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Abstract

Widespread replication of information can ameliorate the problem of server overloading but raises the allied
question of server selection. Clients may be assigned to a replica in a static manner or they may choose among replicas
based on client-initiated measurements. The latter technique, called dynamic server selection (DSS), can provide sig-
nificantly improved response time to users when compared with static server assignment policies (for example, based on
network distance in hops).

In the first part of this paper we demonstrate the idea of DSS using experiments performed in the Internet. We
compare a range of policies for DSS and show that obtaining additional information about servers and paths in the
Internet before choosing a server improves response time significantly. The best policy we examine adopts a strategy of
never adding more than 1% additional traffic to the network, and is still able to provide nearly all the benefits of the
most expensive policies.

While these results suggest that DSS is beneficial from the network user’s standpoint, the system-wide effects of DSS
schemes should also be closely examined. In the second part of this paper we use large-scale simulation to study the
system-wide network impact of dynamic server selection. We use a simulated network of over 100 hosts that allows
local-area effects to be distinguished from wide-area effects within traffic patterns.

In this environment we compare DSS with static server selection schemes and confirm that client benefits remain
even when many use DSS simultaneously. Importantly, we also show that DSS confers system-wide benefits from the
network standpoint, as compared to static server selection. First, overall data traffic volume in the network is reduced,
since DSS tends to diminish network congestion. Second, traffic distribution improves — traffic is shifted from the
backbone to regional and local networks. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction among several functionally equivalent sources of
service. Services such as NNTP, DNS, distributed
databases, and the WWW all use replication in
various forms to achieve scalability, and their cli-
ents may benefit by choosing among the replicas.
As more such services are deployed, the server
selection problem becomes more important.

In many cases, a client is assigned to a server in

The server selection problem arises in client—
server systems when clients are given a choice
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a static manner. For example, the client may be
assigned to the server that is the fewest network
hops away. Replica placement using historical
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demand patterns to determine where copies should
be located [12] may have an associated static server
assignment scheme. Alternatively, a client may
take advantage of measurements of the system
state when making a choice among servers.
Among the metrics that could be used are: load at
the server, recency of information, network traffic
volume, and distribution of traffic. In particular, a
WWW user may desire to minimize latency when
accessing a certain page. Viewed from the server
side, a set of servers may cooperate to achieve load
balancing by re-directing requests for service to
less loaded replicas. These dynamic server selection
schemes are measurement-based and therefore
adaptive to current conditions.

In this paper we report on tools and techniques
for selecting among information servers without
requiring knowledge of server location or network
topology. Our only assumption is that the client
can obtain a list of addresses of servers that pro-
vide the required service. While we focus on the
problem of dynamically selecting a server for
replicated documents, most of our results should
be applicable to replicated services in general.

In our initial experiments we consider two
principal metrics for measuring distance in the
Internet — hops, and round-trip latency — and
study their use as the basis for a server selection
decision. Both of these metrics are measures of
distance in a network and it is intuitively ap-
pealing to suppose that minimizing distance is the
correct approach to server selection. Surprisingly,
we show that these two metrics yield very differ-
ent results in practice. We then present evidence
that dynamic server selection (DSS) polices based
on instantaneous measurements of round-trip la-
tency provide considerable reduction in response
time compared to static policies (which in this
case are based on either geographical location of
client and server or distance measured using net-
work hops).

However, round-trip latency alone does not
capture all the information one would want about
the quality of a connection. In the context of server
selection, another important characteristic of a
network connection is the bandwidth available to
clients of that connection. All other things being
equal, higher available bandwidth implies faster

document transfer time. Available bandwidth de-

pends on two things: (1) the underlying capacity of

the path between client and server which is limited
by the slowest (or bottleneck) link, and (2) the
presence of competing traffic (congestion).

These two useful pieces of information are not
readily available to applications. In order to dis-
cover this information we have in prior work de-
veloped two tools: BPROBE, which measures the
uncongested bandwidth of the bottleneck link of a
connection; and CPROBE, which estimates the
current congestion along the bottleneck link of the
path. Full details appear in [7]. In this work, we
show how to use CPROBE and its available band-
width measurements to improve server selection.
We report on experiments based on measurements
in the operational Internet which suggest that DSS
can reduce response time for clients.

While the empirical results from the live Inter-
net experiments are encouraging, there remain
many questions which cannot be answered
through experiments in physical networks due to
limited resources and lack of control over the
network. For example, the live experiments indi-
cate that a single client practicing DSS should see
improvement in response time. However, it is not
clear that many clients simultaneously using DSS
would still perform well. Before suggesting their
widespread use in live networks it is important that
we determine whether their benefits will continue
to apply in such an environment. Wide-area net-
work effects are also hard to observe empirically.
However, these kinds of measurements can easily
be made on a simulated network. In order to an-
swer questions regarding the deployment of the
measurement tools and the DSS protocols previ-
ously developed, we have undertaken a large-scale
simulation.

Thus, the questions we studied through simu-
lation are:

e What is the effect of widespread deployment of
DSS? Do clients still experience reduced re-
sponse time?

e What is the effect of DSS on traffic volume?
How is the distribution of traffic affected?

e Is the cost of network probing to implement
DSS justified by the resulting performance im-
provement?
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The first part of the paper presents a summary
of our measurement techniques and motivation for
the DSS approach. We then present the live In-
ternet experiments that suggest the potential user
benefits of DSS.

The second part of the paper presents the sim-
ulation study. We begin with a description of the
simulation environment: the simulation engine, the
network model and the traffic generation method.
We then discuss the questions studied through
simulation and present the results of the simula-
tion experiments. We find that even with wide-
spread use, DSS continues to benefit clients by
reducing response time; while the overall data
traffic volume is reduced and traffic distribution is
improved as traffic is shifted from the backbone to
regional and local networks.

2. Related work
2.1. Dynamic server selection

Dynamic server selection (DSS) was first de-
scribed in [9]. In a DSS scheme, the assumed en-
vironment consists of replicated information
servers, any one of which can satisfy client
requests, as illustrated in Fig. 1. The client has
no knowledge of the placement of the servers or
the topology of the network between it and the
servers.

In a static server selection scheme, the client is
assigned to a particular server, most likely based

(=)
=)

Fig. 1. Server selection model: the client can choose one of the
servers.

on some static measure of distance such as net-
work hops. However, it may be that using a server
that is farther away can improve the client’s re-
sponse time. This is often true with globally dis-
tributed resources where servers and network
resources half-way around the world may be less
busy than local ones. Given this set of candidate
servers, clients use assessment of network condi-
tions to choose the server expected to provide the
quickest response. Extensions to include assess-
ment of server load and other information quality
measures can be added to the DSS framework.

Our work on server selection using end-to-end
performance metrics is complementary to related
work in the area. For example, the Harvest hier-
archical cache resolution protocol [10] involves
sending a message to all parent and sibling caches
and using the one whose response is received first.
In this paper, we show that the additional time
required for more complete measurement of cur-
rent network conditions often results in improved
performance.

Application-layer anycasting has also been used
in the context of server selection [4]. In that work
an architecture is proposed in which an anycast
resolver intercepts the anycast message and, based
on cached information about available servers, can
reply with a list of one or more alternatives. The
selection criteria are very flexible and encompass
both performance measurements (hops, through-
put, etc.) and boolean policy predicates. This work
is complementary to our work on measurement
methodology and may provide an elegant solution
to the problem of providing a list of alternatives
that the client can use as input to DSS. Follow-on
work [15] suggests the use of a resolver that
maintains information about the best server for
each client, based on both network and server
conditions. That approach is primarily concerned
with client-oriented metrics and is evaluated using
an actual implementation in the Internet. In con-
trast the work described in this paper focuses on
network metrics, and studies via simulation how
the network specifically is affected by the use of
server selection.

Server discovery and selection was also the focus
of Guyton and Schwartz in [17], where the objec-
tive is to discover “‘nearby” servers, thus keeping
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communication local and limiting the use of long-
haul links. That work attempts to determine a
subset of the network topology and build a dis-
tance metric on that topology. The metric used is
hops and a method similar to triangulation is used
to determine the distance to servers. This results
in a static selection policy that does not consider
the highly-variable nature of the network char-
acteristics. In fact, the authors consider the high
variance of round trip times a drawback. Con-
versely, we show this high variability is an essen-
tial feature that can be exploited when selecting a
server. Instead of using hops or round-trip time
(RTT), all of the methods explored in that work
attempt to determine a subset of the network to-
pology and build a distance metric on that to-
pology. Hence, the result is again a static policy.
In contrast, our DSS policies do not require ex-
plicit knowledge of topology. Furthermore, as we
will show, the quickly changing and highly vari-
able conditions in the Internet require a degree of
dynamic assessment that static policies do not
provide.

In [18], a replication technique (and presumed
server assignment) based on geographical distance
is proposed. In their design, servers are responsible
for placing replicas near sources of high demand.
By correlating IP addresses and zip codes, the
geographical location of hosts can be roughly es-
tablished, thus allowing the calculation of distance
between hosts. This information is used for both
replica placement and server selection. Clients re-
quest the address of the nearest replica from the
home server which calculates distances in miles to
find the replica closest to the requesting client.
This is essentially a static method of server selec-
tion and relies on the server maintaining a large
amount of geographical information. In contrast,
we show below that a DSS policy can provide high
performance and a simplified placement policy.

Selection algorithms for replicated web servers
are examined in [31]. Algorithms based on laten-
cies of recent HTTP transfers are used to predict
future transfer times; the server with the minimum
recent latency is chosen. Comparisons to policies
based on network hops or round-trip times show
improvements of a factor of 2, reinforcing the re-
sults we present here. However, the authors do not

consider the effects of multiple clients simulta-
neously employing these selection policies nor do
they report on the network effects of their selection
algorithms.

