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Abstract

In protein-protein interaction (PPI) networks, functional similarity is often inferred based on the function of directly
interacting proteins, or more generally, some notion of interaction network proximity among proteins in a local
neighborhood. Prior methods typically measure proximity as the shortest-path distance in the network, but this has only a
limited ability to capture fine-grained neighborhood distinctions, because most proteins are close to each other, and there
are many ties in proximity. We introduce diffusion state distance (DSD), a new metric based on a graph diffusion property,
designed to capture finer-grained distinctions in proximity for transfer of functional annotation in PPI networks. We present
a tool that, when input a PPI network, will output the DSD distances between every pair of proteins. We show that replacing
the shortest-path metric by DSD improves the performance of classical function prediction methods across the board.
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Introduction

One of the best-studied classical problems on biological

networks involves using proteins of known function, together with

the structure of the network of known protein-protein interactions

(PPI) to make predictions of functions of unlabeled protein nodes.

This is an important problem because, even in the best-studied

model organisms, such as S. cerevisiae, these networks contain many

proteins whose function is still completely uncharacterized. There

are many proposed methods for this problem, including versions of

majority voting [1], neighborhood algorithms [2,3], clustering

algorithms [4–6], algorithms based on maximum flow [7], or

multi-way cut [8,9], and a number of others [10].

Modern approaches also seek to deal with data quality:

generally, the known network is missing many valid interactions,

and some interactions may be known with higher confidence than

others [11,12]. Other modern approaches integrate PPI network

data with high-throughput biological interaction data, such as

sequence information, genetic interactions, structural information,

and expression data [8,13–15]. However, nearly all methods that

predict function using PPI network structure depend, entirely or at

least partially, on the simple shortest-path distance metric applied

to the PPI graph.

We start with the observation that there is an intrinsic drawback

to relying on the ordinary shortest-path distance metric in PPI

networks. PPI networks are known to be ‘‘small world’’ networks

in the sense that they are small-diameter, and most nodes are close

to all other nodes (though the exact details of the degree

distribution and the resulting extent to which they are ‘‘scale

free’’ is a subject of lively debate, see [13,16–19]). Thus any

method that infers similarity based on proximity will find that a

large fraction of the network is proximate to any typical node. In

fact, this issue has already been termed the ‘‘ties in proximity’’

problem in the computational biology literature [4].

Furthermore, the fact that two nodes are adjacent (i.e., have

shortest-path distance 1) in a PPI network can signify something

very different than the adjacency of two other nodes. For example,

as we discuss below, in PPI networks two nodes with many low-

degree neighbors in common should be thought of as ‘‘more

similar’’ than nodes with few low-degree neighbors in common;

and such nodes should also be thought of as ‘‘more similar’’ than

two nodes whose common neighbors have high degree. Thus,

characterizing node pairs based only on a shortest-path notion of

distance fails to capture important knowledge encoded in the

structure of the network.

What is needed instead is a finer-grained distance metric,

capable of making more subtle distinctions of similarity than

ordinary shortest-path distance would in a small-world network.

To that end we introduce a new metric called Diffusion State

Distance, or DSD. We show that DSD is much more effective than

shortest-path distance for the problem of transferring functional

labels across nodes in PPI networks.

We demonstrate the utility of the DSD metric by modifying a

number of the most popular classical algorithms for function

prediction to replace the ordinary notion of distance with DSD.

For the problem of predicting functional labels in the S. cerevisiae

network, this change improves all the algorithms we consider. We
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then show that similar improvements hold for the more sparsely

annotated S. pombe network, implying that our advances should

generalize to other biological networks.

Motivation for DSD
To start, we consider all known physical interactions in the S.

cerevisiae PPI network – specifically, version 3.2.102 of BioGRID

[20] on verified ORFs for S. cerevisiae, which contains 128,643

annotated physical interactions. After removing redundant edges

and selecting the largest connected component, the resulting PPI

network has 4990 nodes (where each ORF corresponds to a node)

and 74,310 edges (where each edge corresponds to an annotated

physical interaction).

Figure 1(a) shows the histogram of shortest-path lengths from

this network. The figure shows that almost all pairs of nodes (over

95%) are either 2 hops or 3 hops apart. Thus the ‘‘typical’’

distance between nodes under this metric is very small. Likewise,

the overall network diameter is quite small as well.

The fact that most node pairs are quite close together means

that the concept of ‘‘neighborhood’’ using this metric is not very

useful. For example, if one looks at the 2-hop neighborhood of a

typical node, it probably includes around half of all nodes in the

graph. Hence, shortest-path distance cannot be expected to give a

good sense of locality or modularity in this network, and we

observe that if one seeks to use graph structure to infer similarity of

function in a PPI network, using shortest-paths to measure

distance has serious drawbacks.

