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1. INTRODUCTION
Distributed denial of service attacks have become both preva-

lent and sophisticated. Botnet-driven attacks can be launched from
thousands of worm-infected and compromised machines with rela-
tive ease and impunity today. The damage caused by such attacks
is considerable: the 2004 CSI/FBI computer crime and security
survey found that DDOS attacks are the second largest contributor
to all financial losses due to cybercrime [3]. Further, distributed
attacks are expected to increase both in sophistication and dam-
age [1]. Containing distributed attacks is therefore a crucial prob-
lem, one that has not been adequately addressed.

One reason why distributed attacks are difficult to contain is be-
cause defenses against these attacks are typically deployed at edge
networks, near the victim. Deploying defenses at the edge makes
detecting attacks easier, since one simply needs to monitor incom-
ing traffic volume for an unusually large burst. However, contain-
ing and mitigating such attacks from the edge is ineffective for two
reasons. First, filtering the malicious attack traffic requires identify-
ing the (potentially thousands of) attackers, which is complicated,
especially if the source addresses are spoofed. Second, even if ac-
curate filtering was feasbile at the edge, it cannot prevent attack-
ers from consuming the victim’s bandwidth, and denying service
to legitimate users. Thus edge-based defenses against distributed
attacks have limited value.

On the other hand, defending against distributed attacks at the
backbone (i.e., carrier networks) overcomes the hurdles of edge-
based defenses. In principle, backbone networks can detect and
identify the origins of malicious sources involved in a distributed
attack that traverses the backbone. Thus backbone networks are
well-suited to mitigate distributed attacks, before they cause harm
to the victim at the edge. However, distributed attacks are challeng-
ing to detect in the backbone because they do not cause a visible,
easily detectable change in traffic volume on individual backbone
links. To effectively detect distributed attacks in the backbone, one
therefore needs to simultaneously analyze all traffic across the net-
work.

In this work, we present our methods to detect distributed attacks
in backbone networks using sampled flow traffic data. Distributed
attacks are traditionally viewed to be fundamentally more difficult
to detect than single-source attacks. In contrast, we demonstrate
that the more distributed an attack is,the better our methods are
at detecting it. This is because our methods analyze correlations
across all network-wide traffic simultaneously, instead of inspecting
traffic on individual links in isolation. In addition, our methods are
highly sensitive to the attack intensity; we show that attacks rates of
less than 1% of the underlying traffic can be detected successfully
by our methods.

The rest of this paper is organized as follows. In the next section

we show how network-wide traffic summaries can be assembled,
and present the data we have processed from the Abilene Internet2
backbone network. Then, in Section 3, we describe the multiway
subspace method for detecting attacks in network-wide flow data.
We evaluate our methods on actual DDOS attack traces in a series
of experiments and present results in Section 4. Finally, we con-
clude in Section 5.

2. NETWORK-WIDE FLOW DATA
Our methods analyze all traffic that traverses the network. To ob-

tain such network-wide flow traffic, we must collect the ensemble
of origin-destination flows (OD flows) from a network. The traf-
fic in an Origin-Destination flow is the set of traffic that enters the
network at specific point (the origin) and exits the network at the
destination. For this study, we assembled the set of OD flows for
the Abilene network.

Abilene is the Internet2 backbone network, connecting over 200
US universities and peering with research networks in Europe and
Asia. It consists of 11 Points of Presence (PoPs), spanning the con-
tinental US. We collected three weeks of sampled IP-level traffic
flow data from every PoP in Abilene for the duration of December
8, 2003 to December 28, 2003. Sampling is periodic, at a rate of
1 out of 100 packets, and flow statistics are reported every 5 min-
utes; this allows us to construct traffic timeseries with bins of size
5 minutes.

To aggregate the IP flow data at the OD flow level, we must
resolve the egress PoP for each flow record measured at a given
ingress PoP. This egress PoP resolution is accomplished by using
BGP and ISIS routing tables, as detailed in [2]. After this procedure
is completed, there are 121 OD flows in Abilene.

Our final post-processing step constructs timeseries at 5 minute
bins for traffic summaries of each OD flow. The traffic summary we
use is the sample entropy of the four main traffic features (source
IP, destination IP, source port and destination port). Sample entropy
captures the distribution of each traffic feature in a manner that re-
veals unusual changes in the distribution. An analysis of the merits
of distributional-based analysis of traffic features for anomaly di-
agnosis can be found in [6].

To summarize, the network-wide flow traffic we study is the mul-
tivariate timeseries of sample entropy of traffic features for the en-
semble of Abilene’s OD flows.

3. THE MULTIWAY SUBSPACE METHOD
To detect distributed attacks, it is necessary to examine network-

wide traffic - as captured by the set of OD flows - simultaneously.
The multiway subspace method accomplishes this task and is de-
scribed in [6]; we review the main ideas here.



Thinning Rate 0 10 100 1000 10000
Attack Intensity (pps) 2.75e4 2.75e3 275 27.5 25.9
Attack Intensity (%) 93% 57% 12% 1.3% 0.13%

Table 1: Intensity of injected attack, in # pkts/sec (pps) and percent of (single) OD flow traffic.
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(a) � = 0:999 detection threshold (b) � = 0:995 detection threshold

Figure 1: Detection results from injecting multi-OD flow attacks (across 2 to 11 OD flows).

The multiway subspace method separates the ensemble of OD
flow timeseries into normal and anomalous attributes. Normal traf-
fic behavior is determined directly from the data, as those temporal
patterns that are most common to the set of OD flows. This extrac-
tion of common trends is achieved by Principal Component Anal-
ysis (PCA). As shown in [7], PCA can be used to decompose the
set of OD flows into their constitutent common temporal patterns.

