGP [10].

0 0.5 1 1.5 2 25 3 35 4
log(degree)

Figure 4: Predicted Degree Distribution under the Con-
stant Connectivity Model.

A second method for determining AS degrees is to annotate ter project [29] gathered in January 2002. Statistics, dates, and
a router-level map with each router’s associated autonomous sources of all four datasets are summarized in Table 1.
system. Nodes in the router-level graph are labeled using IP
addresses. In the overlay produced by annotating the router- The degree distributions plotted in Figure 3 show that all meth-
level graph, each node is further labeled with its assocated AS. 0ds and sources yield similar results. For subsequent compar-
The approach is detailed in [9]; we summarize the approach isons, we use the distribution drawn from the autonomous sys-
here. An IP is associated with an autonomous system by per- tem overlay constructed from the Skitter dataset collected in
forming a lookup in BGP tables. First, find the longest match- January 2002 as a baseline for comparison against simulation
ing prefix of an IP address within the BGP table; the last entry results.
in the path vector is the number of the AS which owns that IP
address. A complete inspection of every edge in the annotated o
router-level graph reveals an inter-AS edge wherever any pair 5.2 Constant Connectivity Models
of nodes are labeled with distinct AS numbers. Section 3.2 shows that the size distribution that results from
our model has a power-law tail. However, since the growth
This method has numerous advantages over AS maps inferredmodel does not directly describe degree, we turn to our simu-
from BGP tables directly. It provides an AS map at a finer lation to determine the influence of size and growth on degree.
granularity; aggregated ASes are revealed, as are multiple links
between ASes. However, this method suffers from the follow- The simulation is executed using the algorithm in Section 4
ing drawback. Any single BGP table is potentially incomplete using ratep = 1.1 x 1072 andg = 8.7 x 10~ estimated
and can be limited by path hiding from parent ASes (in order in Section 3. The degree distribution predicted by our model
to reduce message and table sizes). Sets of BGP tables arés plotted against observed degree distributions in Figure 4.
used to reduce the magnitude of this problem, with the belief We found empirically that using fixed connection probability
that more BGP tables reveal more information. However, no z = 0.10 results in vertices of our simulated graphs having
AS can observe the existence of another AS which is hidden a roughly commensurate average degree to that of the Skitter
by its parents. dataset. Where the discrepancy does occur, the general ten-
dency is for our model to underestimate the degree of small to
We draw on router-level maps gathered from the Mercator medium sized ASes, while overestimating the degree of larger
project [16] in August 2001, and another provided by the Skit- ASes.



Data Points Avg. Conductance 0

Size Range | Mercator| Skitter | Mercator | Skitter X =0.20 / log(size)
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11-100 1429 | 3502 | 0.24 | 0.60 SR ]
101-1000 359 1050 0.13 0.31 =< sl ]
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Figure 4 shows that the predicted degree distribution is rea- AT |
sonably similar to that of the Skitter dataset. Discrepancies -4.5 : ‘ : : : : :
can potentially be removed by refining the decision processes c 05 1 15 2 25 3 35 4
used to form AS to AS connections in the model. In the fol- log(degree)

lowing section, we explore a refined model that accounts for o . o
the size of the AS when determining the relationship between Figure5: Validation of the Size-Based Connectivity Model.
growth and link formation.

. L The ratios and ranges in Table 2 show conductance diminish-
5.3 Size-Based Connectivity Models ing in an approximately logarithmic fashion as AS size in-
The relationship between predicted and empirical distributions creases. To better fit the data observed in Table 2, we applied
shown in Figure 4 suggest that there is room for other practical a logarithmic correction factor to implement a “diminishing
influences on inter-AS link formation. Here we discuss an ap- probability” function, L. This function takes the size of the
proach that takes into account the actual size of the AS when autonomous systed/;, and a fixed probability: as parame-
choosing to create new links. ters, and returns a probability value:

We presuppose the following notion: as an AS grows, the ratio
of its degree to its size will shrink, and so a constant proba-
bility when deciding to create new links may not best relate L(z, M;) = z WhenMi < 10, (10)
degree to size. Intuitively, the ratio between the degree of an m otherwise.

