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Abstract

Motivation: Mapping genetic interactions (GIs) can reveal important insights into cellular function, and
has potential translational applications. There has been great progress in developing high-throughput
experimental systems for measuring GIs (e.g. with double knockouts) as well as in defining computational
methods for inferring (imputing) unknown interactions. However, existing computational methods for
imputation have largely been developed for and applied in baker’s yeast, even as experimental systems
have begun to allow measurements in other contexts. Importantly, existing methods face a number of
limitations in requiring specific side information and with respect to computational cost. Further, few have
addressed how GIs can be imputed when data is scarce.
Results: In this paper we address these limitations by presenting a new imputation framework, called
Extensible Matrix Factorization (EMF). EMF is a framework of composable models that flexibly exploit
cross-species information in the form of GI data across multiple species, and arbitrary side information in the
form of kernels (e.g. from protein-protein interaction networks). We perform a rigorous set of experiments
on these models in matched GI datasets from baker’s and fission yeast. These include the first such
experiments on genome-scale GI datasets in multiple species in the same study. We find that EMF models
that exploit side and cross-species information improve imputation, especially in data-scarce settings.
Further, we show that EMF outperforms the state-of-the-art deep learning method, even when using
strictly less data, and incurs orders of magnitude less computational cost.
Availability: Implementations of models and experiments are available at: github.com/lrgr/emf
Contact: mdml@umd.edu

1 Introduction
A genetic interaction (GI) is a measure of how a combination of gene
variants produces a phenotype that is different than expected, given the
phenotypes of each independent gene variant. Most commonly, a GI is
measured for a pair of gene knockouts with a measure of cell viability
as the phenotype. Although a single GI provides only limited phenotypic
information, mapping a set of GIs in a model organism is thought to be
able to resolve fundamental biological questions such as the minimum
number of genes required for a viable cell (Kuzmin et al., 2018; Hutchison
et al., 2016). Furthermore, knowledge of GIs has enabled promising new
strategies for cancer treatment (Ashworth and Lord, 2018; Lee et al., 2018),
and may expand opportunities for treating infectious diseases (Patrick
et al., 2018).

Consequently, identifying and characterizing GIs has been a major
focus in systems biology for the past two decades, spurring innovations in
experimental systems and computational methods. Recently, researchers
have sought to go beyond measuring interactions for small sets of specific
genes or gene pairs, to develop approaches for generating what are referred
to as “unbiased” maps of pairwise quantitative GIs between large sets
of genes (Costanzo et al., 2019). A quantitative GI for a tested pair of
genes is a real-valued score for the direction (positive / alleviating versus
negative / aggravating) and strength of the interaction. For example, treated
quantitatively, a synthetic lethal interaction is a GI with a score much less
than zero. In vitro efforts began in baker’s yeast with small maps for all
pairs of genes involved in key biological functions (Schuldiner et al., 2005;
Collins et al., 2007; Roguev et al., 2008). These efforts culminated in a
landmark study (Costanzo et al., 2016) that published a map of GIs for
over 90% of all genes in baker’s yeast (S. cerevisiae).
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Despite impressive progress, many challenges remain. These
challenges include measuring interactions in species other than baker’s
yeast, examining higher-order interactions for sets of more than two genes,
and measuring GIs for different phenotypes. In fact, in each of these cases,
there have been recent experimental studies (Ryan et al. (2012); Kuzmin
et al. (2018); Dixit et al. (2016), respectively). However, the landscape of
yet unmeasured GIs remains vast and will not be fully explored through in
vitro experimentation alone. Thus, there is an enormous need for in silico
methods to complement the recent and ongoing experimental advances.

To address this need, methods have been developed along a number
of dimensions. First, it is important to note the critical difference between
the classification problem posed by binary classes of extreme GIs, and
the regression problem associated with the larger information content
contained in quantitative GI data. With respect to binary GIs, much work
has been focused on the prediction of synthetic lethal interactions (Wong
et al., 2004; Paladugu et al., 2008; Pandey et al., 2010; Wu et al., 2014;
Jacunski et al., 2015; Benstead-Hume et al., 2019), sometimes treating
the classification problem as standard link prediction (Liben-Nowell and
Kleinberg, 2003; Lü and Zhou, 2011). However, genome-scale work
in yeast has gone beyond identifying the most extreme interactions to
identifying correlations between genes’ profiles of quantitative GI scores
regardless of magnitude, in order to create genome-wide maps of gene
function (Costanzo et al., 2010). Hence, in this paper, we study imputing
real valued, quantitative GI scores for all gene-pairs.

Ulitsky et al. (2009) were the first to develop methods for the
regression problem of predicting quantitative GIs using features derived
from functional annotations, protein-protein interactions, and the Gene
Ontology (GO) (The Gene Ontology Consortium, 2018). More recently,
Ma et al. (2018) – building off of the work of Yu et al. (2016) –
introduced an interpretable deep learning method that uses GO to achieve
state-of-the-art performance in predicting GI scores in baker’s yeast.

In this work, we present a new computational framework for
the quantitative GI regression problem, termed Extensible Matrix
Factorization (EMF), and show its utility in both baker’s yeast and fission
yeast (S. pombe). In developing EMF, we seek to overcome a number of
limitations of existing methods.

First, we note that existing state-of-the-art methods are predicated on
the availability of specific kinds of side information as a necessary input
for feature generation. That is, computational methods such as DCell (Ma
et al., 2018) require annotations from GO. However, the availability and
quality of GO annotations vary widely across species. For example, baker’s
yeast has more than double the number of annotations in fission yeast (The
Gene Ontology Consortium, 2018). Thus, the reliance on specific side
information as input to DCell limits its ability to be used for a wide range
of species. Furthermore, no methods have exploited known correlations
across GI data (Roguev et al., 2008; Ryan et al., 2012; Koch et al., 2012) in
related species (cross-species information) to make predictions in species
in which data is scarce.

Second, training state-of-the-art methods is computationally intensive.
For example, DCell took two to three days to train on data from Costanzo
et al. (2016). Methods that require significant time to train can impede
efforts to develop and benchmark new models; this bottleneck may grow
further as the sizes of GI datasets increase.

To address these limitations, EMF is designed to be a more broadly
useful approach that can flexibly incorporate various kinds of side
information, as available. The EMF framework consists of a collection of
composable matrix factorization (MF) models that can optionally exploit
known non-uniformities in GIs, within-species side information (via
kernelization), and cross-species information (via gene-gene similarities).
A core contribution within EMF is cross-species matrix factorization
(XSMF), a new method for using information from one (source) species
to improve GI imputation in a second (target) species.

We also designed EMF to have low computational cost – EMF models
typically takes less than one minute to train on genome-scale data. As
evidence of the scalability and flexibility of EMF, we use it to impute GIs
in baker’s and fission yeast at genome-scale. To the best of our knowledge,
ours is the first study to do so in fission yeast.