2.2. Dynamic path characterization

In order to minimize the time between docu-
ment request and document arrival in a DSS
scheme, the client needs to evaluate the quality of
the connection to each of the candidate servers. In
particular, a measure of network utilization can be
used to assess potential transfer time. Utilization
depends on both the base bandwidth of a path and
the presence of other traffic competing for the
path.

We use the term base bandwidth of a connection
to mean the maximum transmission rate that
could be achieved by the connection in the absence
of any competing traffic. This will be limited by the
speed of the bottleneck link, so we also refer to this
as the bottleneck link speed. However, packets
from other connections may share one or more of
the links along the connection we want to measure;
this competing traffic lowers the bandwidth avail-
able to our application. We use the term available
bandwidth to refer to the estimated transfer rate
available to the application at any instant. In other
words, the portion of base bandwidth which is not
used by competing traffic. We define the utilization
of a connection as the ratio of available bandwidth
to base bandwidth, that is, the percentage of the
base bandwidth which should be available to the
application.

If a measure of current utilization is available,
applications can make informed resource alloca-
tion decisions. For the specific problem of WWW
server selection, knowledge of current network
utilization allows better prediction of information
transfer time from the candidate servers.

With this objective in mind, we have developed
tools to measure the current utilization of a
connection. These measurements are necessarily
done from a distance and in an unknown envi-
ronment. Therefore, we refer to our measurement
process as probing and the tools as probes. Our
two probe tools are: BPROBE, which estimates the
base bandwidth or bottleneck link speed of a
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connection; and CPROBE, which estimates the
current congestion of a connection. We summa-
rize the essential features of the tools next. Full
details and validation tests for both BPROBE and
CPROBE can be found in [7,8].

2.2.1. BPROBE: measuring base bandwidth

In the following discussion we assume a net-
work like the Internet. In such a network, a path
between any two hosts in the network is made up
of one or more /inks. Between each set of links
along the path is a router which examines the
destination address of each packet and forwards
it along the appropriate outgoing link. Our main
requirement of the network is that packets are not
frequently reordered in transit. We also assume
that the path is stable, by which we mean that the
path packets take at any instant will not change
for the next few seconds, at least. For the Inter-
net, routing table updates are typically infrequent
enough that this is a reasonable assumption. We
further assume that the bottleneck in both direc-
tions is the same link, although this assumption
could be relaxed in a different design. Both
BproBE and CPROBE are built on top of the
ICMP ECHO mechanism. Because of our use of
ICMP ECHO, a client can send packets to a host
and receive replies without installing new soft-
ware at the remote site, which affords wide utility
of our tools. In effect, BPROBE measures the
bottleneck link of the round-trip path from the
client to the server and back to the client as il-
lustrated in Fig. 2.

Recall that the goal of BPROBE is a measure-
ment of the base bandwidth of a connection: the
speed of the bottleneck link. The essential idea
behind the probe, then, is this: if two packets can
be caused to travel together such that they are
queued as a pair at the bottleneck link, with no
packets intervening between them, then the inter-
packet spacing will be proportional to the pro-
cessing time required for the bottleneck router to
process the second packet of the pair. This well-
known effect is illustrated in the familiar diagram
shown in Fig. 3 (adapted from Van Jacobson [20]).
In addition, Bolot describes the basic effect in [5,6]
and Keshav has used a similar method in networks
of Rate-Allocating servers [23,24].

Basic bprobe idea: Target
—
[ — O-[=] M
—
O
Source Network }

Bandwidth Estimate = Size of packet 2 ‘
a2-ail [l

a1 a2
Inter-arrival time

Fig. 2. Flow of packets from site of probe (client) to target.

Minimum

packet spacing

at bottleneck . .

link Same spacing is preserved
on higher speed links

Fig. 3. Packet flow through a bottleneck link.

Pathchar [21,27] is a tool that does hop-by-hop
characterization of network paths. The measure-
ment mechanism is similar to ours: successive sets
of probe packets are used to infer characteristics.
While we concentrate on path characteristics,
pathchar works on a hop-by-hop basis. By com-
puting the difference between measurements at
node n+1 and node n, the metrics (latency,
bandwidth and queuing delay) for the link be-
tween the two nodes can be inferred. In order to
generate this hop-by-hop detail for a network
path, pathchar does require more network traffic
and measurement time than our tools do. This is
necessary because of the statistical nature of the
techniques used to calculate link metrics based on
differences between measured values. Such a level
of detail is more than is needed for our purposes.
Rather, our aim was to produce a robust,
lightweight tool that measures characteristics of
the path as a whole and is suitable for use by
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applications needing a fast estimate of network
conditions.

The aim of the BPROBE tool is to create this
bandwidth-proportional packet spacing condition
and to use it to make reliable measurements. In
other words, if packets from the probe tool alone
are queued at the bottleneck link, then the inter-
arrival time of those pairs that were queued can be
used at the endpoint of the path to estimate the
base bandwidth of the bottleneck link. Under ideal
conditions, the receiver can use this information to
measure the bottleneck link speed as follows: the
trailing edge of the first of a pair of packets marks
the time when the router started processing the
second packet of the pair and the trailing edge of
the second packet records the time when the router
finished processing that packet. Given a packet of
size #, and the inter-arrival time (or gap), we can
estimate the base bandwidth of the bottleneck link,
PBis, as follows:

2 bytes

PBris byt d=—-—.
bis bytes/secon gap seconds

However, in contrast to the network architecture
assumed in [23], in our experimental environment
(the current Internet) this ideal behavior is not
easily achieved. There are several problems that
arise in practice: probe packets may not queue at
the bottleneck link; competing traffic along the
path may intervene between probe packets;
packets sent by the probe may be dropped; and,
congestion at routers downstream from the bot-
tleneck may invalidate the results. Each of these
problems can be the cause of spurious estimates
of base bandwidth. The major obstacle to im-
plementation, then, is this: given a set of inter-
arrival time measurements, how can the probe
tool decide which will result in valid bandwidth
estimates? The challenge was to start from the
intuitive idea captured in Fig. 3 and design an
accurate, robust and low-impact tool to measure
bandwidth.

There are two principal techniques with which
we attack these problems. First, the use of mul-
tiple packets of varying sizes; second, a careful
filtering process which discards erroneous mea-
surements. In order to ensure queuing at the
bottleneck router, we send many packets and we

use packets of varying sizes. Larger packets will
naturally take more processing time at routers
and increase the possibility of queuing. Currently,
the probe runs in distinct phases with each phase
using packets of successively larger sizes. The first
phase sends a number of packets (currently 10) of
the smallest size that will be used (currently 124
bytes). The next phase uses even larger packets
and this process continues until we reach the
maximum packet size which our test client can
send (approximately 8000 bytes). In this way, we
adapt to the maximum feasible size for each
connection. By sending a large number of pack-
ets, we also increase the likelihood that some
pairs will not be disrupted by competing packets
and we minimize the effect of occasional packet
drops. Even when many pairs are disrupted, the
number of intervening bytes will often vary from
pair to pair. This results in differing bandwidth
estimates which may then be filtered to determine
the correct estimate. When queuing occurs on the
return trip, after passing through the bottleneck
link, congestion at intermediate servers down-
stream from the bottleneck can invalidate an es-
timate. Consider a pair of packets whose inter-
packet gap was properly set by the bottleneck
link. If these packets subsequently get queued, the
inter-packet gap will be reset, thus measuring the
wrong link. Since this subsequent queuing is un-
likely, we can alleviate this problem during fil-
tering. Some of the pairs may, in fact, measure
the wrong link but if enough of the pairs make it
back without further queuing, the erroneous es-
timates will be filtered out.

The most difficult problem that must be ad-
dressed by the probe is identification of those es-
timates that should be used to determine the base
bandwidth from those that should be discarded
due to lack of queuing, subsequent queuing or
interference from competing traffic. Each phase
of 10 probe packets results in at most nine inter-
arrival measurements. Thus, at most seven sets of
at most nine measurements each are the input to
the filtering process. Given the packet size (and
some intelligent guesses as to protocol headers and
link level headers and trailers) a direct estimate can
be made of the bandwidth assuming queuing as
defined before.
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For example, Fig. 4 shows the raw estimates for
five invocations of the probe tool. All of the data
points belonging to one invocation are shown by
plotting a numeral representing the invocation
number at each data point. The abscissa of a data
point is the bandwidth estimate, and the ordinate
increases with packet size. Thus, all the measure-
ments for the first invocation occur on the bottom
five line segments of the graph, all those for the
second on the next higher five lines and so on.
Within each invocation, packet size is increasing
from bottom to top. Notice the clustering of esti-
mate values as packet size increases; this shows
that, in general, larger packet sizes yield more
consistent results.

Our filtering method is based on computing an
“error interval” around each estimate, and com-
bining these intervals using a set union operation.
The error interval can be expanded as necessary
until a satisfactory estimate of the speed of the
bottleneck link is determined. The urnion filtering
method combines overlapping intervals using set
union, and selects an interval only if enough sets

5553
5 5 5555

contribute to it. One interval is produced as the
final result and the midpoint of this interval is re-
turned as the final estimate.

The multi-phase variable-packet-size design of
the probe results in (1) correlation among correct
estimates and (2) lack of correlation among in-
correct estimates. It is these properties of the data,
which are evident in Fig. 4, combined with our
non-linear filtering approach which results in a
reliable, robust tool for measurement of bottleneck
bandwidth. Validation studies (detailed in [7]) in
which BPROBE was run over the Internet found
the following. Measurements of bottleneck links to
nearby (campus Ethernet) hosts were within 10%
of the true value 97% of the time. Measurements of
bottleneck links to wide-area hosts (T1) were
within 20% of the true value 82% of the time.

