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ABSTRACT
In this paper we address the problem of finding explanations for

collaborative filtering algorithms that usematrix factorizationmeth-

ods. We look for explanations that increase the transparency of the

system. To do so, we propose two measures. First, we show a model

that describes the contribution of each previous rating given by a

user to the generated recommendation. Second, we measure the

influence of changing each previous rating of a user on the outcome

of the recommender system. We show that under the assumption

that there are many more users in the system than there are items,

we can efficiently generate each type of explanation by using linear

approximations of the recommender system’s behavior for each

user, and computing partial derivatives of predicted ratings with

respect to each user’s provided ratings.
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1 INTRODUCTION
Recommender systems are taking on an increasing role in shaping

the impact of computing on society, and it is consequently impor-

tant to develop methods for explaining the recommendations made

by such systems.

Among the many possible goals for explanation [6], we focus on

user-oriented explanation (explanations that assume the system is

fixed) rather than developer-oriented explanation (explanations that

guide system development). Within the user-oriented domain, we

focus on explanations that have as their goal transparency: provid-
ing the user with an understanding of how the system formulated

a recommendation.

Among the broad class of recommender systems approaches, one

can distinguish neighborhood methods, based on computing simi-

larities between items or users, from matrix factorization, which
assigns items and users to a latent space in which inner product

captures the affinity of a user for an item. Neighborhood methods

naturally lend themselves to explanation: witness Netflix’s recom-

mendations in which, for a given movie previously viewed, a set of

recommended movies is proposed. In this context, the previously

viewed movie is treated as an explanation.
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Matrix factorization (MF) methods, on the other hand, can be

more accurate than neighborhood methods [2], but pose a greater

challenge from an explanation standpoint. The associated chal-

lenges include:

• Matrix factorization methods make use of the entire set of
previous recommendations – over all users and items – in

formulating a single recommendation for a given user.

• Matrix factorization methods solve a non-convex optimiza-

tion via heuristic methods, whose functioning can be quite

opaque.

Our current work investigates two sets of corresponding ques-

tions:

(1) In a context where multiple items (and users) can be said to

have contributed to forming a recommendation, what is the

most meaningful or useful feedback to give a user to explain

a single recommendation?

(2) Given the complexity of MF approaches, are there approxi-

mate representations of the behavior of MF algorithms that

we can use to construct such useful feedback?

A general strategy, exemplified by [4], provides some guidance

in addressing the two questions. First, explanations should be in

terms that are familiar to users: broadly, they should be in terms

of features rather than in terms of, e.g., latent vectors. Second,

useful explanations can be in terms of interpretable models – for

example, decision trees or linear models – which can be chosen as

local approximations of a more complex nonlinear model (such as a

neural network).

In the remainder of this position paper we use this general strat-

egy to address the questions above. Our general approach is via

the use of gradients of the rating function, as in recent work on

classifiers (e.g., [1, 5]). First, we propose gradient based metrics ap-

propriate for MF recommender systems; then we describe how, in

a certain commonly encountered scenario, one may approximately

compute those gradients.

2 EXPLANATIONS
Assume xi j indicates the rating given by user j to item i . To formu-

late an explanation for a given recommendation, we consider the

case in which the system has given user j a recommendation for

item i with an estimated rating of x̂i j . That is, the system has formed

a prediction that user j will rate item i at x̂i j and has consequently

proposed item i to the user.

In such a setting, user j may ask:

(1) Which previous ratings have contributed the most to the

predicted rating x̂i j?
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(2) Which previous ratings have the most influence over the

predicted rating x̂i j ? In other words, if things were different

– e.g., different ratings had been provided in the past – which

differences would matter most?

To answer these questions in terms familiar to users, it makes

sense to use items and their ratings as the basic vocabulary (rather

than, say, latent vectors). Furthermore, although an MF based rec-

ommender system implicitly takes into account the set of known

ratings across all users and items in making its recommendation,

other users’ ratings are not under user j’s control. Hence it does
not seem helpful to express our explanations in terms of ratings

other than user j’s.
This leads us to propose the following kinds of explanations for

MF recommender systems:

Impact Wemodel each recommendation x̂i j in terms of known

ratings given by the same user. That is, we formulate a model

x̂i j ≈
∑

k ∈R (j )

αkxk j .

where R (j ) is the set of items that have been previously rated

by user j, and we term γk = αkxk j the impact of known
rating xk j on the predicted rating x̂i j . The model is linear to

support interpretability.

