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Abstract—Internet topologies discovered by standard
traceroute-based probing schemes are limited by many
factors. One of the main factors is the ambiguity of the returned
interfaces, where multiple unique interface IP addresses belong
to the same physical router. The unknown assignment of
interface IPs to physical routers can result in grossly inflated
estimated topologies compared with the true underlying physical
infrastructure of the network. The ability to determine which
interfaces belong to which router would aid in the ability
to accurately reconstruct the underlying topology of the
Internet. In this paper, we present ALIASCLUSTER, a lightweight
learning-based methodology that disambiguates router aliases
using only observed traceroute measurements and requires
no additional load on the network. Compared with existing
techniques, we find that ALIASCLUSTER can resolve the same
number of true router alias pairs with 50% fewer false alarms.

I. INTRODUCTION

Identifying the router-level structure of the Internet helps
many applications, including provisioning, network security,
and traffic analysis. Router-level Internet topology discovery
has been the focus of a number of prior studies (e.g., [1], [2],
[3], [4], to name only a few). Unfortunately, the main tool
available for this purpose is traceroute, and it is hampered
by a central problem: resolving interfaces (aliases) to routers.

Measurements with traceroute are widely used in In-
ternet topology studies. These measurements allow for the
observation of Internet paths and adjacencies with respect to
router interfaces. A conflict arises between the observation
of router interface IP paths and the goal of physical Internet
topology recovery – each physical Internet router contains
multiple interface IP addresses. As a result, estimated topolo-
gies from current measurement campaigns can be grossly
inflated with respect to the physical topology. In Figure 1,
we demonstrate a simple example of multiple interfaces on
routers can result in an incorrect estimated topology from
traceroute measurements.

The identification of which observed interface IP addresses
belong to the same physical router is commonly referred to
as “Interface Disambiguation”. Prior techniques have relied
on exploiting routers that support Record Route [5], ob-
served IP-ID values [6], MRinfo requests on multicast enabled
routers [7], or exhaustive pairwise probing of observed router
interfaces [8]. Each of these methods requires the collection
of some additional information along with the traceroute

measurements, using an expensive or time-consuming probing
strategy that is often impractical for large-scale global Internet
studies.

In this paper we present a novel method for interface
disambiguation that does not rely on cooperative routers or
additional heavyweight probes. Our goal is to infer the inter-
faces associated with each router directly from traceroute
measurements without additional inputs. To do that, we intro-
duce the ALIASCLUSTER methodology, a lightweight infer-
ence technique to disambiguate observed router IP addresses.
This technique consists of two components. The first com-
ponent identifies three unique features normally present in
traceroute and uses an efficient Naive Bayesian approach
to fuse information into a single estimate of pairwise alias
likelihood. The second component uses these estimates to
infer router clusters via a hierarchical clustering procedure that
incorporates both estimated alias likelihood and confidence
based on the quantity of observed measurements with respect
to the interfaces.

Using the wealth of large-scale Internet measurement stud-
ies that are already available, we assess the accuracy of
the ALIASCLUSTER methodology. From the CAIDA ARK
study [1] and ground truth router alias classifications from the
MERLIN project [7], we find that our technique can detect
25% of the true router aliases with false alarm rates on the
order of 10−5. When compared with competing techniques,
ALIASCLUSTER declares 50% fewer false alarms.

The paper is structured as follows. Work related to the
interface disambiguation problem is reviewed in Section II.
The data sets we used for validation and demonstration are
described in Section III. The ALIASCLUSTER methodology
is detailed in Section IV. Validation results are shown in
Section V, and finally, the conclusions and future work are
discussed in Section VI.

II. RELATED WORK

The interface disambiguation problem has been extensively
studied in prior work. Initial research focused on determin-
ing aliases via specialized pairwise probes. For example,
iPlane [4], Ally [3], the RadarGun framework [9] and more
recently in the MIDAR framework [6], all use pairwise UDP
and ICMP probes to compare if the two interface IP addresses
are on same source address, have similar IP-ID and similar
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Fig. 1. Example network with three Traceroute measurements, where black balls are routers, gray balls are interfaces, and dotted paths are Traceroute
observations. (Left) - Observed paths through the network, {A,D, F}, {B,E,G}, {C,E,H}, (Right) - Inflated inferred topology without interface
disambiguation.