2.2.2. CPROBE: measuring available bandwidth

To measure available bandwidth, we developed
a tool called CproBE. CPROBE’s technique is
straightforward: by bouncing a short stream of
echo packets off of the target server and recording

Run 5
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4 44 4 |4 4
Time B
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Run 3
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222 2
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1 mnu

1S BRN]
1111

Run 2

Run 1
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80000 90000 100000 110000

Bottleneck link speed estimates (bps)

Fig. 4. Five BPROBE experiments to local 56 KB hosts.
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the time between the receipt of the first packet and
the receipt of the last packet, we can measure the
presence of competing traffic on the bottleneck
link. Dividing the number of bytes sent by the
elapsed time yields a measure of available band-
width, %,..i1, that represents the actual throughput
achieved by the probe bytes. As long as we can
send packets at a higher rate than the bottleneck
link speed (which we can measure using BPROBE)
this effect should occur. Any additional time lag
between the first packet and the last one represents
non-probe bytes (competing traffic). In order to
tolerate packet drops and possible re-ordering of
packets, we use the results of four separate 10-
packet streams when calculating the available
bandwidth.

The utilization of the bottleneck link can then
be computed as the ratio of available bandwidth
measured by CPROBE to the bottleneck link speed
as estimated by BPROBE:

B avail
Bl

%probe -

As in the case of BPROBE, care must be taken to
ensure that the CPROBE’s results are valid. Further
discussion and validation studies may be found in
[7.8].

Part 1

Live experiments

In this first section, we describe our proposed
solution to the server selection problem and eval-
uate it in terms of both user-oriented and system-
oriented costs and benefits. This evaluation is done
in the context of experiments based on empirical
measurements of the operational Internet.

First, we divide the universe of documents into
two classes: small and large documents. We expect
the transfer time for small documents to be dom-
inated by RTT, so we use simple, low overhead,
RTT measurements as a basis for DSS. Then, for
larger documents, where we expect bandwidth
limitations will dominate the transfer time, we use
a combination of RTT measurements and mea-
surements of available bandwidth derived from

our CPROBE tool. After considering the costs of
various measurement approaches, we show that
simpler measures can be as effective while costing
less both in terms of measurement time and net-
work bandwidth overhead. We then present our
limited overhead DSS protocol suitable for docu-
ments of any size and show its improved perfor-
mance compared to static policies and its minimal
impact on network bandwidth.

Once again, our methods can be viewed from
two standpoints: from a client-oriented stand-
point, they reduce response time, which is good;
from a system-oriented standpoint, they add traffic
to the network, which is bad. In the first part of
this section we concentrate on showing that re-
sponse time can be radically reduced using
(sometimes expensive) measurements. In the latter
part of this section we show how almost all client-
oriented benefits can be obtained using much less
expensive, but approximate, measurements. Our
final scheme obeys a strict limit of not increasing
overall traffic in the network by more than 1%.

3. Dynamic server selection
3.1. Why dynamic server selection?

In any server selection scheme, a client seeking a
document would like to choose the server which it
has reason to expect will deliver the document in
the shortest amount of time. In this section, we
show that the impact of this choice is strongly
affected by whether it is made based on static as-
signment or based on dynamic measurements of
current conditions.

The difference between dynamic and static ap-
proaches to server selection is illustrated by the
measurement of distance. Two obvious metrics for
measuring distance in the Internet are hops, and
round-trip latency (RTT). However, the static
nature of the hops metric (the number of hops
between any two hosts rarely changes) is consid-
erably different from the quickly changing, widely
varying RTT metric. These differences are impor-
tant in solving the server selection problem. We
begin by comparing empirically measured distri-
butions of each metric. We measured the values of
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both metrics between a fixed client host and 5262
servers selected randomly from a list of WWW
servers [19].

Fig. 5 shows in graph (a), the measured distri-
bution of hops to the set of servers; and in graph
(b), the distribution of round-trip latencies (in ms,
measured using ping). These distributions are
strikingly different. The distribution of hops ap-
pears to be fairly symmetric about its mean (17
hops), whereas the distribution of latencies has a
median (125 ms) much less than the mean (241
ms). The differences between the distributions
suggest that hops is a poor predictor of latency.

The fact that hops is not a good predictor of
latency suggests that either variation in link speed
or delays due to congestion dominate the round
trip time of packets. The impact of congestion is
made clear by examining time series plots of round
trip times to a single host. Unsurprisingly, these
time series plots show extreme variance over short

400 600
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0

Number of Samples
100 200 300 400 500
L
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time periods. Consider Fig. 6, which presents
measurements of latency to a single host gathered
over a period of two days at intervals of 30 s. On
the left is a time-series plot; on the right a histo-
gram of the same data. The variation in latency
measurements reflects the underlying changes in
congestion. A DSS policy can be designed to take
advantage of exactly this sort of variation.

In fact, the difference between the characteris-
tics of hops and latencies is fundamental enough
to also suggest differences in algorithms for server
replication. An initial replica placement policy
might try to place replicas ““close” to the clients
that will use them (e.g., [18]). This follows natu-
rally when thinking about hops as the distance
metric. Because the bulk of the hops distribution is
centered about the mean, care is required in
placing replicas if the goal is to minimize the
number of hops between client and server. In other
words, a random distribution of replicas will not

(b)
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Fig. 5. Empirical distribution of hops and RTT to 5262 random servers.
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Fig. 6. Round trip times to a single host.
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significantly change the mean distance in hops
between clients and the servers they use. On the
other hand, this is clearly not the case when the
measure is round-trip latency. Because the bulk of
the probability mass of the latency distribution lies
below the mean, a random placement strategy
should markedly reduce the mean latency between
client and server.

Taken together these observations indicate that
the performance of a replicated server system that
uses DSS based on round-trip latency will be less
sensitive to replica placement than a system that
relies on the static approach where hops is the
measure of distance.

3.2. Server selection for small files — RTT

Having established the intuitive basis for dy-
namic server selection, in this section we present
experimental results to show that even very sim-
ple DSS policies can outperform static ap-
proaches in the real Internet. As previously
stated, our dynamic policy operates under the
assumption of widespread replication of docu-
ments (such as proposed in [2,14]). We further
assume that it is possible for a client to obtain a
list of hosts serving replicas of the document of
interest (perhaps by contacting the home server of
a document).

In order to simulate such a system, we identified
10 hosts with approximately equal average round-
trip latency as measured from our test client.
Using traceroute, we measured the number of hops
to each of the target hosts (we assume that this
value did not change over the duration of our
measurements). On each host we chose five files,
one each of size 1, 5, 10 and 20 KB. We prepared a
script which would periodically use ping to make
five RTT measurements and then fetch each of the
five documents and measure the transfer time for
each one. Then, over a three-day period, for each
host we measured (about once per hour) the
round-trip latency using ping, and the transfer time
for documents of sizes 1, 5, 10 and 20 KB. We
chose these smaller file sizes as appropriate to test
the simple RTT-based server selection methods
since latency should be the dominant factor for
small transfers.

Using this data we then simulated several server
selection policies: (1) Static, based on minimizing
geographic distance; (2) Static, based on mini-
mizing the number of network hops between client
and server; (3) Dynamic, based on random selec-
tion of a server; and (4) Dynamic, based on min-
imizing the mean of 1, 2, 3, 4 or 5 round-trip
measurements. The simulation used a replication
degree of seven (i.e., each client chose one of seven
servers). For each trial, seven data points were
chosen from the collected database and a choice
was made for each of the eight polices. The
transfer time for the chosen server was recorded as
the result for the trial. The average transfer time
over 1000 trials for each policy are summarized in
Fig. 7. For comparison, we also include Optimal
and Pessimal polices which are simply the mini-
mum and maximum transfer times observed, re-
spectively. > The graph shows the average time to
fetch an object for each of the four file sizes. For
the policies based on RTT measurements, the time
plotted includes the time to make the required
number of RTT measurements. Static policies are
presumed to have no additional cost since the
preferred server can be found by consulting a
table.

All of these policies were evaluated with the
objective of minimizing user response time. In this
respect, as can be seen in Fig. 7, our experimental
data reveal that the measurement-based dynamic
policies consistently outperformed the static poli-
cies and the benefit of a dynamic policy generally
increased with document size. Even random se-
lection is preferable to static polices for documents
larger than 5 KB. In this simulation, the dynamic
policy based on the mean of four RTT measure-
ments gives the best results, minimizing the
transfer time (inclusive of measurement time).
Dynamic policies based on fewer (1, 2 or 3) RTT
measurements do a little worse. A policy using five
RTTs does worse still, exhibiting a phenomenon of
diminishing returns for extra measurement over-
head.

2 Since we are simulating the algorithms off-line from mea-

sured data, for each set of seven chosen measurement we can
simply choose the smallest transfer time as the Optimal and the
largest transfer time as the Pessimal.



R.L. Carter, M.E. Crovella | Computer Networks 31 (1999) 2529-2558 2539

Time to Fetch Object (Seconds)

80

70

Pessimal

60

50

40

30

Geoéraéhical

20

10

0

0.00 5.00 10.00

15.00 20.00

Size (Avg Kbytes)

Fig. 7. Fetch times of static and dynamic policies plotted against document sizes.

When we compare the various selection policies
to our hypothetical optimal transfer time we find
that the best dynamic policy in this simulation
required an average transfer time that was only
four times the optimal for 5 KB files and this im-
proved to less than two times optimal for larger
files. In contrast, the static hops selection policy
which was also about four times optimal for small
files, showed increasingly worse performance as
transfer size increased, up to 20 times optimal for
20 KB files. These results use seven replicas, cer-
tainly not a very large number for WWW docu-
ment replication. The results would likely improve
with a greater degree of replication.

