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ABSTRACT
A traffic matrix encompassing the entire Internet would be
very valuable. Unfortunately, from any given vantage point
in the network, most traffic is invisible. In this paper we
describe results that hold some promise for this problem.
First, we show a new characterization result: traffic matri-
ces (TMs) typically show very low effective rank. This re-
sult refers to TMs that are purely spatial (have no temporal
component), over a wide range of spatial granularities. Next,
we define an inference problem whose solution allows one
to infer invisible TM elements. This problem relies crucially
on an atomicity property we define. Finally, we show ex-
ample solutions of this inference problem via two different
methods: regularized regression and matrix completion. The
example consists of an AS inferring the amount of invisible
traffic passing between other pairs of ASes. Using this ex-
ample we illustrate the accuracy of the methods as a function
of spatial granularity.

1. INTRODUCTION
In many situations it is desirable to form a volume esti-

mate for traffic that is not directly observable. On a practi-
cal level, traffic measures are useful for capacity planning,
performance analysis, and traffic engineering, and each of
these tasks must sometimes be performed in the absence of
directly measurable data. On a scientific level, improved
knowledge of how traffic flows through the Internet as a
whole can inform our understanding of how demand, topol-
ogy, and economics interact to shape Internet evolution. Un-
fortunately for the latter problem, the very nature of the In-
ternet’s structure means that there is no single location (or
even reasonably-sized set of locations) from which a com-
prehensive picture of Internet traffic can be obtained. A key
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Figure 1: Invisible Traffic

aspect of the problem is that large-scale measurements of In-
ternet traffic are only readily available to ISPs, and each ISP
can only directly measure the traffic flowing through its own
network.

In this paper we show that an ISP’s view of Internet-wide
traffic may not be as limited as it appears. We show that
measurements of the traffic flowing through a given network
additionally contain significant information about traffic that
does not flow through the network. In some cases, this infor-
mation is sufficient to form accurate estimates of the amount
of traffic flowing through a different network.

An example of the kind of problem we are interested in
is shown in Figure 1(a). Network P would like to estimate
the amount of traffic flowing between networks T and X .
However, this traffic does not flow through P and so P cannot
directly measure it.

Of course, in the situation shown in Figure 1(a), it seems
impossible for P to obtain the desired knowledge. However,
consider the case in which some other traffic does flow be-
tween P and T , perhaps because P and X are peers. For
example, traffic might flow according to the more detailed
picture shown in Figure 1(b). In this figure, traffic is being
sent through P and X to destinations 1 and 2. (Of course, al-
though only two destinations are shown, in reality there can
be many destinations; likewise P and X can each have many
other customers.)

Note that Provider P has a Customer Y whose traffic to
both 1 and 2 is visible to P. Perhaps by observing Customer
Y ’s traffic, Provider P can learn how traffic “typically” flows
toward destinations 1 and 2. And, because T ’s traffic for
destination 1 also flows through P, traffic from T to 1 is vis-



ible to P as well. Intuition suggests that in a situation such
as this, it may well be possible for Provider P to form an
inference about the traffic flowing between X and T.

In this paper we show that this intuition holds in practice.
To do so we need to show two things: first, that relationships
between traffic flows exist that could form a basis for infer-
ence; and second, that statistical methods can extract this
information to make accurate estimates of invisible traffic.

To that end, we start by setting up a framework that al-
lows us to construct well-defined estimation problems. We
show that the first challenge is the construction of atomic in-
dexings, a notion that we define. We then identify a number
of atomic indexings and use them to construct traffic ma-
trices measured in two networks (P and T ) over a 14-day
period. Our first result is to show that the TMs we measure
show low effective rank – i.e., there are strong correlations
between columns (or rows), such that a measured TM can be
approximated by a matrix having relatively small rank. We
then identify matrix elements that are visible in T , but not in
P, as targets for estimation by P. Next we identify statistical
methods that are appropriate for estimating those invisible
elements, given the low effective rank of TMs. We show the
relative performance of the various methods, and their over-
all accuracy in estimating both individual matrix elements
as well as the aggregate of all traffic passing through T . We
also show that for the methods we use, accurate estimation
requires a relatively high level of aggregation, which tends to
conflict with the requirement of atomicity. However, we also
show that P can form surprisingly accurate estimates of the
total invisible traffic passing through T . We also illustrate
situations where estimation tends to fail; these illustrations
suggest a number of future challenges.

2. RELATEDWORK
The term traffic matrix has been used for two notions in

the literature. In the first case, a TM is a purely-spatial con-
cept: a set of measurements of traffic flowing between some
sources and some destinations during a fixed time period.
This is the sense as used in [13, 20]. In the second case,
a TM is in fact a time series of (purely-spatial) TMs. This
is the sense as used in [12, 21]. The difference is signifi-
cant because in temporally sequenced TMs, there is a very
strong correlation structure along the time dimension. Past
work has established the low effective rank of such data (e.g.,
[12]), without distinguishing between the effects of tempo-
ral and spatial correlation. In fact most of the work using
these low rank results has implicitly depended strongly on
this temporal correlation.