TTL responses. Additionally, the work of Sherry et. al. in [10]
uses pairwise probes with an IP timestamp option. While these
pairwise probing-based alias resolution techniques can result
in relatively accurate estimates, the resulting large network
load caused by the additional probing infrastructure limits their
application for Internet-scale analysis.

Recent work has focused on exploiting router proper-
ties to reveal aliases. MRinfo [11] probing and the MER-
LIN project [7] have explored interfaces of multicast-enable
routers, while the Discarte project by Sherwood et. al. [5]
combines inferred router-level topology from traceroute
probes with information extracted from the Record Route
IP option. While these techniques can be highly accurate,
they are restricted to the subset of routers with these specific
configurations enabled.

Given the limitations with these prior probing and router-
exploitation approaches, the ALIASCLUSTER methodology is
motivated by prior graph-based and data mining approaches to
the interface disambiguation problem. The closest prior work
to our approach is the APAR/KAPAR framework [12], [13]
which explores router IP addresses with features such as hop
distance, same path assumption, common neighbor, and subnet
alignment. In contrast, we take a Naive Bayesian data fusion
approach (explored previously for MPLS identification [14]
and IP Geolocation [15]), and develop a hierarchical clustering
technique to resolve router aliases when not all the desired
Internet measurements have been observed.

III. DATASETS

The use of our ALIASCLUSTER technique is predicated
on a large collection of traceroute measurements. While
widely available from numerous public repositories, including
iPlane [4] and Dimes [2], for the experiments in this paper we
will focus on measurements from the CAIDA Macroscopic
Internet Topology Data Kit [1] taken in July 2010. This data
sets consists of traceroute measurements from 54 moni-
tors to a randomly chosen address in all routed /24 prefixes.
This traceroute collection encounters 2,105,738 unique
interface IP addresses in an unknown number of routers.

To evaluate the accuracy of our technique, we use a
dataset of declared router aliases generated by the MERLIN
Project [7]. Using MRinfo-based probing in September 2010,
the MERLIN alias dataset crawls the Internet to discover
multicast-enabled routers and uses MRinfo to return the valid
interfaces associated with each of these routers. This data
set contains 42,769 routers consisting of 400,040 unique IP

addresses. From this collection, only 63,479 unique IP ad-
dresses in 19,027 routers are also encountered by the CAIDA
traceroute data set. While the number of multicast-
enabled routers with alias ground truth is limited, our partic-
ular focus on this ground truth is due to both the observation
of true positives (if MRinfo declares that two interfaces are
aliased, we can be certain they are aliased) and the observation
of true negatives (where if interfaces i, j are aliased and m,n
are aliased, we can be confident that i,m are not aliased).

IV. ALIASCLUSTER METHODOLOGY

To resolve router aliases, we introduce the ALIASCLUSTER
methodology. This technique consists of two components:

• Naive Bayesian Estimation of Pairwise Alias
Likelihood - For targeted interface pairs, we fuse
traceroute extracted features and estimate the likeli-
hood that two interfaces are aliased via an efficient Naive
Bayesian likelihood estimation technique.

• Confidence-Based Alias Clustering - Using the esti-
mated pairwise alias likelihoods, we perform a novel hi-
erarchical clustering methodology for determining router
alias clusters.

A. Naive Bayesian Estimation of Pairwise Alias Likelihood

To determine the likelihood that two router interfaces are
aliased, we first extract relevant features of these two interfaces
from the observed traceroute measurements. In addition
to the feature of common IP subnet (which has been ex-
plored in previous disambiguation techniques, [6]), we also
examine pairs of interfaces that have common out-degree
and commonly observed hop counts. For interface pairs, we
restrict these features to commonly observed down-path and
hop counts that are within a small neighbor of both interfaces
(i.e., within either three or four hops), this ignores potentially
non-informative distant down-path interfaces from corrupting
our features. The five features we will consider in this paper1

are detailed in Table I, with illustrated examples for two of
these features in Figure 2.

By fusing information from all five features, we construct
the likelihood that two interfaces i, j are aliased given the
observation of our five extracted features using Bayes Rule

1We do not claim that this collection is the complete set of useful features.
However these features can be easily extracted from traceroute measure-
ments; and additional features can easily be added to the ALIASCLUSTER
framework.
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TABLE I
traceroute-DERIVED ALIAS FEATURES FOR A PAIR OF ROUTER INTERFACES.