However, the benefit of multiple measurements
of RTT as a predictor of transfer time relative to
the optimal value decreases as file size increases.
This is clear from the increasing gap between
predictions based on five RTT measurements and
the optimal (minimum) transfer time shown in
Fig. 7. We believe that this indicates the impact of
limited available bandwidth due to competing
traffic. Reducing the available bandwidth has the
effect of increasing transfer time. This is especially
true for larger document transfers while small
document transfers have their transfer time dom-

inated by instantaneous latency. This observation
led us to formulate the previously mentioned
techniques for measuring the bottleneck link speed
and available bandwidth. Server load may also
contribute to increased transfer times, but as we
discuss further below, lack of a simple way of
measuring server load prevented us from studying
this directly. We next explore DSS using mea-
surements of available bandwidth in addition to
latency and its application to larger service times.

3.3. Server selection for large files — PTT

The results of the previous section clearly show
the benefit of dynamic policies. However, the rel-
ative benefit was observed to decrease with in-
creasing transfer size, a portion of this effect was
hypothesized to be due to bandwidth limitations.
In this section we present a server selection policy,
called predicted transfer time (PTT). This policy,
based on dynamic bandwidth measurements, is
appropriate for larger files. We use the term
available bandwidth to refer to the estimated
transfer rate available to an application — that is,
the portion of raw bandwidth not currently used
by competing traffic.
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We suspected that one of the factors involved in
the reduction in predictive ability of the RTT
policies as document size increased was limited
available bandwidth. In order to estimate available
bandwidth, we developed the CPROBE tool out-
lined above (and presented in detail in [7]). In this
section we study the use of bandwidth measures
concentrating on documents larger than those
considered in Section 3.2. In the context of server
selection for WWW documents, given these mea-
surements and the size of the document to be re-
trieved, it is possible to estimate the transfer time
directly. If the document size is not known, then a
choice could be made based on, for example,
highest available bandwidth.

Given the bandwidth probing tools in addition
to the RTT estimators commonly available, two
questions arise: (1) can we improve the predictive
capability of our DSS algorithm? and (2) what is
the additional cost of the probes?

3.3.1. Evaluating detailed server selection

In order to evaluate server selection policies
based on available bandwidth measurements, we
collected data from several WWW servers in the
Internet as we did in Section 3.2. From earlier
work [3] we have available a database of document
size and location information. From this source we
extracted sets of documents of sizes 100, 500, 750
KB and 1 MB. We chose these larger sizes because
the transfer times of these large documents should
be influenced by available bandwidth as well as
latency. Periodically, over a several hour period we
recorded the following data for each document:
five RTT measurements (using ping), the available
bandwidth (using CPROBE) and the transfer time
for the document.

Before beginning simulation of the various se-
lection policies, we used linear regression to ana-
lyze the dependence of measured transfer time on:
(1) the RTT as measured by ping; and (2) the
predicted transfer time using a combination of
RTT and available bandwidth. Table 1 gives the
R? values of the regressions. The regression anal-
ysis shows an improvement in accuracy of pre-
dicted transfer time when the measurements from
the bandwidth probing tools are added to latency
measurement provided by a single ping. Also the

Table 1
Regression analysis: R*> values for two metrics for four docu-
ment sizes

Regression Document sizes

formula

100 KB S500KB  750KB 1 MB

xfer time vs.
Single ping 0.053 0.186 0.477 0.081

xfer time vs.
Ping and 0.291 0.280 0.638 0.145
CPROBE

predictive value of our measure increases with
larger document size, except for the very largest
documents. We suspect that the long transfer times
associated with the largest documents extend be-
yond a valid prediction window. As we have
shown above, the effect of competing traffic on
available bandwidth is a highly variable one.
Therefore, estimates have a limited useful lifetime;
we are currently exploring methods for assessing
those limits.

To use ping and CPROBE together, we formu-
late the predicted transfer time metric. We use the
regression coefficients k; and k, which relate the
predicted transfer time to round-trip latency and a
bandwidth-limited component, as follows:

Predicted transfer time

document size

=kRTT+hkh————
1 o e%avail ’

where %,..; 1s the available bandwidth as mea-
sured by CPROBE. In the simulation of this selec-
tion policy PTT, the predicted transfer time, is
calculated for all candidate servers and the server
with the minimum value is chosen.

We again simulated both static and DSS algo-
rithms using the data collected from our survey of
WWW servers. For each document size (100, 500,
750 KB and 1 MB) we selected seven data points
uniformly from the recorded data and applied the
dynamic algorithm based on RTT and available
bandwidth to make a selection from among the
seven sites. The results are presented in Table 2.
Each entry in the table represents the mean
transfer time in seconds over 1000 simulated server
selection decisions: that is, transfers of documents
of the size given by the column heading when the
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Selection policy

Transfer sizes

100 KB 500 KB 750 KB 1 MB
Pessimal 21.836 21.800 18.357 696.680
Random 6.857 7.989 10.572 281.919
Hops 2.267 8.958 10.120 46.190
PTT 2.712 2.001 5.721 31.897
Optimal 0.985 1.296 4.265 17.529

server is selected according to a policy given by the
row heading.

The policies simulated were: (1) Pessimal, which
simply chooses the worst (largest) transfer time
among the seven servers; (2) Random, which picks
a server uniformly; (3) Hops, which chooses the
server which is the fewest hops away; (4) PTT, as
defined above; and (5) Optimal, which chooses the
best (smallest) transfer time.

The superiority of the dynamic policy for server
selection is clear from Table 2. The improvement is
especially marked for large documents. For ex-
ample, for 500 KB documents, an improvement of
over 75% is found when using PTT rather than
Hops (2 s versus nearly 9 s). The transfer time
chosen by the dynamic policy is less than two times
the Optimal time for large documents, while the
Hops policy results in transfers taking at least 2]
times the Optimal time.

While the performance of PTT is good for
larger files, there is some discrepancy in perfor-
mance between 750 KB and 1 MB. One possibility
is that the larger transfer takes long enough that
the estimate of available bandwidth no longer
applies. The arrival of new connections may mean
that the available bandwidth will be less than
originally measured. While we have found that our
available bandwidth measurements are predictive
for short intervals (e.g., the typical WWW re-
quest), certainly over the 10+ min for the worst-
case 1 MB transfer time in our data sample, much
can happen to invalidate the measurements. For
instance, the arrival and departure of connections
clearly affects the available bandwidth. A second
possible explanation lies in our choice of hosts, a
potential weakness in our study. Because it was
difficult to find sites hosting 1 MB files we had
fewer sites to choose from. It may be that there

were some peculiarities about those sites or the
paths to reach them that biased the measurements.
This may also explain the fact that the Hops se-
lection policy is so much better than Random se-
lection in the case of 1 MB files, whereas in our
other experiments, Random is usually a pretty
good policy. If Random chooses a server that is
much farther away and traffic is heavy it will surely
suffer compared to Hops.

3.3.2. Impact of server load

As a validation step in our data analysis we
studied the correlation between measured transfer
rate and available bandwidth using the data col-
lected in the PTT experiments described in the
previous section. Ideally, of course, plotting mea-
sured transfer rate against available bandwidth
would yield the line x = y. In practice, we found an
overestimate by a factor of about 2. We believe
that this overestimate of real transfer rate can be
explained in large part by the overhead of the TCP
protocol. Correcting for this factor we then found
a significant set of hosts along the predicted x = y
line. However, there was also a large set of hosts
for which available bandwidth was still seriously
overestimated by the probes. Looking more closely
we identified a number of sites which are known to
be popular such as wuarchive.wustl.edu, www.ncsa.
uiuc.edu and sunsite.unc.edu. This suggests that
server load should also be an input to a DSS al-
gorithm.

As a first attempt to measure server load we
tried the following technique: fetch a non-existent
document from the target WWW server and
measure the time required. The amount of time
needed to fetch this empty page could serve as a
proxy measure of server load. For this experiment
we gathered data as in the PTT experiments in the
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previous section with the additional preliminary
step of fetching a nonexistent page and recording
the transfer time. In general, this procedure results
in retrieving a small (less than 200 byte) “error:
URL not found” document. In a few cases, larger,
personalized replies were received. We then ran
another off-line simulation based on the measured
data. There is some correlation between the larger
test fetch times and serious overestimates of
transfer rate, confirming our hypothesis that server
load is an important factor in transfer time.
However, our simulation results do not show im-
provement for server selection based on this policy
due to the high overhead of this method of server
load measurement. In fact, our simulations show
no improvement over the PTT policy. In practice,
the cost of fetching a test document outweighs any
benefit in improved prediction of transfer rate for
the actual document. What is needed is a light-
weight server load measurement method which can
quickly and accurately assess server load. Perhaps
the server itself should maintain a state variable
that is easily queried. A tool that made such a
query could be integrated with the tools we present
here to significantly improve the server selection
process.

4. Cost considerations

In addition to time overhead for network
probing, which is reflected in the response time
measurements we present, the impact on the net-
work is also a critical issue. Probes that add many
extra bytes of network load certainly will be un-
welcome.

The current implementation of CPROBE uses
four sets of 10 packets each with a maximum
timeout of 1 s per set. Packet sizes of 600, 700, 800
and 900 bytes are used for a total overhead of
30000 bytes and up to 4 s of measurement time.
So, the probe may add up to an additional 30 000
bytes to the network load and a few extra seconds
for an accurate measurement of available band-
width. Such costs are too high for widespread use.

To address this, we explored measurement
methods that can have much lower network im-
pact and yet would approximate the more expen-

sive CPROBE. In the next section we present such
methods, and then propose a policy based on these
lower-cost measurements which limits probe
overhead to no more than 1% additional traffic in
the network.

4.1. Approximate approaches to PTT

Previously we showed that, in theory, the
bandwidth measurements combined with latency
(RTT) measurements have greater predictive ca-
pability than latency alone. However, we suspected
that a less expensive policy based on the mean of
more than one RTT measurement, might provide
a rough approximation to a bandwidth estimation
since long RTTs may be indicative of low available
bandwidth. First, we compare the performance of
the combined policy (PTT) with the simpler RTT-
only policies. Then we address the issue of cost of
the additional measurements.