One of the reasons that paths are typically short in biological

networks like the PPI network is due to the presence of hubs – very

high degree nodes which represent proteins that have many

physical interaction partners. In fact, in the case of PPI networks,

hubs often represent proteins with different functional roles than

their neighbors. For example, chaperone proteins (proteins that

help other proteins fold correctly) are often hubs, and are not

Figure 1. Structure of shortest paths in the yeast PPI network. (a) Distribution of shortest-path distances in the largest connected component
of the yeast PPI network; (b) an example subgraph with a hub.
doi:10.1371/journal.pone.0076339.g001

Figure 2. Distribution of DSD in the largest connected
component of the yeast PPI network; the red curve represents
a fitted normal distribution for comparison.
doi:10.1371/journal.pone.0076339.g002

Figure 3. An example of functional annotation with DSD. The
correct functional annotation for GLR1, on the third level of the MIPS
hierarchy, 32.01.01 (oxidative stress response) is found among none of
its direct neighbors, but with the node that is closest in DSD, MXR2.
MXR2 is closest in DSD because it has the most similar neighborhood to
GLR1.
doi:10.1371/journal.pone.0076339.g003
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typically functionally related to their interaction partners. The

same is true for proteins involved in translation. In our network, as

an extreme example, the highest degree node is the protein NAB2,

which has 2325 physical interactions in our PPI network. Its

functional annotation terms: ‘‘39-end processing’’, ‘‘RNA binding’’

and ‘‘RNA transport’’ [21] suggest that this protein is involved in

translation machinery and thus will bind with a highly diverse set

of proteins with unrelated function. Hubs are also more likely to be

proteins with multiple, distinct functions [22].

Hence, not all short paths provide equally strong evidence of

similar function in PPI networks. Consider the network in

Figure 1(b). Although nodes B and H are only one hop apart,

this does not suggest they are functionally related, since H is a hub.

Likewise, B and A are not necessarily functionally related, since

they are connected through a hub.

To capture the notion that A and B are not necessarily related,

we note that a random walk starting at A is not likely to reach B
quickly. If we restrict attention to random walks of, say, 3 hops,

then often one will not reach B from A at all.

This motivates the first element of our new metric definition.

Given some fixed kw0, we define Hefkg(A,B) to be the expected

number of times that a random walk starting at A and proceeding

for k steps, will visit B. Note that Hefkg(A,B) bears some

resemblance to previous diffusion approaches suggested for PPI

networks, see [23,24], though we will next be building metric

structure on top of Hefkg(A,B) in a completely novel way. For

now, note that Hefkg(A,B) captures our intuition regarding

similarity, because node pairs connected by many short paths of

low-degree nodes will tend to have high Hefkg() values. If node

pairs with a large Hefkg() value are then somehow considered

‘similar’ in our metric, then clearly Hefkg() does a better job of

capturing ‘similarity’ than does shortest-path distance. This is

because A and B are relatively far under this metric; the influence

of the hub H decreases the likelihood of a random walk from A
landing at B.

But a metric whose notion of similarity is based only on using

Hefkg() between the two given nodes directly does not solve all our

problems. In particular, note that Hefkg(A,H) will indicate strong

similarity, even though (as we have argued) A is not likely to be

strongly functionally related to H. Furthermore, Hefkg() is still far

from a metric; note it is not even symmetric. Also, Hefkg() is only a

pairwise, and not a global measure of node similarity. This

observation leads us to use Hefkg() in a more subtle way, and in a

different manner than previous diffusion approaches, resulting in

the definition of DSD, which we describe next.

Definition of the New Distance Metric
Consider the undirected graph G(V ,E) on the vertex set

V~fv1,v2,v3,:::,vng and jV j~n. Recall that Hefkg(A,B) is

defined as the expected number of times that a random walk

starting at node A and proceeding for k steps, will visit node B. In

what follows, assume k is fixed, and when there is no ambiguity, in

the value of k, we will denote Hefkg(A,B) by He(A,B). We further

define a n-dimensional vector He(vi),Vvi[V , where

He(vi)~(He(vi,v1),He(vi,v2),:::,He(vi,vn)):

Then, the Diffusion State Distance (DSD) between two vertices u
and v, Vu,v[V is defined as:

DSD(u,v)~jjHe(u){He(v)jj1:

where jjHe(u){He(v)jj1 denotes the L1 norm of the He vectors of

u and v.

We will show for any fixed k, that DSD is a metric, namely that

it is symmetric, positive definite, and non-zero whenever u=v, and

it obeys the triangle inequality. Thus, one can use DSD to reason

about distances in a network in a sound manner. Further, we show

that DSD converges as the k in Hefkg(A,B) goes to infinity,

allowing us to define DSD independent from the value k.

Characteristics of DSD
Figure 2 shows the distribution of DSD values in the PPI

network of S. cerevisiae as downloaded in BioGRID [20]. The figure

shows that DSD distances take on a smooth, continuous range of

values. This is in sharp contrast to shortest-path distances, as

shown in Figure 1(a), and shows that DSD is capable of making

much finer-grained distinctions of similarity over pairs of nodes in

the network.

Figure 3 shows a typical example illustrating the nature of DSD.

The Figure shows the gene GLR1 (in red at left) along with a

subset of its local neighborhood. Node sizes have been made

inversely proportional to their DSD distance from GLR1. None of

Table 1. Summary of DSD improvements of all four methods in 2-fold cross validation (mean and standard deviation in
percentage) for the PPI network of S. cerevisiae.

MIPS 1 MIPS 2 MIPS 3

Accuracy F1 score Accuracy F1 score Accuracy F1

Majority Vote (MV) 50.060.5 41.660.2 40.760.5 30.760.4 38.460.4 29.560.4

MV with DSD 63.760.4 47.260.2 49.360.5 35.660.2 43.860.4 32.360.3

MV (weighted DSD) 63.260.5 48.160.3 50.660.4 36.660.2 45.360.3 33.660.2

Neighborhood (NH) 43.360.3 34.560.2 32.460.6 26.160.3 31.360.5 24.860.3

NH with DSD 51.560.4 40.660.3 34.860.5 27.760.2 32.660.6 25.160.3

Multi-cut 55.260.4 42.160.2 42.060.6 28.160.2 36.660.4 24.860.3

Multi-cut with DSD 58.360.3 42.260.2 44.660.4 29.660.1 38.260.3 25.360.2

Functional Flow (FF) 50.560.6 37.060.3 32.160.4 22.660.3 25.460.6 18.360.3

FF with DSD 54.060.4 40.860.2 38.360.3 27.160.3 31.560.3 22.860.2

doi:10.1371/journal.pone.0076339.t001
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GLR1’s immediate neighbors contain its correct functional label at

the third level of the MIPS hierarchy (32.01.01: oxidative stress

response). However, the node closest in DSD is MXR2, which has

exactly the same functional label. DSD recognizes that nodes

having large common low-degree neighborhoods are highly

similar and correctly identifies functionally similar node pairs,

and does so in situations where shortest-path distance fails.