Further, we note that recent evidence from data mining literature shows
that MF can be competitive with deep learning for some problems when
attention is paid to details such as hyperparameter tuning (Rendle et al.,
2019). In light of this, we also present in this study a principled approach
to composing EMF models and a rigorous approach to hyperparameter
optimization to properly weight model combinations.

In the remainder of this work, we show that (when properly applied)
MF compares favorably to previous methods. Our contributions include:

1. Extensible Matrix Factorization (EMF): a framework of
composable matrix factorization models for imputing genetic
interactions. EMF extends and unifies several existing MF methods
that have not previously been applied to GIs. EMF consists of: a cross-
species model that regularizes learned factors across species based on
a gene-gene similarity measure; a kernelized model that regularizes
learned factors within species; and, a bias model that learns the mean
GI score per gene and (motivated by Koch et al. (2012)) regularizes
biases across species.

2. Rigorous benchmarking of EMF on matched datasets from
baker’s and fission yeast. We compare EMF models on matched GI
datasets for chromosome biology genes from baker’s and fission yeast
using automated approaches for hyperparameter selection (Bergstra
et al., 2011), and show that each component of the EMF framework
captures additional and complementary signal in data-scarce settings.
We also compare directly to the one earlier MF method for imputing
GIs, and find EMF to be superior in performance.

3. Application of EMF to genome-scale datasets. We apply the best
performing models from our benchmarking experiment on datasets
covering 75% and 60% of all non-essential genes in baker’s and
fission yeast, respectively (Costanzo et al., 2010; Ryan et al., 2012).
Compared to the state-of-the-art as reported in literature, EMF models
show superior performance, and train in minutes instead of days.

2 Methods
Matrix factorization (MF) (Salakhutdinov and Mnih, 2008; Koren et al.,
2009), also referred to as matrix completion (Candès and Recht, 2009), is
a strategy for imputing missing values in a matrix. The matrix is generally
assumed to contain redundancies and potentially other regularities or
correlations. In other words, a subset of visible values suffices to
approximately infer some or all missing values.

MF has proven to be a broadly effective technique in a wide range of
problem areas (Koren et al., 2009; Lee and Seung, 1999; Stein-O’Brien
et al., 2018). Furthermore, it can have a number of advantages over more
recently developed methods such as deep learning (Rendle et al., 2019).
A goal of this study is to demonstrate how MF can be an advantageous
strategy for the problem of genetic interaction (GI) prediction.

MF takes as input a n×m matrixX which is partially observed. We
use Ω to denote the set of indices inX whose values are known. The goal
of MF is to impute missing values in X (i.e., (i, j) /∈ Ω). The basic MF
framework starts from the assumption thatX , were it fully-known, would
be effectively low-rank. That is, X can be well approximated by a matrix
R of rank k � min(m,n). MF methods seek to estimate R and use the
values of R to estimate the missing values of X .

This suggests the following optimization problem:

U, V = argmin
U∗,V ∗

∑
(i,j)∈Ω

(xij − uT∗i v∗j )2 (1)
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Fig. 1. (A) Extensible Matrix Factorization (EMF) is a composable framework of matrix factorization models that takes as input partially observed matrices in a target species and, optionally,
a source species. Here we use K-XSMF-b, one realization of EMF, to illustrate the range of EMF models as they apply to imputing genetic interactions (GIs). The XSMF model uses
cross-species information in the form of a gene-gene similarity measure (e.g. BLAST). Side information (blue box, which can include PPI networks, GO annotations, etc.) forms additional
optional input, yielding K-XSMF. (B) To model per-gene biases in mean GI score, bias terms (orange box) can be introduced in the target and source species. Similarities from the provided
cross-species similarity measure are used to link both biases and latent factors across species, resulting in K-XSMF-b. (C) Latent factors and biases are learned using gradient descent.
Importantly, to ensure best possible test-time performance, hyperopt is used to automatically select and optimize hyperparameters (Bergstra et al., 2011). (D) After hyperparameters are
selected and latent factors and biases are learned, missing interactions can be imputed.

in which U and V are matrices with k rows, where k is a hyperparameter
chosen to model the effective rank of X . This framework allows one
to recover R = UTV , and admits an interpretation of corresponding
columnsui and vj as latent factors representing the entities on the i-th row
and j-th column of X respectively. To impute missing value (i, j) /∈ Ω,
one simply computes the inner-product, uTi vj of the learned latent factors.

Regularization to reduce overfitting can be achieved by including
additional terms, such as the `2-regularizer from Koren et al. (2009) and
Salakhutdinov and Mnih (2008):

U, V = argmin
U∗,V ∗

∑
(i,j)∈Ω

(xij−uT∗i v∗j )2+λ
(
‖U∗‖2F + ‖V ∗‖2F

)
. (2)

The basic MF framework succeeds by exploiting the inherent low
effective rank of the data. Moreover, an important advantage of MF
is the straightforward and principled ways in which it can be adapted
to incorporate additional regularities in the data. For example, “side”
information (additional data features) may be predictive in a manner that
is synergistic with the basic low-rank assumption.

2.1 Extensible Matrix Factorization (EMF): a composable
class of matrix factorization models

We present a set of composable components for MF that exploit
cross-species and side information. We derive these from biological
observations and ultimately incorporate these into a unified Extensible
Matrix Factorization (EMF) framework.

EMF encompasses several existing MF models, including the basic MF
model given in (2) (Salakhutdinov and Mnih, 2008), MF with bias (MF-
b) (Koren et al., 2009), and kernelized probabilistic MF (K-PMF) (Zhou
et al., 2012). Our contribution with EMF is in presenting a unified view of
these models, and expanding their formulations to cross-species settings.

We describe the framework generally as it applies to matrices of
biological data where the rows and columns are indexed by genes. We
begin by introducing two novel components for exploiting cross-species
information, and then present a component for exploiting side information
(i.e. within a species). While we apply the EMF components in both
the single-species and cross-species settings, we describe all components

as they apply to a cross-species setting. Where emphasis is useful, we
describe how the models can be leveraged specifically for imputing genetic
interactions (GIs).

2.1.1 Cross-species matrix factorization (XSMF)
The first extension to MF that we propose is a cross-species matrix
factorization (XSMF) component, a novel MF scheme that jointly
factorizes matrices in a target and a source species to better impute missing
values in the target.

Let X ∈ Rn×m be a partially observed matrix for a target species,
and Y ∈ Rn′×m′ be a partially observed matrix for a source species. We
use ΩX and ΩY to denote the indices inX andY whose values are known.
We present, piecewise, the optimization objective that defines XSMF.