In contrast, in the problem discussed in this paper, the data
has no time dimension. Hence our results depend only on
spatial correlation. For this reason, documenting the spatial
correlation present in the data is an important first step, and
so forms a part of the results we report in this paper.

The previous work that is closest to ours is reported in
[21]. That work also seeks to infer missing TM measure-

ments, specifically those that are missing due to equipment
malfunction, etc. Thus the approach taken in that paper can
make use of temporal correlation, which improves accuracy
considerably. While making use of temporal correlation may
be helpful in our setting, we expect its contribution to be
much more limited than in [21]. This is because generally,
in our case a TM element to be estimated is rarely or never
visible over time, and so past history is less useful than in
[21]. Additionally, that work focuses on a network’s internal
measurements, rather than measurements of traffic flowing
through other networks; hence it does not need to cope with
the issues of atomicity that are central to the problems we
deal with in this paper.

The general challenge we address in this paper is similar
to the matrix completion problem, which has received con-
siderable attention recently. We review the matrix comple-
tion problem in Section 6.2; here we note that our problem
differs in certain ways from the standard matrix completion
setting [4, 10]. In particular, the matrices we work with are
not uniformly sampled; the usable entries correspond to vis-
ible elements and these are irregularly scattered, reflecting
local routing. Furthermore, our TM entries tend to show
high variability which has the potential to invalidate unifor-
mity assumptions required by matrix completion methods.

Besides our work, other papers have looked at the prob-
lem of estimating interdomain traffic demands. The work
described in [8] estimates only the portion of traffic that is
Web related, and depends on the availability of server logs
from a large content delivery network provider. The work
described in [5] estimates properties of ASes such as popu-
lation size and AS role and uses these to form estimates of
interdomain traffic volume.

Finally, we note that the low effective rank of TMs within
individual ASes has been implicitly or explicitly assumed in
some previous work. The gravity models that have been used
in TM modeling in the past (e.g., [19]) are rank-1 models.
The authors in [6] find that a rank-2 model is a good fit to
measured TMs, and the author in [16] shows that a rank-1
model is a good fit to measured TMs. However, these papers
do not ask the question of what rank model is the best fit to
measured TMs, which is a focus in this paper.

3. FRAMEWORK, GOALS, AND CHAL-
LENGES

In order for traffic measurements collected in one network
to be useful in estimating traffic passing through another net-
work, the available data must be placed into a framework
yielding a well-defined estimation problem. To set out that
framework we start with some definitions.

In what follows, we use bold symbols to refer to matrices
(M) and vectors (x). Vectors are column vectors, and ||x||
denotes the !2 norm of x.

3.1 Basic Definitions
We are concerned with using traffic measurements made



in a Predictor network (P) to estimate traffic measurements
that would be seen in a Target network (T ) (e.g., as shown
in Figure 1(b)). To do this, we need to distinguish between a
view, a traffic matrix, and an indexing.

For a given network P, consider an interval during which
there are no changes in external routing. Then there is a set
of IP source-destination pairs (s,d) such that if s generates
traffic and sends it to d, that traffic will pass through P. This
set is called the network’s view during that interval.

A traffic matrix (TM) is an m× n matrix M(!) in which
Mi j(!) is a measure of some subset of the traffic flowing from
a set of addresses Si to a set of addresses D j during a spe-
cific time interval {t | t! ≤ t < t!+1}. In this paper time inter-
vals will be one day or one week; for brevity we will omit
the time index ! in what follows. The elements {Mi j} may
be any traffic measure; in this paper we consider two: the
number of bytes and the number of packets.

In general, a TM need not be specific to a particular net-
work. However we will work with traffic matrices measured
in particular networks. When necessary, we will use super-
scripts to distinguish TMs measured in different locations, so
M(T ) is measured in the Target network, and M(P) is mea-
sured in the Predictor network.

An indexing is a particular choice I = (S ,D) with S =
{Si | i∈ 1..m} and D = {D j | j∈ 1..n}. Each Si and each D j
is a set of IP addresses. We assume that the sets Si, i= 1..m
are disjoint, as are the sets D j, j = 1..n. If S and D each
form a partition over the entire routable address space, then
a TM with indexing I is a full TM. Otherwise it is a partial
TM.

The way these definitions work together is as follows. At
any moment, the state of the interdomain routing system de-
termines the network’s view. The traffic actually flowing
through the network consists of whatever traffic happens to
flow between pairs of IP addresses in the network’s view.
Applying an indexing to the traffic flowing through the net-
work yields a traffic matrix for the interval.

Consider a particular network N in which we measure a
TM M having indexing I = (S ,D). Element Mi j is fully
visible in N if, for all (s,d) ∈ {Si×D j}, (s,d) is contained
in N’s view. Likewise, element Mi j is invisible in N if no
(s,d) ∈ {Si×D j} is contained in N’s view. Elements that
are neither fully visible nor invisible in N are partially visi-
ble.

3.2 Atomicity
In order to fix the estimation problem, it is necessary to

distinguish between TM values that are known and those that
are unknown. Only known TM values are useful as input to
the estimation problem.