Methods

Functional Categories
We continue to work with the dataset described above, the

largest connected component from an experimentally derived

physical interaction PPI network from S. cerevisiae with 4990 nodes,

and 74,310 edges. As in the papers introducing the classical

function prediction methods we consider, we primarily use the

MIPS (Munich Information Center For Protein Sequences)

functional catalogue (FunCat) for our functional category labels

[21]. We use the latest version of FunCat (version 2.1) and the first,

second and third level functional categories, retaining those for

which at least three proteins in our dataset are annotated with

those labels. We present results for the first level (17 functional

categories) second level (74 of the 80 functional categories that

annotate at least one protein, annotate at least 3 proteins) and

third level (154 of 181 functional categories that annotate at least

one protein, annotate at least 3 proteins) MIPS annotations. MIPS

is a shallow, leveled, hierarchical classification scheme for protein

function, but we also present results for the popular Gene

Ontology (GO) [25], where the variable depth hierarchy of the

annotation labels makes the evaluation of labeling methods more

complicated.

We assumed all published labels were correct and did not

attempt for this study to weigh them by a level of confidence in

each type of biological experiment. The following classical

methods were tested in their original form (using shortest-path

distance), against a DSD variant in cross validation.

Cross Validation Task
We considered 2-fold cross validation tasks. In each of the 2-fold

cross validation tasks, we first randomly split the annotated

proteins into 2 sets, and consider only the annotations on one

partition in the training set, when trying to predict the annotations

on proteins in the test set, and average the performance over the 2

folds of the cross validation. We conduct 10 runs of 2-fold cross-

validation and report the mean and standard deviation of the

following performance measures over these 10 runs.

Accuracy. This is the performance measurement suggested in

[1]. Each protein is assigned its highest-scoring functional label.

Figure 4. Improvement on Accuracy and F1 Score for at different neighborhood thresholds, for the majority voting algorithm in 10
runs of 2-fold cross validation for S. cerevisiae, with standard deviations.
doi:10.1371/journal.pone.0076339.g004
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The label is considered correct if it appears among the labels that

were assigned to the protein. We calculate the percentage of

proteins that are assigned a correct label.

F1 score. This is the performance measurement suggested in

[26]. For each protein, the possible functional labels the algorithm

could assign are stored in a ranked list according to score. Each

label is considered correct if it appears among the labels that were

assigned to the protein, and incorrect otherwise. We calculate

precision and recall by looking at the top a (in our case, we present

results for a~3) predicted annotations. Then the F1 score for each

function can be calculated as:

F1~
2 � precision � recall

precisionzrecall

We average F1 scores over the individual functions and obtain

the overall F1 score for each algorithm.

Protein Function Prediction Methods
Neighborhood Majority Voting Algorithm. This is the

simplest of all function prediction methods. Directly applying the

concept of ‘guilt by association’, Schwikowski et al. [1] considered

for each protein u[V its neighboring proteins. Each neighbor

Figure 6. Improvement on F1 Score for DSD using three
evaluation methods: exact match, overlap depth and overlap
counting, on informative GO terms for the four algorithms for
S. cerevisiae in 10 runs of 2-fold cross validation.
doi:10.1371/journal.pone.0076339.g006

Figure 5. Improvement on Accuracy and F1 Score for DSD at different neighborhood thresholds, for the functional flow (FF)
algorithm in 10 runs of 2-fold cross validation for S. cerevisiae, with standard deviations.
doi:10.1371/journal.pone.0076339.g005
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votes for their own annotations, and the majority is used as the

predicted functional label. To incorporate DSD, the neighbor-

hood of u is defined simply as the t nearest neighbors of u under

the DSD metric. Furthermore, two schemes are considered: an

unweighted scheme where all new neighbors vote equally, and a

DSD weighted scheme where all new neighbors get a vote

proportional to the reciprocal of their DSD distance.

x2 Neighborhood Algorithm. In the original x2 neighbor-

hood algorithm [3], each annotation a present in protein u’s

neighborhood will be assigned a x2 value based on the following

formula:

x2
a~

(na{ea)2

ea

where na is the observed number of annotations a in the

neighborhood, and ea is the expected number of annotations a
based on the whole protein-protein interaction network. Then

protein u is assigned the functional label a with the maximum x2

value. Again, it is straightforward to adapt this to use DSD: the

neighborhood of u is simply defined as the t closest nodes to u
under the DSD metric.

Multi-way cut Algorithm. We consider the minimal multi-

way k-cut algorithm of Vazquez et al. [9] as implemented by [7].

The motivation is to minimize the number of times that

annotations associated with neighboring proteins differ. In

particular, the dual ILP (integer linear programming) is formulat-

ed, so we instead seek to maximize

X
(u,v)[E,a[FUNC

Xu,v,a

subject to the constraints
X

a[FUNC
Xu,a~1, Xu,v,aƒXu,a,

Xu,v,a[f0,1g,Xv,a[f0,1g where the edge variables Xu,v,a are

defined for each function a whenever there exists an edge between

proteins u and v. It is set to 1, if protein u and v both are assigned

function a, and 0 otherwise. The node variables Xu,a are set to 1

when u is labeled with function a and 0 otherwise. The first

constraint insures that each protein is only given one annotation.