First, the primary objective of XSMF is to estimate latent factors
U ∈ Rk×n and V ∈ Rk×m that best reconstruct observed values in
the target species. To do so, XSMF minimizes the objective:

Lt =
∑

(i,j)∈ΩX

(xij − x̂ij)2, (3)

where x̂ij = uTi vj .
Second, XSMF simultaneously estimates latent factors F ∈ Rk×n′

andH ∈ Rk×m′ that reconstruct observed values in the source species.
To do so, XSMF also minimizes the objective:

Ls =
∑

(i,j)∈ΩY

(yij − ŷij)2, (4)

where ŷij = fTi hj .
Third, given a similarity measure between target species genes and

source species genes, sim(·, ·), with corresponding similarity score matrix,
S, XSMF links the factorizations sought by (3) and (4).

It is important to observe here that matrices belonging to target and
source species cannot be naively merged because there is no complete
one-to-one correspondence between genes in the rows and columns of the
target and source. It is also not useful to naively merge matrices by adding
source species values, via new rows and columns for source genes, to the
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target matrix. In such a merged matrix, the latent factors between source
and target genes would be independent and not interact.

Thus, XSMF seeks to maximize weighted inner products between the
latent factors of genes by minimizing the objective:

Lx = −
∑
i

∑
j

sim(i, j) · uTi fj (5)

or equivalently,

Lx = −tr(USFT ). (6)

Finally, `2 regularization is also added to reduce overfitting and XSMF
also minimizes the regularizer:

Lr = ‖U‖2F + ‖V ‖2F + ‖F‖2F + ‖H‖2F (7)

The full objective function that XSMF minimizes, with respect to latent
factors, can then be written as:

LXSMF = Lt + λsLs + λxLx + λrLr (8)

with the introduction of user-defined hyperparameters λs, λx, and λr . In
the XSMF model, the parameters λs and λx have useful interpretations.
The hyperparameter λs controls the tradeoff between reconstructing the
target and source species values, andλx controls the degree to which latent
factors of similar genes across species ought to be close in representation.

We highlight that sim(·, ·) can be any reasonable similarity measure
of homology. For example, similarity measures like BLAST bitscores
(Altschul et al., 1990), string kernels for protein and DNA sequences
(Leslie et al., 2001), or similarity scores based on biological networks
(Fan et al., 2019), that have proven to be informative in other contexts
can be utilized with little to no modification. Unlike researcher-provided
labels in GO, many such similarity measures can be computed with only
minimal researcher supervision.

2.1.2 Modeling per-gene biases in average values
It has been observed in other settings that MF models that explicitly account
for per-column and per-row ‘biases’ have been shown to outperform MF
models that do not (Koren et al., 2009). In fact, for GI data, the average GI
score (i.e., the propensity for a given gene to genetically interact with any
other gene) is known to be non-uniform across yeast genomes (Costanzo
et al., 2010, 2016; Ryan et al., 2012).

Thus, all models in the EMF framework can be extended to account for
per-gene biases. For cross-species models, per-gene latent bias terms can
be introduced and an imputed value in the target species between genes
(i, j) can instead be modified to:

x̂ij = uTi vj + bi. (9)

In the source species an imputed value can be modified to:

ŷij = fTi hj + b′i. (10)

Naturally, `2 regularization over corresponding vectors of biases, b and
b′, can be added to the final optimization objective to reduce overfitting.

2.1.3 Modeling the conservation of biases across species
EMF can also ‘link’ biases if one expects biases to be correlated across
species. In fact, this is the case for GIs. Koch et al. (2012) showed that the
total number of extreme, synthetic lethal interactions can be correlated
between similar genes in baker’s and fission yeast. This observation
motivates an additional way to exploit cross-species similarities in the

EMF framework. The following regularization term that links biases in
the source and target can be added to cross-species models:

Lb = −bTSb′. (11)

Adding the regularization term Lb to the objective of an EMF model
encourages biases of similar genes to also be similar.

2.1.4 Incorporating arbitrary side information
Recent work in MF has introduced a number of additional ways to
incorporate side information – such as networks (Zitnik and Zupan, 2015)
or kernels (Zhou et al., 2012) – to further improve model performance.

We adapt the kernelized approach taken by Zhou et al. (2012) to extend
both single-species and cross-species models in EMF. To exploit side
information in the target species, kernels that regularize latent factors U
and V are introduced. Kernelization enables incorporation of any arbitrary
side information about known similarities between (same-species) genes,
as long as appropriate kernelsKU andKV can be computed for genes in
the target species. Concretely, the following quadratic terms can either be
added in addition to, or replace the usual `2 regularizers on U and V :

Lkt = tr (UK−1
U UT ) + tr (V K−1

V V T ). (12)

Intuitively, these regularizers encourage corresponding latent factors for
two genes to be close if two genes are similar, given a particular kernel.

For cross-species models, assuming the availability of appropriate
kernels in the source species, the same technique can be applied to factors
F andH , and the following quadratic term can be added for regularization:

Lks = tr (FK−1
F FT ) + tr (HK−1

H HT ). (13)

2.2 A kernelized cross-species model including bias for
imputing genetic interactions

In the sections above, we have described, in abstract terms, how loss
terms can be composed to form EMF models with varying complexity.
As an example, we describe in detail an instantiation of the EMF
framework designed specifically to impute GIs. Kernelized cross-species
matrix factorization with bias (K-XSMF-b) is a cross-species EMF model
that imputes missing GIs in a target species. K-XSMF-b takes as input
partially observed matrices of GIs of the target and a source species,
computed cross-species gene-gene similarities, and side information in
both target and source species. We graphically illustrate the components
of K-XSMF-b and the greater EMF framework in Figure 1, and describe
the optimization objective for K-XSMF-b in parts.

First, K-XSMF-b models per-gene biases in target and source GIs, and
thus aims to minimize:

L1 =
∑

(i,j)∈Ωx

(xij −uTi vj − bi)2 +λs
∑

(i,j)∈Ωy

(yij − fTi hj − b′i)2.

(14)
Then, given kernelsKV andKH over source and target genes, K-XSMF-b
regularizes its factorization with:

L2 = tr (V K−1
V V T ) + tr (HK−1

H HT ) + ‖U‖2F + ‖F‖2F . (15)

Finally, loss terms that link latent factors and biases across species Lx, as
in (5), and Lb , as in (11), are added. Given hyperparameters λs, λx and
λ, the full loss function that of the K-XMSF-b aims to minimize is:

L = L1 + λxLx + λ(L2 + Lb). (16)

Thus, K-XSMF-b is a fully featured EMF model that simultaneously
exploits cross-species information, side information in the source and
target, and models the effect and conservation of per-gene biases.
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2.3 Parameter Learning and Hyperparameter Selection

Each loss term in the various EMF models described above is
differentiable. Thus all the objective functions we work with are amenable
to typical gradient-based optimization algorithms. In this work we use the
popular method ADAM to learn our models (Kingma and Ba, 2017).