For these experiments we used data collected as
in Section 3.3. From a set of servers, each ap-
proximately 100 ms away, we collected five RTT
and data transfer time measurements. We per-
formed this test once an hour over a three day
period. We then performed off-line simulations of
various selection policies based on our measured
data. In Table 3 we add two more dynamic poli-
cies: (1) Dyn 1, which performs a ping to each
server and chooses the server with minimum RTT;
and (2) Dyn 5, which computes the mean of five
ping measurements and chooses the server with the
minimum value. Both of these polices were also
used in the initial study described in Section 3.2.
Once again, this table shows that for our data a
measurement-based dynamic policy is always su-
perior to the static policy based on distance mea-
sured using hops, confirming our earlier results.
For large files, the use of either multiple RTT
measurements or bandwidth probing improves
over the results based on only a single latency
measurement. For the 1 MB case the static Hops
policy is superior to Dyn 1 but worse than Dyn 5
or PTT. This suggests the value of multiple RTT
samples.

The surprising result is that the Dyn 5 policy
which relies solely on RTT measurements gives
results very close to those of PTT which uses the
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Table 3

Simulation results for large transfers — mean transfer time in seconds

Selection policy Transfer sizes

100 KB 500 KB 750 KB 1 MB
Hops 2.267 8.958 10.120 46.190
Dyn 1 2.124 2.147 6.612 50.857
Dyn 5 2.301 2.028 5.762 31.175
PTT 2.712 2.001 5.721 31.897

Table 4

Correlation between available bandwidth measurement and
RTT measurement (average of 1, 2, 3, 4 or 5 RTT measure-
ments)

Number of pings
1 2 3 4 5
0.236 0.293 0.346 0.372 0.400

additional measurement of available bandwidth. A
similar though weaker correlation persists when
using fewer than five RTT measurements. Table 4
gives values for the correlation coefficient between
the reciprocal of the available bandwidth (mea-
sured using CPROBE) and the average of n RTT
measurements for n = 1,2, 3,4,5. Clearly the cor-
relation increases with the number of RTT mea-
surements, implying a strong link between the
number of RTT measurements made and the de-
gree to which those measurements capture the
available bandwidth. As shown in the table, more
RTT measurements give an estimate with greater
correlation to the available bandwidth.

To summarize, both Tables 3 and 4 suggest that
the policy of minimizing the mean of five ping
measurements already accounts in a way for con-
gestion effects. In other words, direct measurement
of congestion as we have done with CPROBE can
by simulated to some degree by using a sequence
of RTT measurements. This is significant because
of the (currently) high overhead of the probe
measurements. These observations suggest a lim-
ited overhead DSS policy introduced in the next
section.

4.2. The OnePercent protocol

Since the performance of the lighter-weight
probes closely approximates the more expensive

ones, we devised the following probing protocol.
Paying particular attention to impact on the net-
work, we propose a protocol that permits over-
head that is typically not more than 1% of the
request object size in terms of additional bytes
injected into the network. We therefore refer to
this policy as OnePercent. That is, for each docu-
ment request, the number of additional bytes used
to probe the network is normally at most 1% of the
size of the document requested. ° This protocol
also ensures that the additional time needed to
probe the network state is proportional to the
document size. Thus, larger documents, which will
benefit from more precise measurements of net-
work conditions, are provided with better mea-
surements while smaller documents for which
latency is the dominant factor will not increase
response time or use network bandwidth unnec-
essarily.

The OnePercent policy is formulated as follows:
for files under 10000 bytes, we use a single ping;
under 20 000 bytes, we use the mean of two pings,
etc. Because the CPrOBE overhead is 30 000 bytes,
all of the larger documents will use the mean of
five pings in the OnePercent protocol. Thus, we
use at most one ping per 10 KB to be transferred.
Assuming a 100 byte ping packet we can meet the
1% threshold. Since this policy depends on the size
of the object to be transferred it is only intended
for those situations in which the size can be esti-
mated (e.g., proxies reloading caches, estimates
based on extension (.html vs. .gif vs. .mpg)). In
practice, only a rough estimate of the size is

3 For unusually small documents the overhead may be higher,

but we would not recommend network probing for such small
documents. For the experiments reported here the overhead
was always under 1%.
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necessary since even small amounts of probe in-
formation are useful in server selection.

Using the data collected in Section 3.3 we per-
formed off-line simulations to understand how a
selection policy with limited overhead would per-
form. Fig. 8 presents the results of applying the
OnePercent protocol. For each document size,
there are five bars showing the response (transfer)
time in seconds for the best and worst transfer
times (Optimal and Pessimal, respectively); for
Random selection of server; for static selection
based on minimizing the number of Hops; and for
the OnePercent dynamic probing policy. In order
to make visible the values for smaller documents,
the bar chart was cut off at 100 s (the 1 MB Pes-
simal time is 700 s, the ]| MB Random time is 281
s). From the figure, it is clear that the OnePercent
policy is in every case no worse than the static and
random policies and in most cases performs close
to Optimal. It is important to recall that the time
for performing the measurement probes is includ-
ed in the OnePercent values presented in the table.

Response Time
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Thus, even with the measurement overhead ac-
counted for, the OnePercent DSS policy is superior
to static policies.

Turning to network load we find that in fact
substantially less than 1% overhead was necessary
to achieve these results. In fact, using the 500 byte
(5100 byte ping packets) overhead for the larger
files results in an aggregate network bandwidth
overhead of about 0.1%.

4.3. Summary

Using empirical data collected from the opera-
tional Internet, we have shown that a measure-
ment-based, dynamic approach to server selection
can outperform a static selection scheme. In par-
ticular, user response time is decreased when cli-
ents choose a server based on recent measurements
of network congestion. Further, we have shown
that even simple surrogate measures of congestion
(such as RTT) can provide much of the benefit of
more precise measures for far less cost.

Optimal
OnePercent
Hops
Random
Pessimal

I [

Bhkh

10KB

20KB

100KB 500KB 750KB 1MB

Document Size

Fig. 8. Performance of OnePercent dynamic server selection policy.
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Part 11

Simulation experiments

The previous experiments demonstrated the
benefit of a measurement-based, dynamic solution
to the server selection problem. However, in those
experiments, only a single client was using a DSS
approach. What would happen if all clients used
DSS? Although we were concerned with mea-
surement overhead in terms of extra probe traffic,
in our Internet experiments we could not measure
the effect of DSS on network traffic volume or
traffic distribution patterns. Using a simulated
network we can explore questions about the sys-
tem impact of DSS as well as examine implication
of its widespread deployment. In this section we
examine these questions:

e Suppose all client use DSS simultaneously. Do
all clients still benefit?

e What are the effects of widespread use of DSS
on network traffic volume and distribution?

e Does DSS tend to make requests travel farther
in the network? If so, what effect does this have
on the network?

Such questions are difficult to answer through
experiments on the “live” Internet where so much
of the network is beyond our control and difficult
to measure. Through simulation we can control
the experimental environment, measure much
more carefully and run experiments to determine
the system-level network effect of DSS.

5. Simulation engine

We used the ns network simulator [26] from
Lawrence Berkeley National Laboratory (LBL).
The primary reason was that ns faithfully repro-
duces the dynamics of TCP. This is important for
any study in which the majority of traffic is con-
trolled using the TCP protocol. Our study is based
on HTTP transfers (which relies heavily on TCP
for individual data transfers); thus a desirable
characteristic of the simulation is realistic TCP
modeling. The ns simulator maintains a faithful
model of the TCP (Tahoe or Reno) state machine
and implements the slow-start and retransmit be-

havior of these popular implementations. The re-

alistic model of TCP behavior along with the

network design described below increases our
confidence that our results will transfer to real-
world deployment and use.

The ns simulator is an event-driven network
simulator implemented in C++ and Tcl. Nodes
and links are the basic components from which
networks are built. Nodes act as containers for
agents which are sources and sinks for data.

For the purposes of this work it was necessary
to make a number enhancements to ns.

1. In order to model the BprOBE and CPROBE
tools, ECHO packets were added as a new
packet type.

2. Client and server agents were defined as sub-
classes of the TCPAgent and TCPSink classes,
respectively. The clients model the probing
and selection of servers as well as data transfer.
The servers act as sources of bytes for the cli-
ents and cooperate to maintain server wide
statistics, such as load and amount of data re-
quested.

3. A simple extension allows the measurement of
the number of hops between nodes, necessary
for the static selection policy based on hops.

6. Simulation model
6.1. Network topology

An important issue in any simulation study is
the validation and verification of the simulation
model. Zegura et al. [32], discuss the importance of
matching the simulated network to the real-world
network under investigation. Their findings are
that a hierarchical model with average node degree
of three reflect important attributes of the opera-
tional Internet. Our model closely follows these
suggestions, with the simplification that the net-
work graph is a regular one in order to facilitate
aggregation of statistics.

Fig. 9 shows the network used in this work. We
have chosen a three-level hierarchy with the high-
est level representing the backbone of the network;
the intermediate level intended to represent
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Fig. 9. Hierarchical network used in simulation experiments.

regional networks and the lowest level representing
campus or enterprise LANS.

Referring to Fig. 9, the central pentagon and its
adjacent edges represents the highest level of the
hierarchy and models the backbone (BB) of the
network. The BB nodes are connected in a pen-
tagonal ring. The bidirectional links between
nodes model T3 pipes with 45 Mbps capacity and
2 ms delay. Each of the five backbone nodes is
connected via another T3 link to a ring of five
nodes representing a regional network.

The regional pentagonal rings represent the re-
gional networks (or ISPs) and the bidirectional
links here model T1 (1.5 Mbps) links. To form the
next layer of the hierarchy, each of the regional
pentagons is connected via a T1 link to a LAN of
five hosts.