Influence In order to explain the influence of the known rating

xk j on the predicted rating x̂i j , we define:

βk =
∂x̂i j

∂xk j

and we call βk the influence of xk j on x̂i j .

We envision the use of these quantities as an interface element

of the recommender system. For any given recommendation x̂i j ,
the interface can present the highest impact ratings (those with

largest γk ) and the highest influence ratings (those with largest βk ),
along with their values, as explanations for that recommendation.

3 ALGORITHMS
We now seek to find ways to compute approximations to impact

and influence as defined in Section 2.

To start, we formalize the setting. Assume X ∈ Rm×n is a par-

tially observed, real-value matrix containing user ratings. Each

column is associated with a user and each row is associated with an

item. An MF recommender system attempts to estimate unknown

elements of the rating matrix. To do so, it find factors U ∈ Rℓ×m

and V ∈ Rℓ×n such that UTV agrees with the known positions in

X. The unknown ratings are then estimated by setting X̂ = UTV.
More specifically, the recommender system finds factors U and

V by applying an algorithm A to solve the following optimization

problem:

U,V = arд min
Ũ,Ṽ

∑
(i, j )∈Ω

(xi j − ũTi ṽj )
2

(1)

where Ω indicates the set of known entries in X, ũi is column i of
Ũ, and ṽj is column j of Ṽ.

3.1 U and V at a local optimum
To capture the effect of A, let us define a function f such that for

each user j, f returns the estimation of all item ratings for user j
given the set of known item ratings of user j . In other words, f takes
the column xj of the observed matrix X as input, and returns the

corresponding column x̂j of the predicted matrix X̂, i.e., f (xj ) = x̂j .
Now consider the properties ofU andV at a local minimum of the

objective function (1). In that case, each can be expressed as a linear

function of X. To see this, first note that for each user j we have
f (xj ) = UT vj . To capture the fact that only known entries matter

in the solution of (1), we defineWj to be a binary matrix with 1s

on the diagonal in positions corresponding the known entries of

x j . Then it follows that vj is the least squares solution of

Wjxj =WjUT vj

This implies that at a local minimum of (1), the following rela-

tionship holds between xj and f (xj ):

f (xj ) = UT vj = UT (UWjUT )−1UWjxj (2)

3.2 A common case
To develop methods for approximating γk and βk , we consider the
case in which there are many more users in the system than there

are items. For example, a movie recommendation system may have

millions of users but only thousands of movies. In that case we

formulate the following hypothesis:

Hypothesis 1. Given matrix X ∈ Rm×n , with n ≫ m, let Ω be
the set of known elements in X andA be an algorithm that computes
U and V, a local optimum of (1). Assume we change element xi j to x ′i j
and rerun algorithm A to find U′ and V′, then U′ is approximately
equal to U and the only significant differences between V′ and V lie
in column j.

Informal justification for Hypothesis 1 is provided in Appendix

A. We find that Hypothesis 1 holds consistently in empirical studies.

3.2.1 Influence. In cases where Hypothesis 1 holds, we can

proceed as follows. We start by estimating influence. Our goal is to

compute the Jacobian of the function f () evaluated at xj . That is,
we seek:

J(j ) =
∂ f (xj )
∂xj

We call J(j ) the influence matrix of user j.
Assume εi is a vector of sizem in which element i is ε and all

the other elements are zero. In order to compute each element

of the influence matrix of user j, we need to compute function

f at xj and at neighborhoods of xj that are defined by xj + εi
for i ∈ {1, . . . ,m}. Equation (2) provides a closed form formula

of function f () when the input is one of the user rating vectors.

Moreover, under Hypothesis 1 we know that equation (2) provides

an approximation for f () when the input is a modified user rating

vector in which only one of the elements is changed. Therefore we

can state that Equation (2) holds not just at xj , but also within a

small neighborhood around xj . Then:

J(j ) =
∂ f (xj )
∂xj

= UT (UWjUT )−1UWj
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Interestingly, the influence matrix of each user j only depends

on U and on the set of items that have been previously rated by user

j. In particular, it does not depend on the actual ratings that user

j has given to any previous items. So if two users a and b happen

to have rated exactly the same set of items, although the actual

rating values may differ, their influence matrices J(a) and J(b ) will
be identical.