For all models, all input GI scores in the target and source species
(where applicable) are normalized to zero mean and unit variance prior to
training. Accordingly, for imputed GI scores, this normalization operation
is inverted prior to evaluation. The input cross-species similarity score
matrix is also scaled element-wise to [0, 1] prior to training.

We take care to ensure fair benchmarking of every MF model
in our experiments. We use hyperopt to automatically tune and
optimize model hyperparameters to maximize the performance of each
benchmarked model (Bergstra et al., 2011). Furthermore, a consistent
early-stopping strategy is adopted for all models for the same purpose.
Models are early-stopped when the R2 score evaluated on the validation
set fails to decrease for five consecutive iterations, or when the user-defined
maximum number of iterations is reached.

For each combination of model, dataset, and proportion of training
examples used, a validation set of 10% of training examples is first held out.
Using this validation set, hyperopt (50 iterations) is used to determine
the best hyperparameters to be used across multiple repeats.

2.4 Evaluation

In this work, we primarily evaluate imputation performance of models
using theR2 measure (the coefficient of determination), in contrast to prior
studies that have used Pearson’s ρ (the correlation coefficient). We report
Pearson’s ρ where context and comparison to prior work is necessary.

In evaluating EMF models, we rely on R2 because it is a measure of
goodness-of-fit while Pearson’sρ is a measure of correlation – and the latter
does not imply the former. Critically, R2 correctly rejects a model that
systematically mis-estimates the magnitude of predictions while Pearson
ρ fails to do so. For example, consider a poor model that systematically
predicts values that are exactly half of the ground truth. Despite being very
wrong, such a model would output values that have perfect correlation but
low (or even negative) R2 when compared to ground truth.

When imputing GI scores, the difference between goodness-of-fit and
correlation is critical because extreme classes of GIs (e.g. synthetic lethal
interactions) are binarized on strict numerical thresholds in the literature
(Costanzo et al., 2010). Thus, a model that systematically underestimates
GI scores will also systematically under-report the number of predicted
extreme GIs.

On the Costanzo et al. (2010) dataset, we also evaluate the ability of
models to correctly classify “negative GIs” (analogous to synthetic sick or
lethal) as defined by (Costanzo et al., 2010). We follow Ma et al. (2018)
and Yu et al. (2016) for these evaluations. That is, we impute interaction
scores directly and, afterwards, vary the binarization threshold to compute
the area under the precision-recall curve (AUPR).

Unless stated otherwise, we use Monte Carlo cross-validation to
evaluate all experiments. For training and evaluation, GIs for unique gene-
pairs are partitioned. Following Zitnik and Zupan (2015), if two genes A
and B are in both rows and columns of an input matrix and two values
are imputed (e.g. across the diagonal of the imputed matrix), the imputed
scores are averaged for evaluation. All reported evaluation measures are
averaged over 10 random repeats.

2.4.1 Comparison against existing factorization based methods
In our experiments, we compare our cross-species models against two
existing factorization-based models. We compare our models to K-
PMF (Zhou et al., 2012), a model originally developed for recommender
systems. To the best of our knowledge, we are the first to use K-PMF

to impute GIs. We also compare our models to Network Guided Matrix
Completion, a method that incorporates network information (from PPI
networks or the Gene Ontology) to impute GIs (Zitnik and Zupan, 2015).
We note that both K-PMF and NGMC do not account for per-gene biases
and cannot incorporate information across species. Zitnik and Zupan
(2015) also did not evaluate NGMC on genome-scale datasets available at
the time of publication.

Hyperparameter optimization described in Section 2.3 is applied to
both K-PMF and NGMC. The same early stopping criterion described in
Section 2.3 is applied to K-PMF but not NGMC; all NGMC models run
for 500 iterations.

2.4.2 Comparison against Gene Ontology based methods
We also compare EMF to DCell, the current state-of-the-art neural-network
based approach developed by Ma et al. (2018), and Ontotype, the best non-
deep-learning based method developed by Yu et al. (2016). Both methods
featurize labels from GO to predict GIs in baker’s yeast at genome-scale.
We downloaded published data and predictions from Yu et al. (2016) and
Ma et al. (2018), and for these comparisons evaluate EMF using the same
4-fold cross-validation procedure carried out by these studies.1

2.5 Implementation

EMF models are implemented using TensorFlow (Abadi et al., 2016). For
NGMC, we use the implementation released by the authors (Zitnik and
Zupan, 2015). Snakemake is used extensively to configure and manage
experiments (Köster and Rahmann, 2012). Models and scripts to reproduce
experiments are publicly available at: github.com/lrgr/emf.

3 Experiments and results
Armed with the EMF framework defined in the previous section, we now
evaluate it in three ways: first, we demonstrate its superiority to the state-of-
art methods for predicting genetic interactions (GIs); next, in chromosome
biology GI datasets for baker’s and fission yeast, we perform a systematic
ablation analysis to identify the components of EMF that capture additional
signal to better impute GIs; and finally, we apply EMF to impute GIs on
genome-scale datasets in both yeast species.

3.1 Data

Our experiments were performed on two pairs of GI datasets from baker’s
and fission yeast. The first pair of GI datasets consists of published epistatic
miniarray profiles (E-MAPs) for chromosome biology genes in baker’s and
fission yeast (Collins et al., 2007; Roguev et al., 2008).

The second pair are genome-scale GI datasets in baker’s and fission
yeast. Ryan et al. (2012) produced an E-MAP covering ~60% of all non-
essential genes in fission yeast. Costanzo et al. (2010) produced a synthetic
genetic array (SGA) covering ~75% of all non-essential genes in baker’s
yeast. We note that in the SGA dataset for baker’s yeast, a confidence
measure (p-value) computed from technical replicates is also assigned to
each reported GI score (Baryshnikova et al., 2010).

3.1.1 Genetic interaction scores
All four datasets measure GI scores with respect to cell growth. Each
yields a matrix of real valued GI scores where index (i, j) corresponds to
the interaction of column gene i and row gene j. For chromosome biology
datasets, matrices of GI scores are symmetric. For genome-scale datasets,
the GI scores between a set of array (columns) and query genes (rows) are
measured and the set of array and query genes have non-zero intersection.

1 Published predictions from these studies were not stratified by fold. Thus, while we

follow the same experimental procedure, we train our models on different folds.

https://github.com/lrgr/emf
github.com/lrgr/emf


i
i

“output” — 2020/7/16 — 20:30 — page 6 — #6 i
i

i
i

i
i

6 Fan et al.

Thus a unique gene-pair can correspond to two measured GI scores. We
follow Ma et al. (2018) to associate each unique gene pair to a unique GI
score. That is, if a gene-pair corresponds to GI scores of opposite signs,
the GI scores are discarded. Otherwise, for baker’s yeast the GI score with
lower P-value is retained, and for fission yeast the average GI score is
retained (as significance is not reported for this dataset).