AS and its size is analogous to surface-to-volume ratio. In

graph-theoretic terms, this ratio is often referred to as the con-
ductance of a subgraph. Thus, we define the conductance o
an autonomous systeiwith size M; and degred; to bejdw—ii.

fAs before, we use the simpgelect operation which returns a
neighboring AS chosen uniformly at random.

dThe distribution that results when applying the diminishing
Skitter datasets discussed in Section 5.1, and shown in Table 2_pr9babi|ity function is plotted agginst Skitter dat‘?‘ in Figure 5,
This table shows that as an autonomous system grows, the ay-usingz = 0.20, th.e vallue prowdmg thg bgst fit. The two
erage conductance shrinks. While the actual conductance ofcUrves are _ne_arly_|dent|cal, sharing a S|m|Ia_r slope, and are
ASes of a given size varies considerably, this trend holds on v[rtuglly'|nd|st|ngU|shabIe throughout the entire body of the
average. Note that ASes of sizare excluded from the small- distribution.

est range since an AS of sizemust have conductance of at

least1, and so may bias observations. Also, average conduc- 6. CONCLUSIONS

tance in the largest ASes appear to break this trend. We be-In this paper we have explored a model for how highly variable
lieve that this may be an artifact of noise from a small number degree distributions may arise in the AS graph. Itis instructive
of data points. to compare this model with the B-A model.

Observations of conductance are estimated from Mercator an

We believe that this decrease in conductance is natural, driven Like the B-A model, we assume that high variability has arisen
by the decreasing necessity to add inter-AS links as an AS via a “rich getricher” phenomenon resulting from an exponen-
grows. For example, as previously mentioned, an AS of size tial growth process. However the B-A model assurpesfer-

1 must have a minimum degree df(otherwise it is not con- ential connectivity, meaning that new nodes probabilistically
nected to other ASes, and hence cannot be a part of the AS-prefer to connect to well-connected existing nodes. Besides
level map). We speculate that it is more often the case that requiring that each AS be aware of the degree of each other
hosts are added to a closed network to increase the capacityAS (a strong assumption of global knowledge), the B-A model
and range of the network itself, rather than to connect to other strongly constrains the resulting connection pattern. This is
ASes, and so a connection probability that decreases as an ASrestrictive; as discussed in [25], many graph realizations are
grows is reasonable. consistent with a given degree sequence, and different realiza-



tions may have very different properties. In fact, [24] shows
that the AS graph exhibits a high degree of clustering, an ef-
fect that is not captured by the particular connection pattern
created by the B-A model.

In contrast, the assumption in our model is tA& sizes are

the underlying cause of high variability, and that a large AS

will naturally tend to have a large degree. From this stand-
point, our model allows for a much wider range of connection

patterns than the B-A model, since the degree of an AS grows
as a function of its size, but the choicewfich AS to con-

[5] A.-L. Barakasi and R. Albert. Emergence of Scaling in

(6]

Random NetworksScience, 286:509-512, October
1999.

Boston University Representative Internet Topology
Generator (BRITE). Ahttp://www.cs.bu.edu/brite.

[7] T. Buand D. Towsley. On Distinguishing between

nect to can be specified independently, as a separate selection [8]

operation. In this paper we have explored the selection opera-
tion in which growing ASes choose peering partners uniformly
at random; however we expect that any choice of peering part-
ners that is made without regard to degree (and including those
that exhibit a high degree of clustering) will likely show char-
acteristic high variability.

Our results demonstrate that a simple and natural model incor-
porating exponential growth alone is sufficient to drive both a
highly variable AS size distribution and a highly variable AS
degree distribution. We motivated this model with datasets
that demonstrate exponential growth both in the number of
hosts and the number of ASes, and validated the model by
comparing the degree distribution our model predicts against
observed degree distributions drawn from BGP tables and AS
overlay maps. We also provide an analysis of the power-law
tail of the AS size distribution that results when our methods
are employed.

We have integrated this model into the publicly available
BRITE [6, 22] topology generation framework. In future
work, we intend to investigate selection operations that in-
corporate real-world considerations such as locality, clustering
and performance optimization, to provide an even more real-
istic AS growth model. As part of this effort, we are mining
AS time-series data extracted from BGP logs to better under-
stand the underlying nature of AS growth, interconnection and
merging over time [15].
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