To be more precise, if a TM element is fully visible in the
predictor network, then it is useful as an input. On the other
hand, we do not want to use partially-visible elements as
inputs. Partially-visible elements may contain some useful
information, but they introduce complexity that we want to

avoid. Of course invisible elements are not useful as inputs.
Ideally, if the view for the predictor network were known,

then one could use any indexing and mark the fully-visible
elements as known and the rest as unknown. However this
is difficult in practice. The reason has to do with the organi-
zation of the interdomain routing system, and where knowl-
edge of the state of the routing system actually resides. Con-
sider Figure 1(b). If T changes its routing so that traffic to
1 goes through some provider other than X (and hence no
longer passes through P), BGP does not require that fact to
be announced to P. Thus it is actually difficult for P to know
what its view is, based on the information provided to it by
the routing system. This makes it a challenge to identify the
visibility status in P (fully visible, invisible, or neither) of
any given element in an arbitrary indexing.

In practice, there is a way around this problem – but only
partially. The idea is to define an indexing for P’s TM such
that each element is either invisible, or fully visible. Such
an indexing is atomic for P – it has no elements that are
partially visible in P. Formally, given a particular network P,
an indexing I is atomic for P if, in a TMM using indexing
I , each element Mi j is either fully visible in P, or invisible
in P.

When using an atomic indexing, P still does not know a
priori the visibility status of any given element. However
when P observes traffic, it learns that some elements are in
fact fully visible. So for TM M using an indexing that is
atomic for P, if Mi j $= 0, then it is fully visible in P. In other
words, if Mi j $= 0, then Mi j represents all the traffic flowing
from addresses in Si to addresses in D j. Note though that if
Mi j = 0, its visibility status in P is still unknown.

We also note that even if an indexing is atomic for network
P, the above argument will not hold in general if P’s view
changes during the measurement interval. For example, if
element (i, j) changes from fully visible to invisible during
the measurement period, we can have Mi j $= 0 and yet Mi j
may not represent all corresponding traffic for that interval.
In everything that follows, we assume that each network’s
view does not change during the measurement period. This
assumption is undoubtedly violated for our measurements,
but quantifying its impact is outside our scope.

3.3 Problem Definition
Using the notion of atomicity, we can define two versions

of our estimation problem.

PROBLEM 1: TRAFFIC MATRIX COMPLETION.
Given an indexing I that is atomic for P, and
given a TM M with indexing I measured in P,
estimate the elements ofM that are invisible in P.

PROBLEM 2: ALTERNATE VIEW CON-
STRUCTION. Given an indexing I that is
atomic for two networks, P and T , and given a
TMM with indexing I measured in P, estimate
the elements of M that are invisible in P and



visible in T .

Problem 1 is more general, and if M were a full TM, then
solving Problem 1 would be tantamount to estimating a TM
for the entire Internet. However, by its nature, validating a
solution to Problem 1 is difficult. Hence we focus on Prob-
lem 2, which nonetheless has considerable practical signifi-
cance (as described in Section 1), and whose solution is eas-
ier to validate. Further, our hope is that by exploring so-
lutions to Problem 2 we can form a foundation for solving
Problem 1.

Our focus in this paper is on statistical estimation of in-
dividual traffic matrix elements. However, one complication
in addressing Problem 2 is that we need to know which TM
elements to estimate – that is, we need to know T ’s view.
As discussed in Section 3.2, knowing an AS’s view requires
learning some of the state of the BGP system. This can be
addressed by various methods that are outside our scope. For
example, in the case where T is a “stub” AS, T ’s view can
be learned through analysis of T ’s BGP announcements. In
other cases, it may be possible to learn T ’s view through
analysis of collected BGP tables (e.g., from Routeviews) at
least in an approximate manner. In this paper, we use mea-
surements from T to approximately infer its view, but it is
important to emphasize that is simply one of many possible
methods for inferring T ’s view, and that inferring T ’s view
is not our focus.

We refer to the elements of M that are visible in P as pre-
dictors and the elements to be estimated as targets.

3.4 Atomicity Versus Aggregation
An input to our problem is I , an indexing that is atomic

for both P and T . In practice, we need to find such an index-
ing, and the choice of indexing can have a significant effect
on the tractability of the problem.

Finding indexings that are atomic for two networks seems
hard without knowledge of the global routing system state.
However, one way around this problem is to define indexings
that are atomic for all networks. In fact, there are multiple
such globally-atomic indexings, and one of our goals is to
study their relative merits.

We can define four indexings that are (at least approx-
imately) globally-atomic. These differ in the degree of
aggregation (i.e., spatial granularity) — the number of
source-destination pairs that are assigned to each TM ele-
ment. There are two main benefits to increasing aggregation.
First, it reduces data size; coarser-grained indexings produce
smaller TMs, which reduces computational demands. Sec-
ond, as we will show later, increasing the level of aggrega-
tion generally improves the quality of the solutions we can
obtain.
IP-IP. Consider the indexing (S ,D) in which each

routable IP address constitutes a distinct element Si and a
distinct element D j. Then clearly, this indexing is atomic
for any network, because traffic for each IP address pair
(Si,D j) either passes through a given network, or not.