We note that E-MAPs and SGAs both quantify a GI score between
a pair of genes using similar principles. Both technologies use imaging
to quantify the fitness of the double and corresponding single mutants.
The GI score is then defined to be the deviation of the fitness of the
double mutant from the multiplicative product of the fitnesses of the single
mutants (Costanzo et al., 2019). However, since E-MAPs and SGAs are
different technologies, raw GI scores cannot be directly compared. Hence,
we applied the normalization strategy described in Section 2.3.

All datasets are restricted to GIs between non-essential genes only. For
Costanzo et al. (2010) data, as in Ma et al. (2018), GIs for temperature
sensitive alleles are also removed. The matrices of GI scores for the datasets
described above are all partially observed. The percentage of missing
entries and size of each processed dataset are listed in Table 1.

Species Reference # Rows # Columns % Missing

Baker’s yeast Collins et al. (2007) 664 664 32%
Costanzo et al. (2010) 3,885 1,377 19%

Fission yeast Roguev et al. (2008) 536 536 21%
Ryan et al. (2012) 1955 862 16%

Table 1. Summary statistics for genetic interaction datasets.

For experiments with Costanzo et al. (2010), all pairs regardless of
significance were used for training. We report imputation performance on
all scores as well as scores restricted to significant pairs (p < 0.05).

3.1.2 BLASTp, protein sequences, and PPI networks
We use BLASTp bitscores between proteins sequences across species as
the similarity measure for cross-species EMF models. Protein sequences
for baker’s and fission yeast were downloaded from the Saccharomyces
Genome Database and PomBase (Cherry et al., 2011; Lock et al., 2018) and
used to compute bitscores between genes in the rows of target and source
species data. Bitscores between proteins without available sequences were
set to zero. For chromosome biology datasets (Collins et al., 2007; Roguev
et al., 2008), the set of downloaded sequences covered 99.2% and 99.3%
of baker’s and fission yeast genes. For genome-scale datasets (Costanzo
et al., 2010; Roguev et al., 2008), downloaded sequences covered 86.9%
and 99.8% of baker’s and fission yeast genes.

We downloaded protein-protein interaction (PPI) networks for baker’s
and fission yeast from BioGRID database version 3.5.174 (Oughtred et al.,
2018). These PPI networks were used for all models that incorporated side
information. PPI networks were restricted to genes in the columns of each
GI dataset. For chromosome biology GI datasets, the PPI networks covered
99.1% and 73.5% of genes in baker’s and fission yeast. For genome-scale
GI datasets, the PPI networks covered 99.6% and 78.3% of genes in baker’s
and fission yeast. Singletons were then added for genes in GI data missing
from PPI networks.

3.2 Evaluated models

In our experiments, we seek to investigate how composable components
of EMF affect, and ultimately improve, GI imputation. We implement
seven model instances of the EMF framework by progressively adding
components that, model per-gene biases, link factorizations across a target
and source species, and regularize with side information within each
species.

Of the seven EMF models, four are single-species models that factorize
GI data in the target species only2:

• Matrix Factorization (MF) is the simplest matrix factorization
model. It uses the optimization objective described in Section 2 and
equation (2) (Salakhutdinov and Mnih, 2008; Koren et al., 2009).

• MF with bias (MF-b) is the extension to MF that incorporates a latent
bias term, b, as described in Section 2.1.2 and (9). `2 regularization
over b is also added to prevent overfitting (Koren et al., 2009).

• Kernelized Probabilistic Matrix Factorization (K-PMF) is the
model developed by Zhou et al. (2012) with regularizers described in
Section 2.1.4 and (12). Here,Lkt from (12) replaces the corresponding
`2 regularizers in MF.

Of these models, only MF has been used to impute missing GIs in prior
work (Zitnik and Zupan, 2015). To the best of our knowledge, our work
is the first to evaluate MF-b and KPMF for imputing GIs. For context, we
also compare EMF models to NGMC, a matrix factorization based model
not that is not encompassed by the EMF framework but does utilize PPI
networks for GI imputation (Zitnik and Zupan, 2015).

Additionally, we implement one other single-species model that is a
novel extension to K-PMF that has not been explored in prior work:

• K-PMF with bias (K-PMF-b), is an extension of the K-PMF
model that incorporates per gene biases. K-PMF-b applies the same
modification to K-PMF that MF-b does to MF.

To determine how EMF components which incorporate cross-species
information capture complementary signal to improve performance, we
evaluate three cross-species models of increasing complexity. These cross-
species models use BLASTp bitscores to link the factorizations of GI
scores in a target and source species to better impute GIs in the target.
One model additionally uses PPI network information in each species to
regularize factorizations. Another both models and links per-gene biases
across species and incorporates PPI network information:

• Cross-species Matrix Factorization (XSMF) is the cross-species
model described Section 2.1.1 with loss function as specified by (8).

• Kernelized XSMF (K-XSMF) is the cross-species model described
Section 2.2 with model components that correspond to bias terms
removed. Per-gene biases are not fitted and Lb is removed from the
loss function defined by (16).

• K-XSMF with bias (K-XSMF-b) is the fully featured cross-species
model described in Section 2.2.

A summary of the data and components used by NGMC and each EMF
model is given in Table 2.

Algorithm Target Species Source Species

Name / short description abbr. Bias PPI GIs Bias PPI

Matrix Factorization MF - - - - -
MF with bias MF-b X - - - -
Kernelized Probabilistic MF K-PMF - X - - -
Network Guided Matrix Completion NGMC - X - - -

K-PMF with bias K-PMF-b X X - - -
Cross-species MF XSMF - - X - -
Kernelized XSMF K-XSMF - X X - X

Kernelized XSMF with bias K-XSMF-b X X X X X

Table 2. Overview of benchmarked MF models. For each model, Xindicates the additional
MF component and side information used.

2 We note that MF, MF-b, and K-PMF were first introduced by other researchers.
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Our focus is on imputing GIs in the target species; so for the three
cross-species models, all available GIs in the source species are used for
training while varying the proportions of the target species’ GIs are held
out for evaluation. For example, when baker’s yeast is the target species,
we train on the entire fission yeast dataset and part of the baker’s yeast
dataset, holding out some of the baker’s yeast dataset for evaluation.

For all kernelized models, PPI network information is incorporated
using regularized Laplacian kernels. For K-PMF, K-PMF-b, K-XSMF,
and K-XSMF-b, the kernels used for target species factors are the identity
matrix for KU and the regularized Laplacian for KV , respectively.
Likewise, where applicable, the kernels for source species factors are the
identity matrix forKF and the regularized Laplacian forKH , respectively.
We note that hyperparameters for regularized Laplacian kernels used are
also optimized via the same procedure described in Section 2.3.

During hyperparameter optimization, the maximum rank searched for
in all matrix factorization algorithms is set to k = 100 and k = 200

for chromosome biology and genome-scale datasets, respectively. The
ranges searched over and the selected hyperparameters for all the above-
mentioned models are listed in our publicly available implementation.