Feature Name Description
M1 IP Subnet Size of the common IP prefix
M2 Percent Out-Degree Match (hop count ≤ 3) Fraction of down-path interfaces within three hops commonly observed
M3 Percent Out-Degree Match (hop count ≤ 4) Fraction of down-path interfaces within four hops commonly observed
M4 Percent Hop Match (hop count ≤ 3) Fraction of down-path interfaces within three hops with the same hop count
M5 Percent Hop Match (hop count ≤ 4) Fraction of down-path interfaces within four hops with the same hop count

A

B

C A

B

C

Fig. 2. Extracted feature examples from Traceroute measurements. (Left) - Out-degree match, where interface C has been observed on a down-path for
both interface A and interface B (i.e., where observed paths exists where one path contains interfaces {A,C} and another path contains interfaces {B,C}),
and (Right) - Hop count match, where interface C has both been observed on a down-path for interface A and interface B and the hop count between the
two (in this case, two hops) is the same for both.

and a Naive Bayesian independence assumption,

P (i, j alias | {M1,M2, ...,M5})
= P ({M1,M2, ...,M5} | i, j alias)P (i, j alias)
≈ P (M1 | i, j alias) · P (M2 | i, j alias)P (M3 | i, j alias)

·P (M4 | i, j alias)P (M5 | i, j alias)P (i, j alias)

This Naive Bayesian assumption breaks up the problem
from estimating a single five-dimensional distribution (which
may require prohibitively many training observations [16]), to
the more tractable problem of estimating five one-dimensional
distributions. To estimate each one-dimensional distribution,
we use the estimated kernel distributions from a training
set of interface pairs with known router assignment as seen
in Figure 5 and 6. As Figure 6-(Right) demonstrates, some
features will be more valuable than others, therefore we can
approximate the pairwise alias log-likelihood ratio (for two
interfaces i, j) using a weighted approach and taking the
difference between the aliased and non-aliased log-likelihoods.

si,j =

5∑
k=1

wk log (P (Mk | i, j alias))− (1)

5∑
k=1

wk log (P (Mk | i, j not alias))

Where the weights for each extracted feature (i.e,
{w1, w2, w3, w4, w5}) are learned via a bisection search
methodology on hold-out cross validation training sets.

B. Clustering-Based Alias Classification

Unfortunately, two limitations occur with the estimated pair-
wise alias likelihoods. First, routers often have more than two
interfaces, meaning that there exists more than a single pair of
interfaces at this router. Secondly, due to potential limitations
in the traceroute measurement infrastructure, we may not
have enough information to estimate alias likelihood for some
interface pairs (e.g., consider the case where two interfaces

have no commonly observed down-path interfaces) resulting
in missing pairwise likelihoods.

Using the incomplete set of pairwise alias likelihood, we
want to determine which interfaces are aliased. One simple
approach could be to threshold the pairwise alias likelihood
values, and declare two interfaces to be aliased if their
likelihood is above a specified value. A problem with this
approach is the potential for “chaining” [17]. Chaining is the
problem of resolving a string of large values resulting in a
cluster, even though very little information is known between
most of the items in the cluster. For example, consider four
interfaces {A,B,C,D} and the estimated likelihood values,
SA,B , SB,C , SC,D are all above the threshold. This would
imply that interfaces B and D are aliased together even if
no information, or even negative alias information, has been
observed. An example of this can be seen in Figure 3.

A

B

C

D

A B C D

XO

O

O M M

Fig. 3. The pairwise likelihood matrix (S) of four interfaces {A,B,C,D}
with the true aliases being {A,B} and {C,D}. From the feature extraction
and Naive Bayesian methodology, we observe SA,B , SB,C , SC,D as greater
than some threshold (indicated by an ’O’) and SB,D as below the threshold
(indicated by an ’X’). Due to lack of measurements, likelihoods SA,C , SA,D

have not been observed (indicated by an ’M’). Due to chaining, all four
interfaces may be clustered using the thresholding method.

To avoid these limitations, we developed a modified version
of agglomerative clustering we call “Confidence-Based Clus-
tering”, where subsets of interfaces are declared as aliased only
if enough information has been observed. The procedure has
input confidence parameter α ∈ (0, 1], such that all clusters
formed must have confidence greater than α, where confidence
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is defined here as the fraction of pairwise likelihoods of the
cluster items that were observed.