The LAN Ilevel represents the campus or en-
terprise level network and is modeled by an
Ethernet style network of five nodes. On each
LAN, one of the five hosts is designated as a server
machine (the squares) and the remaining four
nodes (filled circles) are designated as clients.

In general the network can be described by a
tuple of the form:

(NumRegions, LansPerRegion, HostsPerLan).

In the example shown in Fig. 9 we have a (5,5,5)
network. Overall this network is composed of
180 nodes. There are a total of NumRegions X
LansPerRegion x HostsPerLan = 125hosts. Of these,
100 are designated as clients and the remaining 25
are designated as servers. There are 185 bi-direc-
tional links connecting the nodes and a total of
15500 possible paths between leaf nodes (clients
and servers).

6.2. Traffic generation

6.2.1. Traffic distribution modeling

Much recent work in the field of modeling
traffic in computer networks [11,25] has suggested
that Poisson traffic models do not capture ade-
quately the high variability of network traffic.
Specifically, it has been found that a character-
istic of network traffic that is not captured by
previous models is the heavy-tailed nature of the
distribution of on and off times for data transfers.
On times refer to periods during which messages
are being sent or received and off times to periods
when no network activity is occurring at a host.
The heavy tail means that arbitrarily long on and
off periods occur with small (but non-negligible)
probability. This distributional characteristic, in
turn, leads to long-range correlations between the
density of traffic at widely spaced time intervals
and can be seen in time series plots as burstiness
at all time scales. In light of this research we
chose to use a Pareto model for traffic genera-
tion.

The Pareto model captures the heavy-tailed
nature of the distribution and is defined by its
p.d.f.: f(x) = ak*x~#+1) [22]. It is characterized by
parameters k and o. The shape parameter, o, de-
termines the weight of the tail, with smaller values
resulting in a heavier tail. The parameter k is a
scaling factor for the distribution (see Section 7.4
for more details). Pareto variates for the simula-
tion are generated using the inverse transforma-
tion method. A uniform variate, u, is chosen from
the uniform distribution u ~ U(0,1) and the
Pareto variate is generated by

ok
P*m-
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Below we study the sensitivity of our results to the
precise value of o but for reasons of simulation
efficiency we primarily report results for o = 1.5.

The use of the Pareto distribution as we have
done is supported by empirical studies of network
traffic and user behavior. We use Pareto genera-
tion for the sizes of the data objects moved since it
has been observed that files available on the
WWW tend to have such a distribution with a
power-law tail [11]. The Pareto distribution is also
used for user inter-request times or user “think
times”. Such a heavy-tailed distribution of inter-
request times has been observed empirically in
data collected over long periods [25,13].

6.2.2. Traffic generation per client
The basic component of the simulation consists
of a client and the stream of requests that it gen-
erates. Each client is modeled as a process which
repeatedly performs a sequence of four actions:
1. (Optionally) Probe the network for perfor-
mance information.
2. Select a server from a set of candidate servers
(possibly chosen based on information gathered
in Step 1).
Request a data object from a server.
4. After transfer completes, remain idle for a peri-
od of time.

et

6.3. Simulation parameters

The combination of simulation parameters was
chosen to create a simulation recreating realistic
network conditions to the extent feasible. We
wanted relatively high link utilization in order to
test the candidate selection algorithms under dif-
ficult conditions. Link bandwidths, data packet
size and the « and means of the Pareto distribu-
tions helped ensure this.

6.3.1. Running time

The first parameter of interest is the running
time. In order to make fair and repeatable com-
parisons between policies, each of the 25 clients
executing the server selection algorithms makes the
same number of selection decisions and data re-
quests (300) in each simulation run. The remaining
75 clients generate repeatable background traffic

as explained later. The running time was then
adjusted such that each of the 25 active clients was
allowed to make their 300 requests before the
simulation terminates.

6.3.2. Link utilization

The early experiments were run on the network
parameterized as denoted in Fig. 9. However, with
the relatively small number of clients, utilization of
links was only around 1%. With such unrealisti-
cally low network utilization, there is no clear
necessity for network measurements, since all
paths are lightly loaded. We ran a few test with
more clients in order to load the network. This
produced the more realistic traffic loads and pat-
terns we expected but, due to the packet-by-packet
simulation technique, this also resulted in ex-
tremely long simulation runs. In order to simulate
the high traffic conditions expected in real net-
works in a reasonable amount of simulation time
we introduced high utilization of the network links
(90%) by scaling the capacity of the backbone links
by a factor of 0.001. Thus, the effective capacity of
the backbone links was 0.05 Mbps.

6.3.3. Pareto parameters

The size of the object requested as well as the
idle time are chosen from a heavy-tailed (Pareto)
distribution as described above. For all simula-
tions described in Part II of this paper, the mean
file size was 1000 bytes and the mean inter-request
time at the clients was 0.001 s.

The value of o is 1.5 for all simulation results
reported in this paper unless otherwise noted. This
is a compromise between simulation realism and
practical concerns. It is now believed that real-
world systems exhibit a high degree of heavy tails
(that is, small values of «) [1,11] but it is also
known that simulations at small values of « exhibit
instability and must be run for extremely long
durations before stability is achieved [16]. For this
reason we chose to use an « = 1.5 for most of our
simulations. This let us model traffic behavior re-
alistically yet within practical time bounds.

6.3.4. Selection policies
Each client can behave in one of three different
modes. In order to compare competing polices in a
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fair way, the majority (75 of 100) of the clients
generate a repeatable background traffic load
which consists of repeating the last three steps of
the basic client algorithm (choose a server uni-
formly from the set of servers, fetch a data object
and rest for a time). This mode of operation
(identified as RAND in the discussion of alterna-
tive selection policies below) is intended to model
the current situation in the WWW in which there is
no choice among replicated sources of information
and a user in a typical browsing session essentially
walks randomly over the graph of web servers.

The remaining 25 clients make up the set of
clients of interest in this study: those that select
servers by various policies. They can either operate
in this same basic mode (RAND) as the majority
of the clients or employ a more intelligent server
selection algorithm. The first alternative is to use
the probing step to determine the distance in hops
to the candidate servers and then choose the server
which is the smallest number of hops away from
the client (this is referred to as the HOPS policy
below). The next alternative uses active probing
for available bandwidth and selection based on the
server to which there is currently the greatest
amount of bandwidth available (this is referred to
as the DSS policy in the sequel).

6.3.5. Number of replicas

For all experimental results presented here we
fixed the number of replicas at seven. That is, the
client selects from an set of seven candidate serv-
ers. At each selection decision this set of seven
servers is selected randomly from the 25 available
servers.

Increasing the number of replicas should benefit
both the DSS and HOPS policies. On the other
hand, fewer replicas may provide most of the ad-
vantage of choice. We do not study the effect of
varying the degree of replication here.

6.3.6. Pseudo-random variate generation

Each client model uses three independent
streams of pseudo-random numbers when making
choices as it proceeds. One stream is used in the
process of selection of candidate servers to be
probed (Step 1); a second stream is used for de-
termination of the size of the requested object

(Step 2); and the third stream is used to decide the
length of the idle period (Step 3). The indepen-
dence of the streams is guaranteed though the use
of the nrand48 C-library call which can be passed
a previous value from which to generate the next
random variate. In a pre-processing step, 1000
seeds were chosen at intervals 100000 samples
apart from a single stream of pseudo-random
numbers. These “entry points” can then be used to
isolate independent sub-sequences which are the
streams used, three at a time, for each client. The
same seeds are used to initialize each simulation
run so that the clients doing selection request the
same sequence of files (in terms of size and inter-
request times) over all of the polices compared.

7. Metrics

There are several yardsticks that are used in the
measurement of the simulated network. On the
client side we focus on user-perceived latency. In
terms of network performance we use two metrics:
overall network traffic (measured in byte-hops);
and traffic distribution over portions of the net-
work hierarchy. In the remainder of this section we
motivate and explain each of these metrics in turn.

7.1. User-perceived latency measurements

For this study we consider all replicas to be of
equal quality in terms of information recency,
authority, etc. The replicas are mirrors in the sense
that they are interchangeable, identical copies.
Therefore, the client’s only objective is to minimize
waiting time for each transfer. We measure user-
perceived latency as the time elapsed between the
moment a client requests a document and the
moment when the information has been com-
pletely delivered to the client.

In the following sections, latency data are gen-
erally presented as a distribution over document
sizes. This presentation preserves any effects due to
bandwidth limitations on transfer times. That is,
variation in transfer time due to document size is
visible in these plots and not hidden as would be
the case if a single aggregate throughput measure
were given. There is an important distinction when
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predicting transfer time between small and large
files. For small files, latency is the dominant factor,
while for large files, available bandwidth is more
important.

The simulation runs with a fixed-size packet of
512 bytes for data transfers. This size, while per-
haps smaller than typical for the Internet, allows
us to more easily study the interactions between
packets, by making them more frequent, while
running simulations in a reasonable amount of
time. Given 512-byte packets, we then compute
histograms with 512-byte bins when presenting the
user latency data. However, the nature of the un-
derlying file size distribution requires some more
careful aggregation as explained in Section 7.4.

7.2. Aggregate byte-hops

A measure of network load is the amount of
data flowing through the network. This directly
affects router queue lengths, packet drops, packet
retransmissions and packet delivery times — all
measures of interest to network providers and
managers. In terms of the current work, it is im-
portant to establish: at least (1) that the proposed
algorithm does not adversely affect the network by
imposing an undue amount of additional load on
the network; or preferably (2) that the proposed
algorithm alleviates network overloading.