3.3 Matrix factorization outperforms state-of-the-art Gene
Ontology based models in baker’s yeast

Surprisingly, EMF outperforms the best deep learning-based method for
GI prediction even when using strictly less data.

We demonstrate this by establishing a baseline comparison, and
contextual correspondence, between a simple EMF model that relies on
GI data alone and Gene Ontology (GO) based state-of-the-art models,
DCell and Ontotype (Ma et al., 2018; Yu et al., 2016). Specifically, since
we expect mean GI scores across genes in genome-scale datasets to vary
greatly, we choose to compare DCell and Ontotype to MF-b, the simplest
model within the EMF framework that only requires GI data and also
models per-gene biases.

We compare MF-b to DCell and Ontotype only in baker’s yeast since
both have only been applied to genome-scale data in baker’s yeast and their
predictions are publicly available. We note that DCell and Ontotype cannot
predict GIs for all ~4.0 million unique gene-pairs with GI scores available
from Costanzo et al. (2010) because only ~3.3 million gene-pairs can be
featurized from GO (as some genes have no annotations). Even though
MF-b does not have the same limitation, we nonetheless restrict MF-b to
only use the 3.3 million GI scores used by Yu et al. (2016) and Ma et al.
(2018) to perform an apples-to-apples comparison.

Though we argue in Section 2.4 that R2 is a better metric, we report
regression performance both in terms of R2 and Pearson’s ρ for context.
Ma et al. (2018) and Yu et al. (2016) only report performance in terms
of Pearson’s ρ in their work. Following prior studies (Yu et al., 2016; Ma
et al., 2018), we also evaluate how well each model predicts extreme GIs
and report the AUPR achieved by each model for classifying negative GIs
(see Section 2.4 for details).

First, following Yu et al. (2016) and Ma et al. (2018), we evaluate
predictions restricted to the subset of GI scores deemed significant by
Costanzo et al. (2010). When imputing significant GI scores, MF-b
outperforms DCell and Ontotype by 17.5% and 75.1% in Pearson’s ρ
(0.604 versus 0.514 and 0.245), respectively. In terms of R2, MF-b
more than doubles the R2 score of Ontotype (0.271 versus 0.112) and
outperforms DCell (0.265). Furthermore, when classifying negative GIs,
MF-b again outperforms DCell and Ontotype, achieving 18.8% and 66.2%
improvement in AUPR (0.570 versus 0.480 and 0.343) over DCell and
Ontotype.

Second, we hypothesize that methods that perform better at imputing
all GI scores may be less sensitive to noise or variability in the data;
hence we also evaluate models with respect to all imputed scores. When

imputing all GI scores, MF-b achieves double the Pearson’s ρ of Ontotype
and improves over DCell by 19.0% (0.425 versus 0.191 and 0.358,
respectively). When classifying negative GIs, MF-b again doubles the
AUPR of Ontotype and improves over DCell by 31.5% (0.267 versus 0.104
and 0.203). Surprisingly, Ontotype and DCell both achieve negative R2

scores while MF-b achieves an R2 score of 0.187. These results indicate
that, on all scores, DCell and Ontotype perform worse than a model that
predicts the mean. One reason for this, shown by Fig. S1, is that when
DCell predicts the sign of a GI score incorrectly, it does so more often
with greater magnitude than MF-b.

MF-b and other matrix factorization based models presented in this
study are also faster to train. On a machine with an NVidia GTX 1080Ti
GPU, EMF models take less than 1 minute to train on the baker’s yeast
dataset. In fact, the benchmarked MF-b model trains in less than 3 seconds.
In comparison, the authors of DCell report in their publicly available
software release that the “running time on a standard Tesla K20 GPU
takes 2-3 days” 3 on Costanzo et al. (2016).

Having established that MF-b, a simple model in the EMF framework,
outperforms deep learning and GO-based methods under three different
measures, we refrain from comparing other matrix factorization methods to
DCell and Ontotype in subsequent sections. Furthermore, since Pearson’s
ρ fails to detect systematic mis-estimation of GI score magnitudes (see
Section 2.4), subsequent experiments are evaluated using R2 only.

3.4 Ablation analysis on matched chromosome biology
datasets in baker’s and fission yeast

Next, via an ablation analysis, we evaluate how components of the EMF
framework affect GI imputation. We perform this analysis on GI datasets
for chromosome biology genes in baker’s and fission yeast (Collins et al.,
2007; Roguev et al., 2008). To compare to prior work, we also compare
EMF models to NGMC (Zitnik and Zupan, 2015). To explore the range
of settings that may arise in practice, we evaluate models with varying
amounts of training data in the target species. These allow us to assess
both data-rich and data-scarce settings. Our results demonstrate that EMF
models that jointly exploit cross-species and side information consistently
impute GIs more accurately. We report these results in Tables 3, and
standard deviations across repeats in Tables S1 and S2.

Algorithm
% of GIs used in training

Baker’s yeast Fission yeast

10% 25% 50% 75% 10% 25% 50% 75%

MF 0.054 0.178 0.303 0.380 0.093 0.220 0.370 0.464
MF-b 0.069 0.183 0.308 0.385 0.113 0.234 0.371 0.464
K-PMF 0.105 0.215 0.329 0.397 0.119 0.266 0.397 0.472
NGMC 0.050 0.207 0.304 0.329* 0.081 0.256 0.396* 0.479*

K-PMF-b 0.102 0.218 0.326 0.393 0.136 0.273 0.391 0.475
XSMF 0.070 0.181 0.304 0.386 0.106 0.232 0.373 0.466
K-XSMF 0.104 0.217 0.327 0.399 0.142 0.278 0.405 0.480†

K-XSMF-b 0.116 0.225 0.330 0.397 0.155 0.270 0.394 0.476

Table 3. R2 score of imputed versus actual GI scores for chromosome biology datasets in
baker’s and fission yeast (Collins et al., 2007; Roguev et al., 2008). Models are evaluated
with varying proportions of GI scores used during training. The best performing models are
indicated in bold. †Standard deviations of best performing model and MF baseline overlap.
* Folds that did not converge were excluded from evaluation.

Our results first show that modeling per-gene biases aids GI imputation.
The improvement gained by modeling biases is most clear when comparing
the performance of MF-b to MF. MF-b outperforms MF in all but one
experiment. We note that, when cross-species and side information are

3 github.com/idekerlab/DCell

 github.com/idekerlab/DCell
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used, improvement due to modeling biases is less consistent. When 50%
and 75% of GIs are observed during training, the difference in performance
when adding bias terms to K-XSMF and K-PMF is small. However when
data is scarce, modeling biases more consistently improves imputation.
For example, when 10% of GIs are used during training, K-XSMF-b
outperforms K-XSMF by 11.5% and 9.2% in baker’s and fission yeast,
respectively. In fact, in these scenarios, K-XSMF-b outperforms K-XSMF,
and K-PMF-b outperforms K-PMF, in six out of eight experiments.