The method proceeds as follows. Initially, all interfaces are
considered to be singleton clusters; as clusters are formed we
merge rows and columns of S (the matrix of pairwise log-
likelihood ratios using Equation 1) so that every row/column
continues to represent a single cluster. At each step of the
algorithm, we find the pair of clusters corresponding to the
largest pairwise likelihood and with confidence (i.e., fraction
of observed likelihood pairs with respect to all possible pairs in
the clusters) above the specified confidence threshold α. This
can be considered as the two clusters that are the most similar
with confidence that enough measurements were observed to
make an informed decision. We merge those two clusters,
which defines a binary tree structure whose leaves are a subset
of interfaces.

In terms of the likelihood matrix (S), this merge operation
is performed by creating a new row/column, i′, such that for
all rows and columns k, the new likelihood values are the
maximum of the two observed values (i.e., si′,k = sk,i′ =
max{si,k, sj,k}). The rows and columns associated with i, j
are then removed from the matrix. This process is repeated
until no further pairs exist with confidence above the speci-
fied threshold (or all the items have been merged together),
defining a hierarchical clustering tree, T .

Finally, given the resolved hierarchical clustering, we esti-
mate a set of router clusters. This is performed by pruning
the hierarchical tree structure given the maximum observed
probability at each interior node, such that all interfaces with
interior probability greater than some threshold are in the same
router cluster. An example of this pruning methodology can
be seen in Figure 4.

C. AliasCluster Methodology

The ALIASCLUSTER methodology combines the Naive
Bayesian pairwise alias likelihood estimation of Section IV-A,
and the confidence-based router clustering approach of Sec-
tion IV-B to resolve router aliases. The complete methodology
is summarized in Algorithm 1.

V. RESULTS

To evaluate the ALIASCLUSTER methodology, we take a
two stage approach. First we evaluate the discriminatory power
of each of ALIASCLUSTER chosen traceroute-extracted
features. Then, the performance of our clustering approach
is analyzed with respect to ground truth aliases. As stated
previously, we focus on router interfaces that have been found
via MRinfo. This gives us the advantage of knowledge of both
true aliases (i.e., subsets of router interfaces which belong to
the same physical router), along with confident false aliases
(i.e., two interfaces that are not declared as aliases but have
been declared aliased elsewhere). We demonstrate that this
ground truth with respect to both true and false alias pairs is
critical for evaluating disambiguation performance.

To learn the alias detection characteristics of our data
set, we perform hold-out cross validation, where at-random

Algorithm 1 - ALIASCLUSTER(T, α, λ)
Given :

1) Set of Traceroute paths, T, containing N unique
router interface addresses, X = {x1, x2, ..., xN}.

2) Clustering parameters : confidence threshold, α, and
likelihood pruning threshold, λ.

Process :
• Given N unique router interfaces in the traceroute

paths, construct N ×N likelihood matrix, S.
– For each pair of interfaces i, j, if at least one of the

features from Table I is non-zero, use Equation 1
to find the alias likelihood value for the pair of
interfaces, si,j .

• Find a hierarchical clustering, T , where all cluster have
confidence ≥ α.

Output :
Return the set of router aliases by pruning the
hierarchical clustering T using pruning threshold, λ.

half of our interfaces are used as training data (with known
alias assignment from the MERLIN ground truth), while the
remaining half of our interfaces are used as test data to
determine the accuracy our the ALIASCLUSTER technique.

As stated in the related works section, while numerous inter-
face disambiguation methodologies have been introduced, here
we will focus on comparing performance against the KAPAR
methodology [13] due to its reliance only on traceroute-
observed features. We use the Kapar version 0.2 implementa-
tion that is publicly available at [18].

A. Evaluation of Features

The basis for the ALIASCLUSTER technique is the choice
of extracted features from observed Internet measurements.
To begin, we assess how discriminatory these features are
between aliased and non-aliased pairs of observed router
interfaces. Using kernel density estimates, the probability
distributions for these five extracted features can be seen for
our training subset of the CAIDA ARK data set in Figures 5
and 6-(Left) and 6-(Center). With respect to ground truth alias
data via the MERLIN data set, we find that IP subnet and out-
degree generally have different values for alias and non-alias
pairs, and that the hop count feature very clearly discriminates
between aliased and non-aliased pairs.