We measure load in byte-hops which counts
each byte once for each link it travels over. This
captures the total amount of data being sent but
scales this number by the “distance” over which it
travels. While it is desirable to reduce the volume
of bytes sent, which can be accomplished, for ex-
ample, through caching at the client, it is also
important to reduce the distance over which bytes
are sent and to account for retransmissions at their
full cost. The byte-hops metric lets us compare in a
fair way the difference between a few-hop, heavily-
loaded path (which may suffer from reduced
throughput capability and even dropped packets)
with a many-hop lightly-loaded path (which may
often be the better choice resulting in faster
transfer time and, since there are no drops and
corresponding retransmissions, fewer byte-hops).

The experimentally observed network load re-
ported below includes only the traffic involving the

25 monitored hosts. Since we are comparing the
amount of network load induced by a fixed set of
requests across various selection algorithms we
only want to aggregate the traffic across those
hosts. Because the simulations run for a fixed set of
requests and not a fixed amount of time, the vol-
ume of background traffic will differ from one
simulation to another. Therefore we do not want
to aggregate all requests but rather we need to
isolate the traffic generated by the fixed set of re-
quests made by the 25 monitored hosts.

7.3. Distribution of aggregate traffic over network
hierarchy

A desirable goal of policies that affect network
traffic is to keep traffic local when possible. That is,
when given the chance, it is preferred to use re-
sources that can be found at the LAN or regional
network level rather than those that are located
across the backbone. While [17] focuses exclusively
on this measure as the goal of a host selection
protocol, attempting to keep traffic off of long-
haul links, we find that this effect is achieved as a
by-product of our DSS protocol. Our experimen-
tal results indicate that DSS tends to choose local
servers more often than remote ones.

To quantify this effect we again measure byte-
hops and plot the fraction of total aggregate traffic
that passes over each link in a particular portion of
the network. As discussed in Section 6.1 our test
network is hierarchical and consists of backbone,
regional and LAN tiers. Each link in the network
is assigned to one of these three tiers and the
fraction of the total network traffic that flows over
each link is computed. Then, for each tier, the
average fraction is computed over all links in the
tier. In this way, traffic distribution patterns for
the candidate selection algorithms may be com-
pared.

7.4. Non-uniform histogram bins

Due to the heavy-tailed nature of the Pareto
distribution, a non-uniform bin size is needed in
presenting the distributional data in the following
sections. The file sizes are generated using a Pareto
distribution and are interpreted to be numbers of
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bytes, but it is appropriate to use bins that are
multiples of the fixed-size 512-byte packets when
reporting data relative to file size. Since the file
sizes are not distributed uniformly over the range
of sizes it was necessary to introduce a non-uni-
form width bin scheme. The motivation behind the
technique was to attempt to define bins such that
all would contain approximately the same number
of observations. Since the bulk of the distribution
is biased toward small documents, we want the
resulting histogram to have smaller bins for
smaller documents with bin size increasing with
document size.

The overall effect of the non-uniform bin tech-
nique is to smooth the data presented, since there
are roughly equal numbers of observations in each
bin and averages over these bins then have
meaning. Still, it is the case that the tail of the
distribution is sparsely populated. In practice, this
means that measurements towards the tail of the
distribution are less reliable since fewer observa-
tion are made in that range.

To begin, let us examine the underlying distri-
bution from which file sizes and user think times
are generated. The CDF for the Pareto distribu-
tion with scaling factor k and shape parameter o is
given by [22]:

P[ng]zl—(l—{> (1)
X
with mean
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and variance
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———————, Where a >2.
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Based on the value of o, bins were constructed as
follows. For x < 10000, that is, file sizes less than
10000 bytes, equal sized bins (integer multiples of
the (512 bytes) packet size used in the simulation)
were used. Thus, the first 19 bins have right-hand
edges at (512,1024,1536,...,9728) these capture
files from 1 through 19 packets in length. Above
this size we wish to define bins that will be ap-
proximately equally populated. This is achieved by

dividing the remaining probability mass into 15
equal-sized pieces and computing the right-hand
bin edges for each of these bins.

The remaining portion of probability mass
outside the 19 fixed-size bins can be computed
from Eq. (1) as

PX >x =1- PlX <] )

) e
-2

which can be divided into equally-size pieces to get
an increment value: Problncr.

Eq. (1) can be solved for x, the value below
which a desired fraction lies:

xz* (5)

(- Plx<a)™’

The remaining bins can be computed from Eq. (5)
given a value for P[X < x|, starting with the value
given for [P < 10000], and incrementing by Prob-
Incr on each iteration. For example, for o = 1.5
the extra bins (rounded to multiples of the packet
size) have right-hand edges of: (10752, 11264,
11776, 12800, 13824, 14336, 15360, 16896,
18432, 20992, 24576, 29696, 38400, 60928). All
remaining observations (those larger than 60928
bytes) are discarded because the wide variety of
values in this last bin renders aggregate statistics
meaningless. There is just too much disparity for
an average user-latency, for example, to make
sense at this range.

8. Results

This section presents the results of our wide-
area internetwork simulation answering the ques-
tions we raised at the outset.

8.1. Impact of DSS on user-perceived response time

The first question we addressed through simu-
lation is: what is the effect of large-scale deploy-
ment of a dynamic server selection policy? Some
potential problems that could arise are: overload-
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ing of network resources due to probe traffic; “hot-
spots” in the network created when many requests
are directed to the same server(s); and overloading
of servers. We also want to confirm that, from the
client point of view, the benefit of DSS still applies
even when all the client are using this approach.

In order to examine these questions we ran
three sets of simulations, one for each candidate
server selection policy. With 75% of the clients
generating background traffic we set up the re-
maining 25% of the clients to use either the
RAND, HOPS or DSS selection policies. For each
set we ran four experiments using different seeds
for the random number generator and averaged
the results.

In Fig. 10, the user-perceived latency is plotted
against the data object size for the three tested
selection policies (RAND, HOPS and DSS). The
y-axis shows the average elapsed time between
request and the delivery of the last byte for data
transfers (the user-perceived latency). The x-axis
shows the data object size in bytes. It can be seen
from Fig. 10 that the DSS policy improves user

response time over the RAND policy by approxi-
mately a factor of 2 for small files and by about
0.75 for larger files. The improvement is even
stronger when compared to the HOPS policy (the
top line in the figure). This echoes the earlier re-
sults for the Internet experiments: static polices
based on HOPS do worse than a random selection
among candidate servers.

8.2. Effect of DSS on data traffic volume

The question of total data traffic is also im-
portant: will the widespread use of a DSS policy
increase data traffic or might it lessen it? In Fig. 11
the number of byte-hops required to transfer all
the data for the 25 test clients are shown for the
three candidate selection polices. Recall that the
total amount of data bytes requested is the same
for the three cases. Thus the totals shown in the
graph reflect the data traffic required to deliver a
fixed workload. There are several possible expla-
nations for the differences between policies: (1)
since each hop adds to the total, packets that

Latency (seconds)
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Fig. 10. User-perceived latency: comparison of three selection policies.
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Fig. 11. Traffic volume (byte-hops): comparison of three se-
lection policies.

travel on longer paths add more than shorter
paths; (2) retransmissions caused by congestion
losses on heavily-used paths also add extra traffic.
We examine the contributions of both of these
factors below.

On the left of the graph are three bars giving
the total amount of traffic network-wide (that is,
the sum of bytes over all links for the simulation).
The three polices are shown from left to right, in
decreasing order, with the RAND policy requiring
the most traffic and the DSS policy generating the
least. The HOPS policy performs well, needing
only 67% of the byte-hops used by RAND. The
DSS policy uses only 60% of the RAND byte-
hops. With seven replicas, the DSS policy reduces
traffic overhead by 40% over the RAND policy.

To the right of the figure, we break down the
total traffic by hierarchical tier. The majority of
the savings are at the backbone and regional tier,
where both HOPS and DSS require less than half
of the byte-hops needed for the RAND selection
policy (about 30% each for the backbone and
around 50% for the regional tier). On the far right,
for the LAN tier, the results are closer, with the
DSS policy at 90% of RAND and HOPS at 95%.
This begins to show the effect of favoring local
servers (avoiding the heavily congested backbone

links), a common outcome for both the HOPS and
DSS selection policies.

To more completely understand the mecha-
nisms that result in this overall traffic reduction, let
us look at the two components introduced above:
distance measured in hops and retransmissions
resulting from packet loss. Table 5 shows the
measurements of data traffic volume, average dis-
tance and packet loss for the RAND and DSS
selection policies. * The results shown here are
aggregated over all the 25 clients utilizing server
selection and represent the bytes transferred from
the chosen servers.

8.2.1. Distance in hops

We can compute the average distance (mea-
sured in hops) for each selection policy by dividing
the total traffic volume in byte-hops (column 2 of
Table 5) by the amount of data requested (column
1 of Table 5). We find that the RAND policy
fetches data from an average distance of 10.7 hops
(which is nearly the maximum path length of the
simulated network). The DSS policy results in a
much shorter average distance of 6.4 hops. Thus,
part of the explanation for reduced traffic volume
is the shorter distances over which data travels in
the DSS case. In other words, the DSS policy re-
sults in similar benefits to a policy based on min-
imizing the distance measured in hops.

8.2.2. Retransmission behavior

The other factor contributing to reduced traffic
is the reduction in the amount of retransmitted
data. In order to measure this, we instrumented
the simulator to measure the number of bytes re-
transmitted by the servers in response to packet
losses. The values for each selection policy are
shown in column four of Table 5. We can convert
this to a packet loss percentage (since packets are
of fixed size) by dividing by the volume of data
requested. We find that the RAND policy results
in a packet loss rate of 4.3%, which is close to
recently reported values for live Internet mea-
surements [28]. However, clients using DSS expe-

4 Data shown in Table 5 were taken from a shorter simulation

run than shown in Fig. 11.
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Table 5

Data traffic volume breakdown: average distance and packet loss

Selection policy Data volume Traffic volume Average hops Retransmissions Pkt loss (%)
(MB) (MB-hops) (KB)

RAND 15.5 167.3 10.7 673 4.3

DSS 15.5 98.9 6.4 418 2.7

rience a packet loss rate of only 2.7%. Since the
servers chosen by DSS are on paths that are less
heavily loaded, the chances of a time-consuming
packet loss, which results in increased user latency
as well as increased traffic volume, appears to be
reduced significantly. Thus the use of DSS appears
to result in a lower packet loss rate which explains
part of the reduction in data traffic volume.