Unsurprisingly, all models that exploit side information consistently
outperform corresponding models that do not. We highlight some results
for the most data-scarce and data-rich scenarios. In baker’s yeast, when
10% and 75% of GIs are used, K-PMF-b outperforms MF-b by 47.8% and
3.4%, and K-XSMF outperform XSMF by double and by 3.4% percent,
respectively. In fission yeast, when 10% and 75% of GIs are used, K-
PMF-b outperforms MF-b by 20.4% and 2.4%, and K-XSMF outperforms
XSMF by 30.2% and 1.1%. We note that while both models use the
same side information, K-PMF outperforms NGMC in seven of eight
experiments across both yeast species.

Moreover, our results show that cross-species models outperform
single-species models. Exploiting cross-species information only, XSMF
outperforms MF across the board, albeit by a small margin when data
is abundant. Again, differences in performances are largest when data is
scarce. When 10% of GIs are used, XSMF outperforms MF by 29.6% and
14.0% in baker’s and fission yeast, respectively.

Most strikingly, models that exploit cross-species and side information
(K-XSMF-b and K-XSMF) are the best performing models (bolded in
Table 3) and outperform the MF baseline without overlapping standard
deviations in all but one case. Again, data-scarce scenarios show the largest
differences in performance. In baker’s yeast, when 10% and 25% of target
GIs are used during training, K-XSMF-b outperforms the next best single-
species model by 10.5% and 3.2%, respectively. In fission yeast, K-XSMF-
b outperforms K-PMF-b by 14.0% when 10% of target GIs are used, and
K-XSMF outperforms K-PMF-b 1.8% when 25% of GIs are used. We
highlight that K-XSMF and K-XSMF-b not only exploit cross-species
information, but also side information in both target and source species.
These results highlight the utility and versatility of the EMF framework.

It is particularly notable that EMF components (i.e., biases, exploiting
side and cross-species information) offer largest improvements in
imputation performance when data is scarce. Data-scarce scenarios are
most likely to occur when new methods for measuring GIs for new
phenotypes or new species are developed.

3.5 Results on genome-scale datasets in baker’s and
fission yeast

Finally, we evaluate a representative set of EMF models on genome-scale
GI datasets in baker’s and fission yeast (Costanzo et al., 2010; Ryan et al.,
2012). On these datasets, our results show that incorporating cross-species
information aids GI imputation when training examples are scarce.

Again, since EMF models do not depend on GO, EMF models are able
to impute interactions between all 4.0 million unique baker’s yeast gene-
pairs published in Costanzo et al. (2010) as opposed to the 3.3 million
featurizable gene-pairs in Yu et al. (2016) and Ma et al. (2018). To the best
of our knowledge, our study is the first to predict GIs at genome-scale in
fission yeast, and GIs for all 4.0 million gene-pairs measured by Costanzo
et al. (2010) in baker’s yeast.

In baker’s yeast, as in Section 3.3, we evaluate both all imputed scores
and the subset of scores deemed to be significant by Costanzo et al. (2010).
In fission yeast, we evaluate imputed scores for all held-out gene-pairs
since Ryan et al. (2012) do not report p-values for measured GI scores.
We report the results in Tables 4 and 5, and standard deviations across
repeats in Tables S3, S4 and S5.

Perhaps unsurprisingly, when a large amount of data is available, the
differences in the best performing models are almost indistinguishable. In
fission yeast, XSMF and K-XSMF-b outperforms MF by a small margin
when 75% of GIs are used during training. When 50% of GIs are observed
during training, K-PMF-b outperforms K-XSMF-b by just over 1%. In
baker’s yeast, when 75% of GIs are observed during training, MF and
XSMF are the best performing models and outperform their kernelized
counterparts by small margins. Here, one key observation is that in these
data rich settings, cross-species components of the EMF framework do not
impair the single-species matrix factorization models which they extend.

Algorithm
% of GIs used in training

10% 25% 50% 75%

MF 0.049 0.147 0.251 0.316

K-PMF-b 0.064 0.159 0.257 0.317
XSMF 0.062 0.153 0.252 0.318†

K-XSMF-b 0.067 0.158 0.254 0.318†

Table 4. R2 score of imputed versus actual GI scores for EMF models in genome-scale
fission yeast dataset (Ryan et al., 2012). Notation is the same as in Table 3.

Algorithm
% of GIs used in training

10% 25% 50% 75%

MF 0.004 (0.007) 0.088 (0.055) 0.180 (0.133) 0.267 (0.189)

K-PMF-b 0.026 (0.009) 0.100 (0.061) 0.180 (0.126) 0.238 (0.176)
XSMF 0.005 (0.006) 0.084 (0.059) 0.190 (0.134†) 0.266 (0.189†)
K-XSMF-b 0.019 (0.011) 0.085 (0.061) 0.200 (0.130) 0.250 (0.182)

Table 5. R2 score of imputed versus actual GI scores for EMF models in genome-scale
baker’s yeast dataset (Costanzo et al., 2010). Scores for predictions restricted to significant
GI scores as determined by Costanzo et al. (2010) appear on the left. Scores for predictions
on all pairs to the right in parentheses. Other notation is the same as in Table 3.

However, when data is scarce, the improved performance of EMF
models due to the inclusion of side information and cross-species
information is clear. When fewer than 75% of observed GIs are used
during training, the best performing EMF models outperform the MF
baseline without overlapping standard deviations in all but one case. In
fission yeast, when 10% and 25% of observed GIs are used during training,
K-XSMF-b and K-PMF-b are the best performing models. Further, both
cross-species models improve over their single-species counterparts: K-
XSMF-b outperforms K-PMF-b by 5%, when 10% of observed GIs are
used during training, and XSMF outperforms MF by 27% and 4%, when
10% and 25% of observed interactions are used for training.

Likewise, the inclusion of cross-species information and side
information aids imputation in baker’s yeast when data is scarce. When
imputing significant pairs, both K-PMF-b and K-XSMF-b roughly
quadruple theR2 score of their non-kernelized counterparts when 10% of
GIs are used during training. Here, K-PMF-b is clearly the best performing
model when 10% and 25% of GIs are used during training. Finally, when
imputing all GIs, cross-species models XSMF and K-XSMF-b achieve the
bestR2 score, when 10%, 25% and 50% of GIs are used during training.

4 Discussion
In this work, we introduce Extensible Matrix Factorization EMF, a
framework of composable matrix factorization (MF) models for imputing
genetic interactions (GIs). The EMF framework unifies several MF
strategies for improving imputation. EMF models can explicitly model
per-gene biases, and can readily exploit available side information via
kernelization. A novel contribution of EMF models is the ability to
simultaneously exploit cross-species information. Given a cross-species
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gene-gene similarity measure, EMF models can link factorizations in a
source and target species to better impute missing values in the target.