The second constraint makes sure only annotations that appear

among the vertices can be assigned to the edges. While this

problem is NP-hard, the ILP is tractable in practice; in our case we

use the IBM CPLEX solver (version 12.4, dated 12/2011, http://

www.ilog.com/products/cplex/). For the DSD version, we simply

add additional edges between vertices whose DSD is below a

threshold. We set a global threshold D based on the average DSD

of all pairs, specifically we set D~m{c � s, where m is the

average, and s is the standard deviation of the global set of DSD

values among all pairs of nodes in the graph. We experiment with

c in the range f1:5,2:0,2:5,3g.
Functional Flow Algorithm. Nabieva at al. [7] use a

network flow algorithm on the graph of protein interactions to

label proteins. The idea is to consider each protein having a known

function annotation as a ‘reservoir’ of that function, and to

simulate flow of functional association through the network to

make predictions. We adapt the approach to use DSD by creating

an edge between each node pair, with a weight inversely

proportional to DSD. For computational efficiency we do not

create edges when the reciprocal of DSD is below a small value. As

in the original functional flow, we calculate flow through this new

network at each time step. We denote the size of the reservoir of

function a at node u and time step i, to be Ra
i (u). For a given

function (annotation) a, we initialize the reservoir size at node u to

be infinite if protein u has been annotated with function a;

otherwise we set it to be 0. More formally:

Ra
0(u)~

?, if u is annotated with a

0 otherwise

�

We then update the reservoir over a sequence of timesteps (we

use 6 timesteps, as in the original version):

Ra
t (u)~Ra

t{1(u)z
X

v:(u,v)[E

(ga
t (v,u){ga

t (u,v))

where ga
t (v,u) is the amount of flow a that moves from u to v at

time t. We incorporate DSD into the edge weight as follows:

ga
t (u,v)~

0, if Ra
t{1(u)vRa

t{1(v)

min (
1

DSD(u,v)
,

1

DSD(u,v)P
(u,y)[E

1

DSD(u,y)

) otherwise

8>>>><
>>>>:

Figure 7. Shortest path distance and DSD distribution for S. pombe.
doi:10.1371/journal.pone.0076339.g007
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The final functional score for node u and function a over

6 timesteps is computed as the total amount of incoming flow.

Formal Properties of DSD
We now present the formal proofs that DSD is a metric for any

fixed k, that it converges as k goes to infinity, and obtain the

explicit form that allows the calculation of DSD values in the limit.

Lemma 1. DSD is a metric on V , where V is the vertex set of

a simple connected graph G(V ,E).
Proof. Clearly the DSD of a node to itself is 0, and DSD is

non-negative and symmetric. It remains only to show that DSD

satisfies the triangle inequality, and that DSD(u,v) is strictly

positive whenever u=v.

For all u,v,w[V , we have by the L1 norm property:

jHe(u){He(v)jj1zjjHe(v){He(w)jj1 § jjHe(u){He(v)zHe(v)

{He(w)jj1

and therefore:

jjHe(u){He(v)jj1zjjHe(v){He(w)jj1 § jjHe(u){He(w)jj1:

Thus, the triangle inequality follows easily:

DSD(u,v)zDSD(v,w)§DSD(u,w):

Next we prove the identity of indiscernibles, namely, DSD(u,v) is

non-zero for all u=v. We first need some notation. We define the

one step transition probability matrix P as the n-dimensional

square matrix, whose (i,j)th entry is given by:

pij~

1

di

if (vi,vj)[ E

0 otherwise

8<
:

where di is the degree of node vi Vi~1,2:::,n. Note that P
represents the probability to reach each neighbor in the random

walk where all neighbors are reached with equal probability.

Then the definition of k step transition probability matrix

Pfkg~Pk follows for all positive k. We also define the 0 step

transition matrix Pf0g to be the identity matrix I , because every

random walk starts from the source vertex, and thus a zero-step

random walk reaches its source vertex with probability 1 and all

other vertices with probability 0. We denote by p
flg
ij or pflgvi ,vj

the

(i,j)th entry in the lth transition probability matrix, where l§0
and i,j[f1,2,:::,ng.

For each ordered pair of vertices (vi,vj), recall that He(vi,vj) is

defined as the expected number of times that a random walk with

length k starting from vi will visit vj . In order to calculate

He(vi,vj), we define an indicator variable I
flg
ij ,Vi,j,l, where:

I
flg
ij ~

1 if the random walk starting from ui visits uj at the lth step

0 otherwise

�

Therefore we have He(vi,vj)~E(
Xk

l~0
I
flg
ij )~

Xk

l~0
E(I

flg
ij )

by linearity of expectation. Clearly, E(I
flg
ij )~p

flg
ij , and thus we

have He(vi,vj)~
Xk

l~0
p
flg
ij . Note that because we are adding the

zero-step transition matrix, we will have that Heflg(vi,vi)§1,

Vui,uj[V .

Now we are ready to show the identity of indiscernibles. Recall we

are assuming the graph is connected. It is trivial when n~jV j~2,

so consider the case where n§3. We prove this next by

contradition.