In summary, when Hypothesis 1 holds, then for a given user j

and recommended item i , the influence of item k is βk = J(j )ik .

3.2.2 Impact. Next, we turn to approximating impact. In section

2 we showed that the following linear model describes the output

of an MF recommender system for user j as a function of his known

ratings:

f (xj ) = J(j )xj
where J(j ) is the influence matrix of user j . Therefore, the predicted
rating for item i can be written as

x̂i j =
∑

(k, j )∈Ω

J(j )ik xk j .

We defineγk , the impact of known rating xk j on predicted rating
x̂i j as

γk = J(j )ik xk j

which is simply the product of the influence of item k on the pre-

diction for item i and the actual rating given by user j to item

k .
We emphasize that our proposed method for computing γk is

only oneway of quantifying impact. In other words, onemay choose

another linear combination of known ratings of user j that results
in x̂i j to define impact. While our method here has the interesting

property that coefficients are identical to partial derivatives, one

may choose another method to satisfy a different set of properties.

For example, a recent work [5] studies the problem of attributing

the prediction of a deep network to its input features. A similar

approach can be adopted to define more elaborate measures of

impact in the context of MF recommender systems.

4 EXAMPLE
To illustrate our proposal more concretely, we present an example

using the MovieLens small dataset [3]. We choose the 650 most

active users and the 50 most frequently rated movies. The resulting

rating matrix has about 25% known entries. To this matrix we apply

a well known matrix factorization algorithm (LMaFit [7]) with

estimated rank 4 and obtain factors U and V.
If Hypothesis 1 holds, then as discussed above, if users a and b

have rated the same set of items, changing the rating given by user

a to item i (x ′ia ← xia + ε ) and changing the rating given by user

b to item i by the same amount (x ′ib ← xib + ε ) should have an

identical effect on the predicted ratings for all other items. In other

words, we have:

f (xa + εi ) − f (xa ) = f (xb + εi ) − f (xb ) (3)

To illustrate this, we find two users a (user 16) and b (user 211)

who happen to have rated the same set of five movies in our data.

Figure 1 (left side) shows the ratings given by these two users to

these five movies. We then add 1 to user a’s rating for movie 4,

Table 1: Explanation for Terminator2

Rated movie Influence

Mission: Impossible (1996) 5.00

Twelve Monkeys (a.k.a. 12 Monkeys) (1995) 1.01

Star Wars: Episode IV - A New Hope (1977) -0.24

Fargo (1996) -1.65

Independence Day (1996) -2.74

rerun LMaFit, and compute the difference in predicted ratings for

all movies. Next we repeat the same procedure, this time modifying

only user b’s rating for movie 4. The two vectors of rating differ-

ences are shown on the right side of Figure 1, and we see that the

changes across all movie ratings are nearly identical.
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Figure 1: Users 16 and 211 have rated the same set of items.
Left: original ratings; Right: changes to all predictions after
modifying each user’s rating for movie 4.

To illustrate the use of influence values in practice, we show

in Table 1 a simple example drawn from our dataset. The table

shows for user 16, the influence of each of the 5 movies that the

user has rated on the system’s predicted ratings for Terminator2.
The Table shows that changing the user’s previous ratings for Star
Wars or Fargo would have much less influence on the predicted

rating for Terminator2 than would changing previous ratings for

Mission Impossible or Independence Day.

5 CONCLUSION
In this position paper we’ve proposed two kinds of explanations for

increasing the transparency of matrix factorization recommender

systems: influence, and impact. We argue that these allow for inter-

pretable responses to questions that are important to users: “What

are the most important factors yielding this recommendation?” and

“What are the factors whose change would most affect this recom-

mendation?” The first question provides the users an understanding

of how a recommendation is generated by the system based on the

actions they have made in the past, while answering the second

question provides the users with information that can be used to

control the system’s behavior in the future.

We have also shown that in the common case in which there are

many more users than items (such as movie recommender systems),

there are tractable computational approximations that can be used
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to provide numerical values for influence and impact. Interestingly,

we find that in this case influence is only determined by the set of

movies rated, but not by the values of the ratings given.

We expect to develop these results in both theoretical and prac-

tical directions to explore the ultimate utility of these modes of

explanation for matrix factorization recommender systems.