A key result of [7] was that a handful of dominant temporal pat-
terns are common to the hundreds of OD flows. The multiway
subspace method exploits this result by designating these domiant
trends as normal, and the remaining temporal patterns as anoma-
lous. As a result, each OD flow can be reconstructed as a sum of
normal and anomalous components. In particular, we can write,
x = x̂ + ~x, where x denotes the traffic of all the OD flows at a
specific point in time, x̂ is the reconstruction of x using only the
dominant temporal patterns, and ~x contains the residual traffic.

Once this separation is completed, detection of unusual events
requires monitoring the size (`2 norm) of ~x. The size of ~x measures
the degree to which x is anomalous. Statistical tests can then be
formulated to test for unusual large k~xk, based on a desired false
alarm rate [5].

As demonstrated in [6], the multiway subspace method can de-
tect a broad spectrum of anomalous events, at a low false alarm
rate. Further, these anomalies can span multiple traffic features,
and also occur in multiple OD flows. Our focus in this work is to
specifically evaluate the power of network-wide traffic analysis, via
the multiway subspace method, to detect distributed attacks.

4. DETECTION RESULTS
In this section we specifically study how effective our methods

are at detecting distributed attacks. We first describe our experi-
mental setup, where we inject traces of a known distributed denial
of service attack in the Abilene network-wide flow data. Next, we
present results from applying the multiway subspace method to de-
tect these injected attacks.

4.1 Injecting Distributed Attacks
To evaluate our detection method, we decided to use an actual

distributed denial of service attack packet trace and superimpose
it onto our Abilene flow data in a manner that is as realistic as
possible. This involved a number of steps which we describe below.

We use the distributed denial of service attack trace collected and
described in [4]. This 5-minute trace consists of packet headers
without any sampling. It was collected at a Los Nettos regional
ISP in 2003, and so exemplifies an attack on an edge network. We
extracted the attack traffic from this attack trace by identifying all
packets directed to the victim. We then mapped header fields in the
extracted packets to appropriate values for the Abilene network.

Then, to construct representative distributed attacks, we divided
the attack trace into k smaller traces, based on uniquely mapping
the set of source IPs in the attack trace onto k different origin PoPs
of Abilene. The splitting was performed so that each of the k

groups has roughly the same amount of traffic. Next, we injected
this k-partitioned trace into k OD flows sharing the same destina-
tion PoP (the victim of the DDOS attack). For each destination PoP,
we injected the k OD flow attack into all possible combinations of
k sources, i.e.,

�
p

k

�
combinations where p = 11 is the number of

PoPs in the Abilene network. We repeated this set of experiments
for every destination PoP in the network; thus for a given choice of
2 � k � p, we performed

�
p

k

�
�p total experiments. For each multi-

OD flow injection, we recorded if the multiway subspace method
detected the attack.

Finally, we repeated the entire set of experiments at different
thinning rates to measure the sensitivity of the detection methods to
lower intensity DDOS attacks. We thinned the original attack trace
by selecting 1 out of every N packets, then extracted the attack
and injected it into the Abilene OD flows, as described above. The
resulting attack intensity for the various thinning rates is shown
in Table 1. The table also shows the percent of all packets in the
resulting OD flow that was due to the injected anomaly.

While these multi-OD flow experiments are designed to span
a number of origin PoPs sharing a common destination PoP, our



detection methods do not assume any fixed topological arrange-
ment on the malicious OD flows. The results from these experi-
ments give us insight into the performance of the multiway sub-
space method in detecting attacks that are dwarfed in individual
OD flows, but are only visible network-wide, across multiple OD
flows.

4.2 Results
We now present results on using the multiway subspace method

to detect multi-OD flow attacks. The detection rates (averaged over
the entire set of experiments) from injecting DDOS attacks span-
ning 2 � k � 11 OD flows are shown in Figure 1. Figure 1(a) and
(b) present results when the detection threshold is �=0.999 (equiv-
alent to asking for a false alarm rate of 1-�, or 1 in 1000) and
�=0.995 (equivalent to a false alarm rate of 5 in 1000).

Both figures show that we can effectively detect attacks spanning
a large number of OD flows. In fact, the detection rates are gener-
ally higher for larger k, i.e., for attacks that span a larger number of
OD flows. For example, in Figure 1(a) we detect 100% of DDOS
attacks that are split evenly across all the 11 possible origins PoPs
in the Abilene network, even at a thinning rate of 1000. From Ta-
ble 1, the average intensity of the DDOS attack trace in each of the
11 OD flows at a thinning rate of 1000 is 27:5

11
= 2:5 packets/sec.

In Figure 1(b), we relaxed the detection threshold to � = 0:995.
In this setting, we detect about 82% of all DDOS attack traffic span-
ning 10 OD flows, at thinning rates of even 10000, which corre-
sponds to an attack with intensity of 0.259 packets/sec in each of
the 10 participating OD flows individually. Such low-rate attacks
are a tiny component of any single OD flow, and so are only de-
tectable when analyzing multiple OD flows simultaneously.

Thus, the results here underscore the power of network-wide
analysis via the multiway subspace method.

5. CONCLUSIONS
Distributed attacks are an important problem facing networks to-

day. We argue that distributed attacks are best mitigated at the
backbone. Detecting distributed attacks at the backbone requires
departing from traditional single-link traffic analysis and adopting
a network-wide view to traffic monitoring. In this work, we applied
the multiway subspace method on network-wide flow data to de-
tect distributed attacks in the Abilene backbone network. Through
a series of controlled experiments, we demonstrated that the multi-
way subspace method is well suited to detect massively distributed
attacks, even those with low attack intensity.
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