Assume there exists a pair of distinct vertices a and b[V in the

simple connected graph G, where DSD(a,b)~0. Thus

jjHefkg(a){Hefkg(b)jj1~0, and He(a)~He(b), which indicates

that He(a,vi)~He(b,vi), Vvi[V . We have n equations now:Xk

l~0
pflga,vi

~
Xk

l~0
p
flg
b,vi

. Since the zero-step transition matrix

Pf0g is an identity matrix, we know that pf0gvi ,vj
~1 for i~j and 0,

otherwise.

Thus we have

1z
Pk

l~1 pflga,a~
Pk

l~1 p
flg
b,aPk

l~1 p
flg
a,b~1z

Pk
l~1 p

flg
b,bPk

l~1 pflga,vi
~
Pk

l~1 p
flg
b,vi

8>>><
>>>:

ð1Þ

where the third line represents a set of n{2 equations: one for

each vi, distinct from a and b.

By multiplying a factor pvi ,a~pf1gvi ,a
to both sides of all equations

in the third line and summing over i, we have:

Xn

i~1,
vi=a,

vi=b

Xk

l~1

pflga,vi
:pvi ,a

~
Xn

i~1,
vi=a,

vi=b

Xk

l~1

p
flg
b,vi
:pvi ,a

By completing the sum over i, we have:

Xn

i~1

Xk

l~1

pflga,vi
:pvi ,a

{
Xk

l~1

pflga,a
:pa,a{

Xk

l~1

p
flg
a,b
:pb,a~

Xn

i~1

Xk

l~1

p
flg
b,vi
:pvi ,a

{
Xk

l~1

p
flg
b,a
:pa,a{

Xk

l~1

p
flg
b,b
:pb,a

G doesn’t contain self-loops; thus (u,u) 6[E and pu,u~0, Vu[V .

For each l§1, we have

Xn

i~1

pflga,vi
:pvi ,a

~pflz1g
a,a

and

Xn

i~1

p
flg
b,vi
:pvi ,a

~p
flz1g
b,a

Therefore, we have

Xk

l~1

pflz1g
a,a {

Xk

l~1

p
flg
a,b
:pb,a~

Xk

l~1

p
flz1g
b,a {

Xk

l~1

p
flg
b,b
:pb,a
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namely,

(
Xk

l~2

pflga,a{
Xk

l~2

p
flg
b,a)zpfkz1g

a,a {p
fkz1g
b,a ~pb,a

:(
Xk

l~1

p
flg
a,b{

Xk

l~1

p
flg
b,b)

By applying to the equation above the first and the second

equation in (1), where:

Pk
l~2 pflga,a{

Pk
l~2 p

flg
b,a~pb,a{1Pk

l~1 p
flg
a,b{

Pk
l~1 p

flg
b,b~1

8<
: ð2Þ

we have:

pb,a{1zpfkz1g
a,a {p

fkz1g
b,a ~pb,a

:1

namely,

pfkz1g
a,a {p

fkz1g
b,a ~1:

Since pfkz1g
a,a ,p

fkz1g
b,a [½0,1�, we have pfkz1g

a,a ~1.

We next argue that it must be the case that d(vi)~1, for all vi

with (vi,a)[E, namely, all of a’s neighbors must have degree 1.

Starting from

1~pfkz1g
a,a ~

X
(vi ,a)[E

pfkga,vi
:pvi ,a

z
X

(vi ,a)=[E

pfkga,vi
:pvi ,a

~

X
(vi ,a)[E

pfkga,vi
:pvi ,a

ƒ

X
(vi ,a)[E

pfkga,vi
ƒ1,

we must therefore have
X

(vi ,a)[E
pfkga,vi

:pvi ,a~
X

(vi ,a)[E
pfkga,vi

~

1, and Vvi : (vi,a)[E and pfkga,vi
w0, pvi ,a~1. Since we haveX

(vi ,a)[E
pfkga,vi

~1, there must exist at least one neighbor x, s.t.

pfkga,x w0, and px,a~1 as well. Because px,a~1, we know that a is

the only neighbor to x and d(x)~1. Also due to the fact that

pfkga,x w0, there exists a path of length k from a to x, which should

consists of two parts, one path (denoted as path�(a?a)) of length

k{1 from a to a and an edge from a to x as the last step in the

path.

Consider any neighbor y : (y,a)[E. By using the path�(a?a)
and the edge (a,y)[E, we can construct a path of length k from a

to y and therefore pfkga,y w0. Thus, py,a~1, and therefore d(y)~1.

Thus we have shown that it must be the case that d(vi)~1, for all

vi, with (vi,a)[E.

As a result, all of a’s neighbors are only connected to a.

If (a,b)[E, then a and b can’t have any more neighbors because

they must be the only neighbor of each other; thus for all

c[V{fa,bg, c is not connected to a or b, which contradicts the

fact that the graph G is connected. If (a,b) 6[E, a and b are not

connected because all of their neighbors are only adjacent to

themselves respectively.

Therefore, the existence of such pair (a,b) where a=b and

DSDfkg(a,b)~0 contradicts the fact that the graph is connected,

and we can conclude that DSD(a,b)~0 if and only if a~b.

In the above we were reasoning about DSD for a fixed value of

k. Denote by DSDfkg the value of DSD for a particular fixed k.

Next we discuss how DSD values depend on k. We show that

when the one-step transition matrix P is diagonalizable then

DSDfkg(u,v) converges to a stationary value DSD(u,v).
Lemma 2. Let G be a connected graph whose random walk

one-step transition probability matrix P is diagonalizable and

ergodic as a Markov chain, then for any u,v[V ,DSDfkg(u,v)
converges as k, the length of the random walk, approaches infinity.