8.3. Effect of selection policy on distribution of
traffic

A further demonstration of the improved dis-
tribution of traffic observed in the previous section
can be seen in Fig. 12 where the percentage of byte
hops per tier is shown. This was computed by
summing the number of byte-hops over all links in
a tier and dividing by the total number of data
byte-hops for the simulation. The RAND policy

0.7 |-
Legend
RAND -
~ 0.6 |- HOPS
£ DSS
8 o5}
%)
o
2
}ij 0.4 |-
>
m —
S 03 |-
[0}
=]
8
£ o2}
o
[
o
0.1 I
0.0 H
Backbone Regional LAN

Portion of Network

Fig. 12. Distribution of traffic by network portion: comparison
of three selection policies.

spreads equal amounts of traffic (43%) on both the
regional and LAN tiers and a smaller proportion
(12%) on the backbone. The HOPS and DSS
policies, on the other hand, have the smallest
proportion of traffic on the backbone (about 6%)
and increasing amounts on the regional (about
30%) and LAN (about 60%) tiers.

It is not surprising that the HOPS policy tends
to have more local traffic since its objective is to
minimize the number of hops over which the data
travel. However, it is interesting to note the few
cases in which the DSS policy travels further in the
network (as seen from the slightly greater fraction
of backbone traffic and slightly smaller fraction of
regional traffic compared to HOPS) and yet re-
quires fewer total byte-hops (Fig. 11) and less time
on average (Fig. 10).

8.4. Reducing DSS overhead through approximation

In Section 4.2, we introduced the OnePercent
dynamic selection protocol. In that scheme, a cli-
ent uses far fewer probe packets than the DSS
policy we have examined so far. With OnePercent,
an additional network load of at most 1% of the
bytes of the document being transferred is used to
probe the network. The form of these probe
packets is, again, ICMP ECHO (ping) packets and
the comparison metric is the mean of the RTTs of
these packets. So, instead of a large overhead of
packets delivered by the network and additional
overhead of calculation to estimate in a robust way
the available bandwidth of the path, OnePercent
uses the mean of a few packet RTTs and chooses
the path with the smallest mean RTT. As we
suggested previously, if this policy can achieve
similar performance results, it is preferable be-
cause of its reduced overhead.

We simulated the OnePercent policy and com-
pared the results with the more expensive
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CproBE-based DSS policy. For these simulations,
we used o = 1.5 and a mean file size of 3000 bytes.
Each policy processed 18750 transfers. Fig. 13
shows the results of these comparisons. Here we
show the user-perceived latency (in seconds) plot-
ted against document size for the DSS and One-
Percent dynamic selection policies. The dark line
(with ‘+’ markers) shows the results for the DSS
policy, while the gray, line (with ‘>’ markers) gives
the results for OnePercent.

Fig. 13 shows that the two dynamic selection
polices have very similar performance curves. The
user latencies for the two policies are very close,
interleaving results over the entire range of docu-
ment sizes.

Due to the small size of the files used in our
simulations, the average number of ECHO packets
implied by the 1% overhead of the OnePercent
policy is a single packet. This is sharply contrasted
to the 30 packets used by the current CPROBE
implementation. Clearly, approximately equiva-
lent results for much less cost is a significant

advantage of the simpler policy. As also stated
earlier, there may still be an argument for the use
of the more expensive probe policy for larger
document sizes. The graph in Fig. 13 is inconclu-
sive on this point although there may be a trend
toward divergent performance as file sizes get very
large.

A comparison of volume of network traffic for
the two dynamic selection policies is presented in
Fig. 14. Once again, the two are essentially iden-
tical in terms of total byte-hops for the data traffic.
The OnePercent policy also shows a similar re-
duction in the packet loss rate and a similar
average distance as the DSS policy. Either DSS
policy results in nearly the same amount of traffic
generated by transferring the selected files.

8.5. Sensitivity to o
All of the traffic streams used in the simulations

are generated using Pareto distributions as de-
scribed previously. The o parameter of the Pareto
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Fig. 13. User-perceived latency: comparison of CPrROBE and OnePercent selection policies.
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Fig. 14. Network traffic: comparison of CPROBE and OnePer-
cent selection policies.

distribution determines the shape of the curve,
that is, the weight of the tail, with values closer to
1 being more heavy-tailed and values closer to 2
less heavy-tailed. Simulations using small « values
must be run far longer than those that use larger
values of o in order to achieve stability [16].
However, there has been much work in the area of
characterization of current network loads which
suggests that realistic network traffic is quite
heavy-tailed. This implies that simulations should
use values of « close to 1 to duplicate real-world
results. But, with current simulation approaches
this often results in impractically large running
times.

In spite of this practical limitation, we want to
find an indication as to how well the proposed
selection algorithms will perform under different
workload characteristics. That is, we want to
compare the performance of the RAND selection
and the DSS selection policies while varying the
weight of the tail of the Pareto distribution. We
chose to run pairs of experiments (RAND and
DSS) with five values of o: (1.1,1.3,1.5,1.7,1.9).

In order to make faithful comparisons we need
to ensure that the mean request size is equivalent
across all the experiments. Recall that the mean of
the Pareto distribution depends on the shape pa-

rameter, o, and the scaling parameter, k, and is
given by

ko
o—1"

mean =

We chose to keep the mean request size fixed at
1000 bytes and then computed the corresponding
value of k for each « used in the experiments.

Fig. 15 is a plot showing the performance of
the RAND selection algorithm relative to the
DSS algorithm as o is varied. Each line in the
graph plots the ratio of user-perceived latency for
RAND selection to user-perceived latency for
DSS selection. The vertical axis gives the ratio
between the two selection algorithms, and the
horizontal axis give document size in bins of 512
bytes. Values plotted are interpreted as the factor
by which the RAND selection under-performs
the DSS selection (measured by increased re-
sponse time) for a given value of o and a given
document size. A horizontal line is also plotted at
a factor of 1. Above this line, the DSS policy
outperforms the RAND policy. Below the line
the converse is true. For instance, a value of 2 on
the vertical axis means that a user choosing a
server based on the RAND policy would wait
twice as long as a user choosing a server based
on the DSS policy. Except for the case of
(x=1.7, document size =1024) all points show
that DSS performs better than RAND. While
there is some indication that DSS performs better
with more heavy-tailed distributions it is not
clear that there is any significant trend as o is
varied and we cannot say that DSS is very sen-
sitive to a.

The conclusion to be drawn from this data is
that while DSS is in general a preferred method
of server selection when compared to RAND se-
lection, it appears especially useful when traffic is
characterized by a heavy-tailed object size distri-
bution such as has been found in empirical
studies of current network and workloads as
confirmed by many researchers [11,13,29,30,1].
More extensive measurements and simulations
will be required before this point is well estab-
lished. However, these preliminary results cer-
tainly bode well for the user of DSS in real world
networks.
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Fig. 15. User latency: ratio of RAND to DSS vs file size as « is varied.

9. Conclusion

Widespread replication of information can
ameliorate the problem of server overloading but
raises the allied question of server selection. Cli-
ents may be assigned to a replica in a static man-
ner or they may choose among replicas based on
client-initiated measurements. The latter tech-
nique, called dynamic server selection (DSS), can
provide significantly improved response time of
users when compared with static server assignment
policies (for example, based on network distance
in hops).

In the first part of this paper we have demon-
strated the idea of DSS using experiments per-
formed in the Internet. We described a range of
policies for DSS and showed that obtaining addi-
tional information about servers and paths in the
Internet before choosing a server improves re-
sponse time significantly. We compared the effec-
tiveness of policies that explicitly measure network
bandwidth to simpler policies that only measure
round-trip delay and showed that the latter ap-

proach generally provides nearly equivalent per-
formance at much lower cost in terms of
additional network traffic. The best policy we ex-
amined adopts a strategy of never adding more
than 1% additional traffic to the network, and is
still able to provide nearly all the benefits of the
most expensive policies.

While these results suggest that DSS is benefi-
cial from the network user’s standpoint, the sys-
tem-wide effects of DSS schemes should also be
closely examined. Since previous work has looked
at DSS in isolation, it is important to determine
whether in widespread use DSS would continue to
be beneficial. In addition, it is hard to predict how
DSS would affect the global flow of traffic in a
large internetwork.

In the second part of this paper we used large-
scale simulation to study the system-wide network
impact of DSS. We used a simulated network of
over 100 hosts that allows local-area effects to be
distinguished from wide-area effects within traffic
patterns. We generated network requests in a
manner intended to imitate Web traffic patterns,
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and used a detailed packet-level simulation that
includes TCP flow control.

In this environment we have compared DSS
with static server selection schemes and confirmed
that client benefits remain even when many use
DSS simultaneously. Importantly, we have also
shown that DSS confers system-wide benefits from
the network standpoint, as compared to static
server selection. First, overall data traffic volume
in the network is reduced, since DSS automatically
improves network congestion. Second, traffic dis-
tribution improves — traffic is shifted from the
backbone to regional and local networks.

As the size of the Web and the Internet continue
to explode, more sophisticated middleware to
manage latency and improve throughput becomes
more desirable. The results presented here are sug-
gestive that widespread use of DSS would improve
the perceived performance of distributed informa-
tion systems like the Web, while at the same time
improving Internet traffic distribution properties.
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