Surprisingly, even a simple EMF model outperforms the state-of-the-
art method for GI prediction. This simple model only requires GIs as
input and does not require labels from the Gene Ontology. Via an ablation
analysis in chromosome biology GI datasets in baker’s and fission yeast,
we show how components of the EMF framework improve GI imputation.
Furthermore, our results show that EMF models are also effective in
genome-scale datasets in both yeast species. To the best of our knowledge,
our study is the first to impute GIs in fission yeast at genome-scale.

In sum, the EMF framework highlights the versatility, and surprising
utility, of MF based approaches. Our results show that components in the
EMF framework that exploit cross-species information are most effective
when data is scarce. We also emphasize that data scarcity is relative. For
example, 10% of available data in baker’s yeast equates to approximately
400,000 observations, which is more than have been measured in all
but a handful of species. Thus, we expect MF based approaches like
EMF to be invaluable for efforts to map GIs in new species. In these
scenarios, the incorporation of data across multiple contexts, be it species
or phenotypes, may be fruitful if not necessary. Though not the focus of
this work, we also anticipate that the performance of cross-species models
could be improved via other cross-species similarity measures and other
methodological optimizations (e.g. combining kernels via multiple kernel
learning (Gönen and Alpaydin, 2011)).
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Fig. S1. True (x-axis) versus predicted (y-axis) GI scores by MF-b and DCell (Ma et al., 2018). MF-b is trained with the GI scores for 3.3 million
featurizable gene-pairs published by Ma et al. (2018) and Yu et al. (2016). In green, x = 0 and y = 0 are plotted.

Algorithm
% of GIs used in training

10% 25% 50% 75%
MF 0.054 ± 0.009 0.178 ± 0.004 0.303 ± 0.005 0.380 ± 0.006
MF-b 0.069 ± 0.005 0.183 ± 0.005 0.308 ± 0.002 0.385 ± 0.006
K-PMF 0.105 ± 0.007 0.215 ± 0.004 0.329 ± 0.005 0.397 ± 0.010
NGMC 0.050 ± 0.011 0.207 ± 0.004 0.304 ± 0.010 0.329 ± 0.028*

K-PMF-b 0.102 ± 0.006 0.218 ± 0.007 0.326 ± 0.007 0.393 ± 0.006
XSMF 0.070 ± 0.004 0.181 ± 0.005 0.304 ± 0.004 0.386 ± 0.007
K-XSMF 0.104 ± 0.005 0.217 ± 0.003 0.327 ± 0.004 0.399 ± 0.006
K-XSMF-b 0.116 ± 0.007 0.225 ± 0.004 0.330 ± 0.003 0.397 ± 0.005

Table S1. Mean and standard deviation of R2 scores for imputed versus actual GI scores for chromosome biology dataset in baker’s yeast (Collins et al.,
2007). Models are evaluated with varying proportions of GI scores used during training. The best performing models are indicated in bold. * Folds that
did not converge were excluded from evaluation.
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Algorithm
% of GIs used in training

10% 25% 50% 75%
MF 0.093 ± 0.011 0.220 ± 0.012 0.370 ± 0.005 0.464 ± 0.007
MF-b 0.113 ± 0.005 0.234 ± 0.005 0.371 ± 0.002 0.464 ± 0.006
K-PMF 0.119 ± 0.010 0.266 ± 0.005 0.397 ± 0.005 0.472 ± 0.009
NGMC 0.081 ± 0.008 0.256 ± 0.007 0.396 ± 0.006* 0.479 ± 0.011*

K-PMF-b 0.136 ± 0.010 0.273 ± 0.007 0.391 ± 0.007 0.475 ± 0.010
XSMF 0.106 ± 0.011 0.232 ± 0.008 0.373 ± 0.005 0.466 ± 0.009
K-XSMF 0.142 ± 0.009 0.278 ± 0.007 0.405 ± 0.005 0.480 ± 0.009
K-XSMF-b 0.155 ± 0.007 0.270 ± 0.008 0.394 ± 0.007 0.476 ± 0.008

Table S2. Mean and standard deviation of R2 scores for imputed versus actual GI scores for chromosome biology dataset in fission yeast (Roguev et al.,
2008). Models are evaluated with varying proportions of GI scores used during training. The best performing models are indicated in bold. * Folds that
did not converge were excluded from evaluation.

Algorithm
% of GIs used in training

10% 25% 50% 75%
MF 0.049 ± 0.002 0.147 ± 0.001 0.251 ± 0.002 0.316 ± 0.002

K-PMF-b 0.064 ± 0.002 0.159 ± 0.002 0.257 ± 0.001 0.317 ± 0.002
XSMF 0.062 ± 0.002 0.153 ± 0.002 0.252 ± 0.001 0.318 ± 0.002
K-XSMF-b 0.067 ± 0.002 0.158 ± 0.002 0.254 ± 0.001 0.318 ± 0.002

Table S3. Mean and standard deviation of R2 scores for imputed versus actual GI scores for EMF models in genome-scale fission yeast dataset (Ryan
et al., 2012). The best performing models are indicated in bold.

Algorithm
% of GIs used in training

10% 25% 50% 75%
MF 0.004 ± 0.001 0.088 ± 0.002 0.180 ± 0.001 0.267 ± 0.002

K-PMF-b 0.026 ± 0.001 0.100 ± 0.002 0.180 ± 0.001 0.238 ± 0.002
XSMF 0.005 ± 0.001 0.084 ± 0.002 0.190 ± 0.001 0.266 ± 0.002
K-XSMF-b 0.019 ± 0.000† 0.085 ± 0.001 0.200 ± 0.001 0.250 ± 0.002

Table S4. Mean and standard deviation ofR2 scores for imputed versus actual GI scores for EMF models in genome-scale baker’s yeast dataset (Costanzo
et al., 2010). Results are restricted to significant GI scores as determined by Costanzo et al. (2010). The best performing models are indicated in bold.
† Indicates standard deviation less than 0.0005.

Algorithm
% of GIs used in training

10% 25% 50% 75%
MF 0.007 ± 0.000† 0.055 ± 0.001 0.133 ± 0.001 0.189 ± 0.001

K-PMF-b 0.009 ± 0.000† 0.061 ± 0.001 0.126 ± 0.001 0.176 ± 0.001
XSMF 0.006 ± 0.000† 0.059 ± 0.001 0.134 ± 0.001 0.189 ± 0.001
K-XSMF-b 0.011 ± 0.000† 0.061 ± 0.001 0.130 ± 0.001 0.182 ± 0.001

Table S5. Mean and standard deviation ofR2 scores for all imputed versus actual GI scores for EMF models in genome-scale baker’s yeast dataset (Costanzo
et al., 2010). The best performing models are indicated in bold. † Indicate standard deviation less than 0.0005.
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