Proof. Since the one step transition probability matrix P is

diagonalizable, we have by diagonalization:

P~VLU ,

where the orthogonal matrix V~U{1; each column of V is the

normalized right eigenvector of P, each row of U is the

normalized left eigenvector of P, and L~diag(l1,l2,:::,ln) is the

diagonal matrix of all eigenvalues where 1~l1wjl2j§:::§ jlnj
by ergodicity. Let v1,v2,:::,vn denote the normalized orthogonal

column vectors in V and uT
1 ,uT

2 ,:::,uT
n the normalized orthogonal

row vectors in U . We denote vij as the jth entry in vector vi and uij

as the jth entry in vector ui .

Thus it follows that Pftg~VLtU , namely Vi,j[V ,t§1:

p
ftg
i,j ~

Xn

c~1

lt
cvciucj~v1iu1jzlt

2

Xn

c~2

(
lc

l2
)tvciucj

Next, for all i,j,b[V , we define an infinite sequence

At(i,j,b) for t~1,2,:::,?:

At(i,j,b)~p
ftg
i,b {p

ftg
j,b

~
Xn

c~2

lt
cvciucb{

Xn

c~2

lt
cvcjucb

~
Xn

c~2

lt
c(vci{vcj)ucb

and A0(i,j,b)~I(i,b){I(j,b) where I is the identity matrix.

Therefore, by definition, we can rewrite DSDfkg as the partial

sum:

DSDfkg(u,v)~
X
b[V

j
Xk

t~0

Ak(u,v,b)j:

Claim 1. For all u,v,b[V ,
Xk

t~0
At(u,v,b) converges abso-

lutely.

Before we prove the claim, we show that it produces

what we need. If the claim is true, then the limit

j limk?z?

Xfkg
t~0

At(u,v,b)j exists, and we can denote it as

A�(u,v,b). Then it follows that:
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lim
k?z?

DSDfkg(u,v)~
X
b[V

j lim
k?z?

Xk

t~0

At(u,v,b)j

~
X
b[V

A�(u,v,b):

and we have proved convergence.

But Claim 1 is true from the Cauchy root test, namely,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAt(i,j,b)jt

p
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j
Xn

c~2

lt
c(vci{vcj)ucbjt

s
ð3Þ

ƒ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

c~2

jl2jt
ffiffiffi
2
p

:1
t

s
ð4Þ

ƒ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
ffiffiffi
2
p

:lt
2

t
q

?jl2jv1, when t?? ð5Þ

where (3) & (5) hold by definition and (4) holds because

1~l1wjl2j§:::§ jlnj and jjvcjj2~jjucjj2~1.

We now use this lemma to produce an explicit way to calculate

in the limit. This frees DSD entirely from dependence on the

parameter k, and this is the version of DSD we use in our

experiments. (We remark, that for our yeast PPI network, we

found empirically that DSDfkg values were very close to the limit

when k§5.)

Lemma 3. Let G be a connected graph whose random walk

one-step transition probability matrix P is diagonalizable and

ergodic as a Markov chain, then for any u,v[V , we have

limk?? DSDfkg(u,v)~(bT
u {bT

v )(I{PzW ){1, where I is the

identity matrix, W is the constant matrix in which each row is a

copy of pT , pT is the unique steady state distribution, and for any

i[V , bT
i is the ith basis vector, i.e., the row vector of all zeros

except for a 1 in the ith position.

Proof. To start, we denote the matrix P{W by D. By

Lemma 2 where we have shown that limk?? DSDfkg(u,v) exists

and is finite, we can denote the limit as simply DSD(u,v) in the

following context. It follows that for any u,v[V :

DSD (u,v)~ lim
k??

DSDfkg(u,v)

~E lim
k??

Hefkg(u){ Hefkg(v)E1

~E lim
k??

(bT
u {bT

v )(IzPzP2z . . . zPk)E1 ð6Þ

~E lim
k??

(bT
u {bT

v )(Iz(P{W )z(P2{W )z. . .z(Pk{W ))E1 ð7Þ

~E lim
k??

(bT
u {bT

v )(IzDzD2z . . . zDk)E1 ð8Þ

~E(bT
u {bT

v )(I{D){1E1 ð9Þ

where (6) holds by definition, (7) holds because bT
u W~bT

v W~pT ,

(8) holds because (Pn{W )~(P{W )n for all n§1 by Claim 2,

and (9) holds by Claim 3, where we finish the proof of Lemma 3 by

proving Claims 2 and 3 next.

Claim 2. (Pn{W )~(P{W )n, for any non-zero positive

integer n.

Proof. The proof is based on the following observations:

WP~W and PW~W , so WPk~W and PkW~W . Further,

W m~W , so W kPm~W and PmW k~W for any integers kw0
and mw0. Now, if you construct the binomial expansion of

(P{W )n, each cross term of the type W kPm or PmW k reduces to

W , and all of the W s cancel out except for one, leaving (Pn{W ).
Thus, (Pn{W )~(P{W )n.

Claim 3. limt?? Iz(P{W )z(P2{W )z . . . z(Pt{W )

~(I{PzW ){1 .

Proof. By Claim 2, Iz(P{W )z(P2{W )z . . . z

(Pk{W )~1zDzD2z . . . zDk

1. First we show that (I{PzW ){1~(I{D){1 exists. We show

that (I{D) has full rank by showing that 0 is the only vector in

the left nullspace of (I{D). That is, if xT (I{D)~0, then

x~0.

xT (I{D)~0

xT{xT D~0

xT D~xT

xT Dk~xT for anytw0

Now, we already know that limk?? Dk~ limk?? Pk{W

exists and is 0 by ergodicity. So we have

lim
t??

xT Dk~xT

xT 0~xT

which is only satisfied by by x~0.