As already mentioned, there are two difficulties with this
simple approach that immediately present themselves: noise
and scale. The nonzero elements of M will typically be
very small (for reasonable timescales !, e.g., a few days or
weeks), and will show extremely high variability. Further-
more, M is immense – on the order of 500 million × 500
million elements [1]. Together these mean that the resulting
estimation problem will be difficult to solve.
Prefix-Prefix. At a coarser level, one can group addresses

according to the longest matching network prefixes that are
advertised in the BGP system. In this case each Si and D j
correspond to all of the addresses matching a particular pre-
fix. The nature of interdomain routing via BGP dictates that
indexing at the prefix-prefix level will be atomic for any net-
work. This is because all the addresses matching a prefix are
routed the same way in any given router. Aggregation to this
level reduces the maximum size of M to the order of 300K
× 300K [15].1
Atom-Atom. A further coarsening is possible through

empirical analysis of BGP tables. Observations show that
there are many cases in which a collection of prefixes is
routed the same way in any given router. Such collections
are called BGP policy atoms (‘atoms’ for short) [2]. We
constructed atoms using the code made available by CAIDA
[3] and applied to BGP tables from the Route Views Project
[15]. While an atom-atom indexing will usually be atomic,
it is not guaranteed since atoms are defined based only on
forward BGP paths, and using a necessarily-incomplete set
of BGP tables. Nonetheless, we speculated that atom-atom
indexings are close enough to being atomic to be useful. Us-
ing an atom-atom indexing reduces the maximum size of M
to approximately 66K × 66K.
AS-Atom. Finally, we made use of a further coarsening of

the indexing. We note that in many cases, an AS only uses a
single-next hop AS for any given prefix. Although there are
notable violations of this pattern [14], we again speculated
that they were rare enough in our data to make AS-atom in-
dexing approximately atomic. Aggregation to this level re-
duces the maximum size ofM to about 32K × 66K.

4. DATA USED
The data we use in this paper is taken from two networks,

denoted P and T . The general relationship between these
networks and the rest of the Internet is shown in Figure 2.
Network T is a customer of P as well as other networks.
Network T has a number of customers, some of which also
have customers. Also, network P has a number of customers,
and so on. All of the links in the figure are customer-provider
links, except the link between T and O, which is a peering

1For this as well as the other aggregation levels, we used prefixes
as collected by the Route Views Project; these are subject to pre-
fix aggregation which can interfere with atomicity if our measured
networks use less-aggregated prefixes internally. Experiments we
performed with prefixes taken from the RIBs in our networks sug-
gested that this was not a significant source of error.



Indexing Size Density of P Density of T Density of Targets
Prefix-Prefix 7376 × 7431 0.0509 0.0070 0.0059
Atom-Atom 3183 × 3116 0.0428 0.0031 0.0025
AS-Atom 2156 × 3116 0.0517 0.0039 0.0030

Table 1: TM Sizes Used. Density is for Jan. 5 (Day 1).



 

Figure 2: Topological relationships of networks used.

link. The significance of this link and the T -O relationship
will be discussed in Section 7.3.

Figure 3 shows the total amount of traffic passing through
P, T , and the amount of traffic that passes through both,
for each day of our measurement period. The figure shows
that about 5% of P’s traffic consisted of traffic that passed
through T , and about 25% of T ’s traffic passed through P
during our measurement period. Note that in order to pro-
tect proprietary information, we do not label traffic volumes
in our results.

We collected complete netflow logs from all edge
routers in both networks over the 14 day period January 5,
2010 – January 19, 2010. Measurements in P were based on
1:100 sampling; in T some routers sampled at 1:1, some at
1:100 and some at 1:200. All results reported here are based
on inverting sampling in the straightforward way by multi-
plying each flow’s stated volume by the sampling rate of the
router reporting the flow. Multiple counting of flows was
eliminated, so that what remained was a record of each sam-
pled flow that passed through P or T . Analysis (not shown)
indicates that the uncertainty in traffic measures due to the
inversion of sampling is small compared with the overall ac-
curacy of our methods.

For each of the 14 days in our measurement period, we
constructed traffic matrices using 3 globally-atomic index-
ings: prefix-prefix, atom-atom, and AS-atom. We then chose
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a subset of rows and columns that captured most of the traffic
present in each TM (86-90% for T , and 82-83% for P). We
used the same set of rows and columns for each day’s TM.
The final TM sizes and density (number of nonzero entries)
are shown in Table 1.

As has been noted in previous studies, most traffic is con-
centrated in a small number of matrix elements [11, 7, 17].
The sizes of matrix elements show high variability charac-
terized by a long distributional tail. The tail of the size dis-
tribution of elements for the Prefix-Prefix matrix measured
in P on January 5 is shown in Figure 4.