The false alarm and detection rates for all five features
are shown in Figure 6-(Right). The results follow from ob-
servations of the distributions of each feature, and also show
that the fusion of all five features is more accurate than any
single feature (i.e., has fewer declared false alarms for a given
detection rate). We find that while the hop count match feature
has very low false alarm rate, this feature only detects a
minority of the alias pairs – this motivates not relying too
heavily on any single feature.
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Fig. 4. Hierarchical Clustering pruning examples for S1 > S2 > ... > S7, where the leaf nodes represent observed router interfaces. (Left) - Four routers
found with threshold λA such that S4 > λA > S5, (Center) - Three routers found with threshold λB such that S5 > λB > S6, (Right) - Two routers found
with threshold λC such that S6 > λC > S7.
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Fig. 5. Extracted feature distribution of alias and non-aliased interface pairs for (Left) - IP Subnet, (Center) - Out-degree match for hop ≤ 3, (Right) -
Out-degree match for hop ≤ 4.
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TABLE II
FALSE ALARMS RATES FOR SPECIFIED ALIAS DETECTION RATES FOR THE ALIASCLUSTER METHODOLOGY USING TWO DIFFERENT CONFIDENCE

VALUES, α = {0, 0.8} ON SEPTEMBER 2010 CAIDA ARK DATA SET.
Detection Rate

Technique 10% 20% 30% 40% 50%

ALIASCLUSTER (α = 0) 2.22× 10−6 7.92× 10−6 1.26× 10−4 7.58× 10−4 2.09× 10−3

ALIASCLUSTER (α = 0.8) 2.11× 10−6 6.35× 10−6 7.68× 10−5 6.79× 10−4 2.10× 10−3

B. MERLIN-Based Validation Results

We now show the performance of ALIASCLUSTER and
the competing KAPAR approach at estimating router aliases
from observed traceroute measurements. We run our
ALIASCLUSTER technique with two different values of the

confidence parameter (α = {0, 0.8}, where α = 0 is standard
hierarchical clustering and α = 0.8 penalizes missing pairwise
likelihoods) and using a range of likelihood threshold values
(with λ chosen between the smallest observed likelihood and
the largest observed likelihood), producing the detection and
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false alarm rates found in Table II. We find that for a detection
rate of ≤ 40%, using the confidence-based technique (i.e.,
α ̸= 0) results in a lower false alarm rate.

Unlike the ALIASCLUSTER technique, the KAPAR method-
ology returns a single set of router aliases, and thus only a
single detection and false alarm rate (26.012% of total aliases
pairs detected with false alarm rate of 3.3047× 10−5). Using
the detection results from the KAPAR methodology, we com-
pare the false alarm rates in Table III. For the same detection
rate, we find the use of the confidence-based clustering in
ALIASCLUSTER leads to improvements in the false alarm
rate, with 50% fewer declared false alarms than the KAPAR
approach. While the declared false alarm rate for KAPAR is
higher than specified in [6], this deviation can possibly be
explained by the much larger set of interfaces considered here.

TABLE III
INTERFACES DISAMBIGUATION ACCURACY ON SEPTEMBER 2010 CAIDA
ARK DATA SET FOR KAPAR TECHNIQUE DETECTION RATE (5, 075 TRUE

ALIASED PAIRS FOUND IN THE TEST SET, 26.012% OF TOTAL ALIASED
PAIRS).
Number of False Percentage of False

Technique Alarms Declared Alarms Declared

KAPAR [18] 16,644 3.3047× 10−5

ALIASCLUSTER (α = 0) 8,388 1.6655× 10−5

ALIASCLUSTER (α = 0.8) 7,603 1.5096× 10−5

VI. CONCLUSIONS / FUTURE WORK

Current Internet discovery techniques are limited by the
unresponsive routers, heavy network load, and aliased router
interfaces. The ability to mitigate any of these limitations
would result in more accurate and useful Internet topologies
for the application of traffic analysis, network security, and
provisioning. We presented the ALIASCLUSTER framework
for resolving interface IP addresses that belong to the same
physical router. This technique uses extracted features from
existing traceroute measurements, in combination with a
confidence-based agglomerative clustering technique. On real-
world Internet studies, we find that ALIASCLUSTER returns
a false alarm rate improvement of over 50% compared with
competing methods. For future work, we will look to supply
the community with a tool based on the AliasCluster method-
ology, perform a longitudinal study by examining estimated
aliases from past topology data sets, and integrate additional
features in the ALIASCLUSTER framework, including IP-ID
observations.
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