1. Since (I{D){1 exists and limk?? Dk~0, we can calculate as

follows:

C~IzDzD2z . . .
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DC~DzD2z . . .

C{DC~I

C~(I{D){1

where C is defined as Iz limk??

Xk

t~1
Dt, which exists because

(I{D){1 exists and limk?? Dk~0.

That finishes the proof for Lemma 3.

Results

MIPS Results
Both the DSD majority voting method and the x2 neighbor-

hood method sort vertices in order of their smallest DSD to a given

vertex, and set a threshold t, where the first t vertices participate in

the functional vote. Table 1 gives the results in 2-fold cross

validation for both these methods when we set t~10, whereas

Figure 4 gives more details about the dependence on t; basically

once enough neighbors were included (i.e. t§8) results of the DSD

version of majority voting converged. Similar details about how

the x2 neighborhood method depends on t appears in (Figure S1).

For the multi-way cut and functional flow results, we considered

vertices to be in the DSD neighborhood of a node v if their DSD

from v was less than c standard deviations below the mean DSD

value across the entire dataset. Table 1 presents the 2-fold cross

validation DSD multi-way cut results and DSD functional flow

results with c~1:5. In addition, Figure 5 gives more detail about

the dependence of DSD functional flow on the parameter c, where

we tested c[f0:5,1:0,1:5,2:0,2:5,3g. Similar details about how the

multiway cut method depends on c appear in (Figure S2).

We notice from Table 1 that in every case, the DSD versions of

all four methods perform better than the versions based on

ordinary distance. It is particularly interesting that using DSD

improves the functional flow algorithm, since functional flow

already seeks to capture a notion of diffusion in the graph. In fact,

the DSD versions of Majority Voting perform better than all four

of the methods based on ordinary distance. The best performing

algorithms among all the ordinary distance algorithms on the yeast

MIPS annotations at all three levels of the MIPS hierarchy were

the majority voting algorithms. The best performing algorithms

overall are the DSD version of the majority voting algorithms, and

they clearly achieve the best performance compared to all four

ordinary distance and all three other DSD-based methods. In

particular, they achieve 63.7% mean accuracy and 47.2% mean

F1 score (unweighted) and 63.2% mean accuracy and 48.1%

mean F1 score (weighted) on the first level of the MIPS hierarchy.

This is compared to the original majority voting algorithm, which

only obtains 50.0% mean accuracy and 41.6% mean F1 score.

Hence DSD provides more than 13% improvement in accuracy

and more than 5% improvement in F1 score for MIPS top level

functional categories, and improves on ordinary DSD on the

second and third levels of the MIPS hierarchy across the board.

GO Results
GO (Gene Ontology) [25] is a deeply hierarchical classification

scheme, which makes defining and evaluating function prediction

methods much more complicated. For this reason, most function

prediction methods for yeast PPI networks use the ‘‘flatter’’ set of

MIPS categories, but GO is the more widely used ontology. Thus

we wished to measure performance for GO functional labels,

despite the difficulties. For example, in GO, sometimes, nodes are

labeled with child functions but not labeled with their parent

functions, even though it is assumed that child functions are more

specific and inherit the functions of their parent nodes. How much

credit should be given to a node when we do not label it correctly

at its most specific level, but succeed in labeling it with a less

specific ancestor term? The exact match and functional path

methods of Deng et al [27,28] are designed to directly answer this

question and evaluate methods that perform GO annotation. We

tested the performance of ordinary distance versus DSD versions

all four protein function prediction methods considered above also

on the GO, and evaluated the results using the exact match

method and functional path method of Deng et al. [27]. We find,

again, that using the DSD-based algorithm improves performance.

We consider labels in the biological process category of the GO

hierarchy (we used OBO v1.2 [29], data version 2013-07-18)

along with annotations downloaded from the SGD database (data

version 2013-07-13). We exclude GO terms that are annotated

with evidence codes ‘‘IEA’’ ‘‘RCA’’ or ‘‘IPI’’. For each protein

that was labeled with a term in the GO hierarchy, we

automatically also label it with all more general parent terms in

the GO hierarchy as well. We then, define the informative nodes in

the GO hierarchy to be functional annotation terms that 1) are at

least three levels below the root and 2) are terms that annotate

more than 50 proteins in our dataset, where the second condition

on informative nodes, and the number 50 is suggested by the

method of Deng et al. [27]. It is these GO functional terms,

somehow capturing the middle levels in functional specificity, that

we use instead of a level of the MIPS hierarchy for the functional

labels. The result is 136 informative biological process GO terms

among 4322 out of 4990 ORFs that will comprise our labeling set

(the total number of annotations is 58,519); thus we have a label

set that is close in size to the one from the third level of the MIPS

hierarchy. The ‘‘exact match’’ method then simply counts the

number of correct labels, just as we did for a fixed level of the

MIPS hierarchy. We see similar improvements for GO annotation

as we did for MIPS annotation; detailed results for accuracy and

F1 score for all four methods appear in (Figure S3).