A JUSTIFICATION OF HYPOTHESIS 1
Here we present a justification for Hypothesis 1.

We consider the case in which n ≫ m. In our analysis we make the

assumption that a change to xi j only results in changes to ui and vj (i.e,
we focus on the first-order approximation to the effect of Algorithm A).

Let the updated latent vectors be u′i and v′j .
Intuitively, our argument is as follows. Updating ui to u′i results in

changes to errors only in row i , and updating vj to v′j results in changes

to errors only in column j . The effect of updates yielding u′i and v′j will
generally attempt to decrease error at position (i, j ) and will consequently

tend to increase errors on other elements of row i and column j . Since there
are many more elements in row i than there are in column j , an update to

ui (to achieve a unit decrease in error at position i, j ) will introduce more

overall error than will an update to vj . Hence the bulk of change will occur

in vj , while ui will remain relatively constant.

More formally, let ei j = (xi j − uTi vj ) and L =
∑
i j e2i j . Before the

change to element xi j , the effect of A has been to achieve
∂L
∂ui
= ∂L

∂vj
= 0.

These partial derivatives are:

∂L
∂ui

= −2

n∑
k

eikvk
∂L
∂vj

= −2

m∑
k

ek juk (4)

Now, we introduce a change to the rating in position (i, j ). Assuming that

only ui and vj change during the subsequent optimization, then applying

A leads to:

u′k =



ui + ũ k = i
uk k , i

v′k =



vj + ṽ k = j
vk k , j

(5)

Thus our goal becomes to establish that ∥ṽ∥ ≫ ∥ũ∥.
Let e′ be the new error values and L′ be the new total squared error. At

the new local optimum, we have
∂L′
∂u′i
= ∂L′

∂v′j
= 0.

∂L′
∂u′i

= −2
∑n
k e
′
ikv
′
k

= −2(e′i jv
′
j +
∑
k,j e′ikvk )

∂L′
∂v′j

= −2
∑m
k e′k ju

′
k

= −2(e′i ju
′
i +
∑
k,i e′k juk )

(6)

Subtracting corresponding eqns in (6) and (4) and dropping factors of -2,

we get:

∂L′

∂u′i
−

∂L
∂ui

= e′i jv
′
j − ei jvj +

∑
k,j

(e′ik − eik )vk (7)

∂L′

∂v′j
−

∂L
∂vj

= e′i ju
′
i − ei jui +

∑
k,i

(e′k j − ek j )uk (8)

Note that:

e′ik − eik = −ũT vk k , j (9)

e′k j − ek j = −ṽT uk k , i (10)

So substituting (9) and (10) into (7) and (8):

∂L′

∂u′i
−

∂L
∂ui

= e′i jv
′
j − ei jvj +

∑
k,j

−(ũT vk )vk = 0 (11)

∂L′

∂v′j
−

∂L
∂vj

= e′i ju
′
i − ei jui +

∑
k,i

−(ṽT uk )uk = 0 (12)

Now subtracting (12) from (11) we get:

e′i j (v
′
j − u

′
i ) − ei j (vj − ui ) +

m∑
k,i

(ṽT uk )uk −
n∑
k,j

(ũT vk )vk = 0 (13)

In (13), we note that the terms e′i j (v
′
j − u′i ) and ei j (vj − ui ) are small

compared to the two summation terms. Therefore we can approximately

argue:

m∑
k,i

(ṽT uk )uk ≈

n∑
k,j

(ũT vk )vk (14)

ṽT
m∑
k,i

ukuTk ≈ ũT
n∑
k,j

vkvTk (15)

This establishes a relationship between ṽ and ũ. To make quantitative

predictions, we can assume, e.g., that uk and vk are i.i.d. multivariate

Gaussian random variables N (0, Σ) with Σ = E[ukuTk ] = σ 2I . Then in

expectation:

E

ṽT

m∑
k,i

ukuTk


≈ E


ũT

n∑
k,j

vkvTk


(16)

ṽT
m∑
k,i

E
[
ukuTk

]
≈ ũT

n∑
k,j

E
[
vkvTk

]
(17)

(m − 1)σ 2ṽT ≈ (n − 1)σ 2ũT (18)

So we have that ∥ṽ∥/ ∥ũ∥ ≈ (n − 1)/(m − 1).
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