5. EFFECTIVE RANK
In this section we present our primary characterization re-

sults, which are that the spatial traffic matrices we use appear
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Figure 5: Spectral Plots of TMs as a Function of Size

to show low effective rank.
A matrixM has effective rank r ifM can be approximated

by a rank-r matrix, that is, if there exists a rank-r matrix M′

such that ∑(Mi j−M′
i j)

2 is suitably small. A direct way to
test this is to form the singular value decomposition of M=
UΣVT, and extract the singular values from the diagonal of
Σ (the eigenspectrum of M). These give a measure of how
much each additional increase in rank improves an optimal
approximation of M. If it is the case that beyond the first r
singular values the remaining singular values are all small,
we can conclude thatM has effective rank r.

To assess the effective rank for spatial traffic matrices
such as ours, we developed a simple method to extract dense
square submatrices from our sparse matrix M(P).2 We then
extracted a large set of non-overlapping submatrices from
the prefix-prefix, atom-atom, and AS-atom matrices for Jan.
5. The matrices we extracted vary in size from 20 × 20
up to 100 × 100. We then computed the eigenspectrum of
each extracted matrix, and normalized each spectrum to set
its largest singular value to 1.

We are particularly interested in the relationship between
matrix size and effective rank, so we then averaged the
eigenspectra for each matrix size. The resulting averaged
spectra are shown in Figure 5. The figure label shows the
size (number of rows or columns) of each matrix as well as
the number of non-overlapping matrices whose spectra were
averaged into the curve shown.

The figure compares the averaged eigenspectra for
different-sized matrices. There are two striking character-
istics: first, the effective rank does not seem to vary appre-
ciably as a function of matrix size. In most cases we can
conclude that the effective rank is approximately 5 or less.
Second, the effective rank does not seem to vary appreciably
with the degree of aggregation: prefix-prefix, atom-atom,
and AS-atom matrices all show similar eigenspectra.

Hence we find that dense submatrices ofM typically show
very low effective rank. While this does not directly inform

2This simply consists of finding a set of rows and columns ofM(P)

such that the resulting submatrix has no zero elements. No ele-
ments are inferred in this process.

us about the effective rank of M as a whole, the consistency
of our results with respect to size and aggregation level sug-
gest that other submatrices of M are also likely to show low
effective rank.

6. METHODS
The previous section showed that there is typically con-

siderable structure in a TM that may be used for prediction
purposes. We took two approaches to exploiting that struc-
ture: element-by-element linear estimation, and matrix com-
pletion.

6.1 Elementwise Linear Estimation
The fact that TMs show low effective rank means that a

typical column can be expressed as a linear combination of
a small number of orthogonal vectors. This suggests using
linear estimators. A linear estimator takes the form

t̂= Aβ

where the elements of A are model inputs, the elements of
β are the model parameters, and elements of t̂ are the model
outputs (the estimations).

To train such an estimator we need to find parameters β ,
and to use the estimator we need inputs A. Both of these
need to be derived from the elements of M that are visible
in P. Because the visible elements are irregularly scattered
in M, the simplest approach is to construct a separate linear
estimator for each target. The estimator then is

t̂ = aTβ (1)

where t is a scalar, and a and β are column vectors.
To train the model (estimate β ) we need training data.

Thus, for each target t having position (i, j) in M, we need
to construct the tableau as shown in Figure 6. That is, we
need to find predictor rows and columns in M such that X,
y, and a are all visible in P. Having done that, we could then
estimate β̂ as the least-squares solution to y= Xβ , and then
estimate the target element as t̂ = aT β̂ .

In our problem however, it is not a good idea to estimate
β in the straightforward manner of least-squares solution of
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Figure 6: Tableau for Elementwise Linear Estimation

y=Xβ . The reason has to do with the nature of X. Typically
the columns of X are strongly correlated (indeed, that is the
main implication of the results in Section 5). As a result, the
value of β that minimizes ||Xβ − y|| will be very unstable.
Because there are many predictors that are carrying similar
information, β̂ will tend to be over-fit to the small differ-
ences between the predictors. The result is that β̂ , while an
unbiased estimate of β , will have high variance. In our prob-
lem, this error arising from estimation variance makes the
results obtained using straightforward least squares highly
inaccurate.

There are a variety of methods for dealing with this sit-
uation [9, Ch. 3]. The general approach is to constrain β̂
in some manner that makes it slightly biased, but with sig-
nificantly lower variance. In doing so, the total error (bias
squared plus variance) is reduced. We used two methods:
principal components regression, and ridge regression.

6.1.1 Principal Components Regression
A first approach to reducing the variance of β̂ comes from

the realization that X has low effective rank: instead of re-
gressing y against the columns of X, we regress y against
the few important (column) eigenvectors of X. This is called
principal components regression (PC regression).

To apply PC regression one chooses a value k and discards
the s− k least significant eigenvectors, where s= min(m,n)
for X having size m× n. This can be accomplished by sin-
gular value decomposition of X: UΣVT = X. Setting X̃ to
be the k columns of U with largest singular values (entries
on the diagonal of Σ), one then forms the PC regression es-
timate of β by least squares:

β̂ = argmin
β

||X̃β −y||

Thus, for any given value of k, PC regression is equivalent to
setting the s− k smallest singular values of X to zero before
estimating β .