However, note that this exact match evaluation gives no credit

when we label a protein with an incorrect child that still has many

ancestor terms in common with the correct label. Thus, for a more

fair evaluation of the predictions that takes into account

hierarchical relations among the GO labels, we also use the

functional path method of Deng et al. [27]. This presents a

plausible way to give partial credit when a node is labeled partially

correctly, in the sense that the lowest depth child label assigned to

the node and the correct label of the node are different, but if we

consider the path in the ontology from the root to these two labels,

there are ancestor labels these two functional paths have in

common. We use exactly the functional path method of [27] to

calculate precision and recall values for each protein, and then

overall precision and recall values are averaged over all the

proteins. We calculated both alternative ways to count functional

paths overlap presented in Deng et al. [27], one that simply counts

the number of nodes that appear jointly in sets of known and

predicted functional annotations (which we will call the overlap

counting method) and the other which takes into account at what

depth the functional paths from both sets diverge (which we will

call the overlap depth method).

Setting t, the neighborhood threshold for DSD majority voting

anywhere in the range starting from 2, the DSD version of

majority voting improves precision and recall simultaneously, as
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compared to original majority voting, regardless of the method

used for counting overlaps. For example at t~8, we get

precision = 67.3% 60.3% and recall = 40.3% 60.2% compared

to precision = 59.6% 60.4% and recall = 34.3% 60.4% for the

overlap counting method, and we get precision = 61.1% 60.3%

and recall = 27.3% 60.1% compared to precision = 52.9%

60.5% and recall = 20.5% 60.4% for the overlap depth method,

for 2-fold cross validation on the yeast PPI network. In fact, we

find that all DSD versions of the four algorithms perform better

than their ordinary distance versions, regardless of the methods

used for keeping track of overlaps. Figure 6 shows the improve-

ments in F1 scores (setting t~10 and c~1:5 as before) over all

three methods of counting the overlaps. Thus DSD is improving

functional annotation also for GO annotation.

Discussion

Our function prediction results demonstrate the utility of

defining and using a fine-grained distance measure that is

specifically tailored to the subject application domain. For the

PPI network, the observation that shortest-paths that go through

hubs are less informative led to the particular design of the He ()

measure incorporated into the DSD definition. The He () measure

has connections to other diffusion-based measures previously

proposed [23]; however, using He () globally across all nodes, and

comparing such vectors via L1 norm is entirely new and enables

DSD to capture truly global properties of network topologies.

We have shown that substituting DSD for ordinary shortest

path distance results in dramatic improvements when using

network information to predict protein function for the S. cerevisiae

PPI network. We expected that similar improvements would hold

for the PPI-networks of other organisms as well, though the

sparseness of current experimental known functional annotation

and the number of PPI interactions currently known for other

organisms means that we would not yet expect absolute levels of

accuracy that are comparable to those achieved for S. cervesiae. We

tested this intuition by also considering what is known of the PPI

network of a different, less-well annotated yeast species, S. pombe.

Based on the interactions in BIOGRID [20] version 3.2.102, the

largest connected component has 1925 nodes and 4874 edges.

Thus compared to the S. cerevisiae network, a much smaller and

sparser subset of the PPI network is known. Figure 7 shows the

shortest path and DSD distance distribution of this network. As

expected, it is low-diameter but not yet as low-diameter as the S.

cerevisiae network, and the DSD distribution is more spread out, but

not yet as smooth as for the S. cerevisiae network. We would predict

that the distribution would start looking more like S. cerevisiae as

more of the network becomes known. We found no reliable MIPS

annotation for S. pombe, so we instead used GO annotation, which

we downloaded from the Pombase database, data version 2013-

07-01 (http://www.pombase.org). We extract ‘‘biological process’’

GO terms only and remove GO terms annotated with evidence

codes ‘‘IEA’’, ‘‘IPI’’ and ‘‘RCA’’, leaving 85 informative (see GO

results section above, for definition) GO terms annotating 1722

out of 1925 proteins, with a total number of 5818 annotations. We

did the ‘‘exact match’’ version of GO evaluation for 10 runs of

cross-validation, and looked at the difference in performance for

majority vote and functional flow methods using ordinary shortest

path distance and DSD. We see similar improvements using DSD

as with S. cervisiae; results appear in (Figure S4).

We present a simple to use, freely-available tool that given any

PPI network will produce the DSD values between each pair of

proteins, either as a webserver or for download from http://dsd.cs.

tufts.edu/. This tool both allows the calculation of DSDfkg for

some chosen k, and, as in the results presented in this paper, for

DSD in the limit. In fact, we also tried DSDf5g in place of DSD for

all the methods in this paper and results were already quite similar

to DSD in the limit. We suggest based on the dramatic

improvements for the S. cerevisiae PPI network that DSD values

be used in place of ordinary distance when using network

information to predict protein function, either using the PPI

network alone, or as part of a modern integrative function

prediction method that includes data from a variety of sources

beyond the PPI network, such as sequence information, genetic

interaction, structural information or expression data [8,13–15].
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Figure S1 Improvement of mean Accuracy and F1 Score

for DSD at different neighborhood thresholds for the x2
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validation (with standard deviation error bars).
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Figure S2 Improvement of mean Accuracy and F1 Score
for DSD at different neighborhood thresholds for the
multi-way cut algorithm in 10-runs of 2-fold cross
validation (with standard deviation error bars).
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Figure S3 Improvement of mean Accuracy and F1 Score
for DSD at different neighborhood thresholds for all
four methods in 10-runs of 2-fold cross validation (with
standard deviation error bars) using the GO catagories
(using the method that gives wcredit only for exact
matches to each GO term).
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Figure S4 Performance evalutaion for GO term predic-
tion on the S. pombe network. (a) Comparison of mean
F1 score of DSD and non-DSD majority vote (setting
t = 10) and functional flow (setting c = 1.5) algorithms
using all three methods of counting GO term matches;
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under the exact match method for different settings of
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validation (with standard deviation error bars).

(TIF)
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