PC regression can be seen as a kind of smoothing or noise
reduction inX. This smoothing retains most of the predictive
information in X but transforms that information into a set
of orthogonal predictors X̃ which, by nature of their lack of
correlation, yield a more stable estimate of β .

6.1.2 Ridge Regression
A drawback to PC regression is that it works in discrete

steps, corresponding to different choices of k. Ridge regres-
sion is a method that is similar in spirit to PC regression, but
with a continuously-variable tuning parameter.

The idea behind ridge regression is that when β is un-
stable, its individual elements will typically be very large.
Ridge regression imposes a penalty on large values of β :

β̂ = argmin
β

||Xβ −y||+λ ||β ||

with λ > 0. It can be shown that ridge regression is equiva-
lent to the least-squares solution of

β̂ = argmin
β

||X̃β −y||

where X̃ is formed from X as follows. Starting again from
the SVD X= UΣVT, a new Σ̃ is formed by shrinking the
singular values:

σ̃i =
σ2
i

σ2
i +λ

σi (2)

and X̃ is then constructed from X̃= UΣ̃VT.
The transformation (2) has a greater effect on small singu-

lar values than on large singular values. Hence, ridge regres-
sion can be seen as similar to PC regression, but with an im-
portant difference. While PC regression sets the s−k small-
est singular values of X to zero, ridge regression shrinks all
the singular values of X, with a greater amount of shrinkage
applied to the smaller singular values.

In this paper we plot results in terms of the effective de-
grees of freedom of the ridge regression fit. This is defined
as:

df(λ ) =
s

∑
j=1

σ2
j

σ2
j +λ

Note that df(0) = s, and when λ → ∞, df(λ ) → 0.
Both PC regression and ridge regression introduce the ad-

ditional need to determine the proper value of a tuning pa-
rameter (k or λ ). Determining the best value of the tuning
parameter to use in general can be approached via cross-
validation: using β̂ derived from X̃ and y, one estimates
other, known values of M. One then chooses the tuning pa-
rameter value that minimizes the resulting cross-validation
error. We show examples in Section 7 showing that cross-
validation can be effective for finding a good value of λ .

6.2 Matrix Completion
Matrix completion [4, 10] addresses the problem of recov-

ering a low-rank matrix from a subset of its entries. Suppose
M is an m× n matrix that has rank r ( min(m,n) or that
can be approximated by a rank r matrix. Assume that only
a subset of M’s elements Ω = {(i, j)} are known. If the set
Ω contains enough information, and M meets a condition
called incoherence, then there is a unique rank-r matrix that
is consistent with the observed entries.
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Figure 7: Estimating Individual Elements (NMAE).

Incoherence means that singular vectors of M are spread
across all coordinates, i.e. they are not correlated with the
standard basis vectors. In essence this means that the singu-
lar vectors are not ‘spiky,’ as would occur when a few entries
of M are much larger than the others. The condition of suf-
ficient information in Ω is met when the set Ω is sampled
from the entries of M uniformly at random, and with suffi-
cient density (of the order O(r(m+n) polylog(m+n))).

A variety of algorithms have been proposed for recovering
M. Most rely on a convex optimization, namely, minimiz-
ing the nuclear norm (sum of the singular values) of a matrix
W such thatWi j =Mi j,(i, j) ∈Ω. These approaches tend to
be computationally demanding for large matrices. We used
LMaFit [18] which does not rely on nuclear norm minimiza-
tion, and which we found to be fast and robust.

Matrix completion methods assume that M and Ω are
given. However in our case M may not meet the require-
ments of the method. In particular, the density of any given
row or column of M is not guaranteed to be sufficient to al-
low estimation of its missing entries. Hence for each M we
selected a submatrix S such that there were no less than c
entries in each row and column of S. Increasing c represents
a trade-off between increasing the information available for
estimation and decreasing the number of entries that can be
estimated. We found that the size of S dropped off sharply
for c > 50; at c = 50, the fraction of traffic in M that was
contained in S was 91-99% for prefix-prefix matrices, and
80-88% for atom-atom and AS-atom matrices. Hence we
used c= 50 in the experiments we report here.

Besides the condition of sufficient information in Ω, our
matrices may violate the assumptions of matrix completion
methods in other ways. Matrix elements tend to show high
variability, which may violate the incoherence assumption;
and in our case Ω is not uniformly sampled, but rather is
determined by P’s view.

6.3 Error Metrics
We measure two kinds of error: error in estimating indi-

vidual invisible elements, and error in estimating the total
amount of invisible traffic flowing through T .

We would like to estimate the elements that are visible in
T and invisible in P. However, as discussed in Section 3.3,

we do not know the exact views corresponding to T or P, so
we approximate the set of targets τ as:

τ = {(i, j) |M(T )
i j $= 0 and M(P)

i j = 0}

To measure error in estimating individual elements of τ we
use Normalized Mean Absolute Error (NMAE):

NMAE =
∑(i, j)∈τ |M

(T )
i j − M̂i j |

∑(i, j)∈τM
(T )
i j

where the M̂i j are estimated using information only from P.
To measure error in estimating the total invisible traffic, we
use Absolute Relative Error (of the total):

RE =
| ∑(i, j)∈τ M̂i j−∑(i, j)∈τM

(T )
i j |

∑(i, j)∈τM
(T )
i j

7. RESULTS

7.1 Estimating Individual Elements
The accuracy obtained in estimating individual elements

is shown in Figure 7. For each of the 14 days, we compute
NMAE of the estimates; each point on these figures repre-
sents the average over the 14 days. Where error bars are
smaller than the within-class variation, they are omitted for
clarity.

The figures illustrate a number of results. First, the esti-
mation errors for the prefix-prefix indexing are much larger
than for the others; most prefix-prefix results are off the scale
in Figure 7(a). Prefix-prefix results for ridge regression and
matrix completion were equally poor and are not shown.

Second, the regression methods are more effective in gen-
eral than matrix completion. More study is needed to under-
stand the reasons for this, but as noted earlier, our data may
not meet the assumptions necessary for matrix completion
to be successful.

Third, the plots show that regression methods show im-
provement with increased regularization (decreased rank or
df of X̃). This reflects the strong correlation in measured
TMs. However, matrix completion does not show a signifi-
cant dependence on the assumed rank r.
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Finally, it appears that the particular kind of regularization
applied by ridge regression is the most effective kind for our
data. For ridge regression, the magnitudes of NMAE found
in the best cases are between 0.8 and 1 (with 0 < df < 0.2).
This means that average error in the estimates is less than the
average magnitude of a TM element.

As mentioned earlier, proper selection of the tunable pa-
rameter is important to achieve highest accuracy. Figure 8
shows that cross-validation can be used for this task. We
performed very simple cross validation as follows: for each
target, after forming β̂ , we selected a single known, nonzero
element from M(P) and used β̂ to estimate it. The NMAE
of those estimates for the first seven days of our data un-
der ridge regression is shown in Figure 8. The figure shows
that cross-validation NMAE shows a minimum in the same
range of df as we find the actual average minimum error (in
Figure 7(b)). Notably, different days show different mini-
mal values for df; these differences are averaged out in Fig-
ure 7(b). We note that this method of cross-validation is far
from optimal (see, e.g., [9]), and improving it is a focus for
future work; the example simply serves to show how the tun-
ing parameter may be selected in practice.

7.2 Estimating Total Invisible Traffic
Given that TM elements range in size over many orders of

magnitude, achieving an NMAE less than 1 is good. How-
ever, we would like to form more accurate estimates, so we
examine the nature of the errors. For illustration purposes
we focus on January 8 (day 4), and examine the errors in
estimating values for packets at the Atom-Atom aggregation
level under ridge regression (with df = 0.2).

A histogram showing the distribution of M(T )
i j − M̂i j

around zero is shown in Figure 9. The histogram shows that
the errors are more or less symmetric about zero. This sug-
gests that the estimation process is relatively unbiased, so
that the main contributor to NMAE is the variance of the es-
timator. This leads to the conclusion that summing estimates
is likely to lead to improved accuracy, as errors cancel out.

Summing all the estimates for a single day leads to an esti-
mate for the total amount of invisible traffic flowing through
T . The relative error of this estimate is shown in Figure 10.
The figure shows that the resulting accuracy can be quite
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Figure 9: Example Distribution of Errors

good; it is best for ridge regression. A more direct sense of
the achievable accuracy can be obtained by looking at the
comparison between daily estimates and actual values of the
total traffic flowing through T . This is shown (for ridge re-
gression) in Figure 11. The figure shows actual and esti-
mated total invisible traffic, and for comparison purposes,
the volume of traffic that flows through both P and T . This
latter traffic constitutes the information used by P to esti-
mate the total traffic through T . The figure shows that for
both packets and bytes, whether using the atom-atom or AS-
atom aggregations, measurements taken in P are sufficient to
accurately estimate day-over-day traffic volumes in T .

Can finer-grained estimates be accurate as well? Here we
recall our motivating example (Figure 1(a)). Can we esti-
mate how much traffic T is exchanging with other ASes?
Referring to Figure 2, note that T has two providers (other
than P). We refer to these two providers as AS1 and AS2.
In Figure 12 we show actual and estimated traffic flowing
between T and these two providers (in packets). The fig-
ure shows that P can indeed form accurate estimates of the
invisible traffic flowing between T and its other providers.

It is important to ask how these results are affected by the
topological relationship between networks P and T . Of par-
ticular interest is the amount of information that P has about
T ’s TM. In our data, for the atom-atom indexing, about
20.4% of the nonzero elements in M(T ) are nonzero (visi-
ble) in M(P). That is, 20.4% of T ’s atom-atom flows also
flow through P. One way to assess the importance of this
overlap is by artificially reducing the information available
to P. To do this, we chose a fraction p of elements at ran-
dom from the set nonzero in both P and T , and made these
unavailable to P for use in estimation. We varied p from 5%
to 95%. The results are shown in Figure 13.

The Figure shows the average relative error in estimating
the total traffic in T across all days (using ridge regression
with df = 0.2 on byte counts with atom-atom indexing; er-
ror bars show one standard error). In the Figure, the x-axis
shows the fraction of T ’s nonzero elements that P uses in
estimation. This varies from about 20% down to about 1%.
The figure shows that P can form a reasonably accurate es-
timate of T ’s total traffic even when P only has access to as
little as 5% of the nonzero elements in T .



 0

 0.5

 1

 1.5

 2

 1  1.5  2  2.5  3  3.5  4  4.5  5

A
vg

 A
bs

ol
ut

e 
Re

la
tiv

e 
Er

ro
r

Rank

atom-atom / pkt
as-atom / pkt

prefix-prefix / pkt
atom-atom / byte

as-atom / byte
prefix-prefix / byte

(a) PC Regression

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

A
vg

 A
bs

ol
ut

e 
Re

la
tiv

e 
Er

ro
r

df

atom-atom / pkt
as-atom / pkt

atom-atom / byte
as-atom / byte

(b) Ridge Regression

 0

 0.5

 1

 1.5

 2

 1  2  3  4  5  6  7  8  9  10

A
vg

 A
bs

ol
ut

e 
Re

la
tiv

e 
Er

ro
r

Rank

pkt
byte

(c) Matrix Completion (Atom-Atom)

Figure 10: Relative Error in Estimating Total Invisible Traffic
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Figure 11: Estimated Daily Traffic Volume, Ridge Regression

7.3 Error Analysis
It is instructive to examine the cases in which traffic es-

timation fails. Figure 14 shows views of the complete dis-
tribution of errors for January 8 (same case as Figure 9).
Whereas Figure 9 narrowed in on the errors around zero,
Figure 14 shows all errors.

In Figure 14(a) there are four elements (not visible in the
plot) that are so strongly negative as to offset the entire scale.
Figure 14(b) shows the log-log complementary distribution
plot of errors; it shows how clearly the four unusual elements
stand out from the rest of the errors.

To understand the four unusual elements better, we ex-
amined the set of flows that were mapped to each element.
Based on their traffic composition, we find that the four el-
ements fall into two categories. The first category consists
of three elements holding highly-local traffic. These consist
of (1) the matrix element that represents T -T traffic (sourced

and destined within T ); (2) traffic from T toO; and (3) traffic
fromO to T . Recall that T andO have a peering relationship,
as shown in Figure 2.

The second category consists of the one remaining ele-
ment. All of its traffic consists of UDP packets from a single
source address (in network T ) to a single destination address
(in a geographically distant network) with destination port
53 – i.e., a DOS attack on a DNS server.

Looking at other days, we find that the same first three ele-
ments are typically very large, and typically underestimated.
That is, we find that these three elements in the first category
are consistently the source of the most significant errors. On
some of the other days, there is also a single additional ele-
ment (like our DOS attack) that introduces noticeable error.

It is not clear why such an unusually large amount of traf-
fic flows between T ↔ T or between T ↔ O. However, we
note that ISPs often seek to keep traffic within their network
boundaries, so the large T ↔ T traffic may be a result of this.
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Further, we note that T and O serve the same geographical
region, and that the large volume of traffic passing between
them seems to be dominated by distribution of large software
packages via HTTP. Hence, it appears that T and O have a
somewhat atypical relationship.

8. CONCLUSIONS AND FUTUREWORK
In summary, this paper has formalized the problem of

inferring invisible traffic. We have defined and identified
the need for atomic indexings, and pointed out a number
of atomic indexings that are useful. We then presented ev-
idence that the purely-spatial traffic matrices we measure
show low effective rank. Building on this observation, we
identified and evaluated a number of statistical methods for
estimating invisible traffic. We found that regularized regres-
sion, applied on an element-by-element basis, shows good
results. We also found that the fine granularity required by
the need for atomic indexing is in tension with the aggrega-
tion needed to form accurate estimates.

This work has a number of limitations, which suggest the
need for future study. A central limitation is that our mea-
surements are taken from only two networks. This means,
for example, that our observations of low effective rank of
spatial TMs need replication in other settings. It also means
that we cannot directly extrapolate to other network settings
(for example, different topological relationships between P

and T ) without further investigation.
Our work also suggests additional promising directions.

There is opportunity to improve estimates (e.g., for cases like
T ↔O) through the introduction of additional side informa-
tion, of the kind used in [5]. More refined statistical methods
and better cross-validation could improve overall accuracy.
The question of why matrix completion does not perform
better is worth investigation as well. Finally, we note that
the presence of errors caused by traffic anomalies suggest
that purely-spatial methods may be a basis for anomaly de-
tection.

Nonetheless, with respect to our motivating problem, our
work shows that because of the low effective rank of our
measured traffic matrices, accurate estimation of invisible
traffic is possible. A network like P can form quite accurate
estimates of the total traffic flowing through another network
such as T , and even of the amount of invisible traffic that T
exchanges with its providers. Our hope is that this result can
lead to improved understanding of the spatial distribution of
traffic in the Internet.
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