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Abstract

Background: Network propagation has been widely used for nearly 20 years to predict gene functions and phenotypes.
Despite the popularity of this approach, little attention has been paid to the question of provenance tracing in this context,
e.g., determining how much any experimental observation in the input contributes to the score of every prediction. Results:
We design a network propagation framework with 2 novel components and apply it to predict human proteins that directly
or indirectly interact with SARS-CoV-2 proteins. First, we trace the provenance of each prediction to its experimentally
validated sources, which in our case are human proteins experimentally determined to interact with viral proteins. Second,
we design a technique that helps to reduce the manual adjustment of parameters by users. We find that for every
top-ranking prediction, the highest contribution to its score arises from a direct neighbor in a human protein-protein
interaction network. We further analyze these results to develop functional insights on SARS-CoV-2 that expand on known
biology such as the connection between endoplasmic reticulum stress, HSPA5, and anti-clotting agents. Conclusions: We
examine how our provenance-tracing method can be generalized to a broad class of network-based algorithms. We provide
a useful resource for the SARS-CoV-2 community that implicates many previously undocumented proteins with putative
functional relationships to viral infection. This resource includes potential drugs that can be opportunistically repositioned
to target these proteins. We also discuss how our overall framework can be extended to other, newly emerging viruses.
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Background

Network propagation algorithms have been widely used for
nearly 20 years for function and phenotype prediction in sys-
tems biology [1–7]. More recently, applications of these tech-
niques have included determination of genes associated with
cancers and complex diseases [8] and denoising single-cell gene
expression data [9]. Nowadays, network-based algorithms facili-
tate large-scale and automated data analysis of such complexity
that it can be difficult for humans to understand the rationale
that underlies a prediction, leading to decreased transparency
and interpretability.

In this work, we consider the fundamental problem of trac-
ing the provenance of a prediction back to the experimental
sources [10]. Given a protein interaction network and a set of
“sources,” e.g., the human proteins that physically interact with
SARS-CoV-2 [11], suppose we apply a network-based algorithm
to score and prioritize additional proteins that may directly
or indirectly interact with the virus. Can we determine which
source proteins make the highest contribution to the score com-
puted for each prediction? Surprisingly, this question has been
insufficiently studied in the field of network biology [10]. This
aspect takes particular importance in the context of COVID-19
or other clinically or scientifically critical applications, where it
may be important to understand the rationale behind the com-
putational prediction of a new drug target before committing to
expensive experimental validation.

We present a simple and direct method to solve this problem
for a large class of network propagation algorithms. Specifically,
for each protein u in the network, we compute the precise contri-
bution of each source to the score of u. This calculation enables
us to sort the sources by their relative contributions to u and
to quantify the relative roles of sources at different distances
from u.

To evaluate the effectiveness of this strategy, we apply it to
prioritize host proteins that may “functionally” (directly or indi-
rectly) interact with SARS-CoV-2 proteins and host cellular pro-
cesses that may be hijacked by the virus (Fig. 1). To this end, we
take advantage of a recently published dataset of human pro-
teins that physically interact with SARS-CoV-2 [11]. Although
these SARS-CoV-2 interactors are entry points to host cellular
processes that may be hijacked by viral infection, the proteomics
pipeline used to discover them [11] may not capture in vivo con-
ditions and tissue-specific interactions, leading to false-negative
results. Therefore, we apply network propagation algorithms to
these known human protein interactors of SARS-CoV-2 proteins
(sources) and a whole-genome human protein interaction net-
work from the STRING database [12]. We identify statistically
enriched host biological processes and pathways that include
highly ranking proteins computed by our methods. We illus-
trate how our provenance analysis can simplify visualizations
of these processes and assist in understanding how they may
be affected by SARS-CoV-2.

Data description

Here, we detail the different viral-human and human pro-
tein and functional interaction networks that we used in our
study.

SARS-CoV-2–human protein-protein interactions
We obtained 332 human proteins that interact with SARS-CoV-
2 [11] and treated them as positive examples for our analysis.
We added the ACE2 receptor to this set.

Functional and protein interaction networks
We used the human functional interaction network in the
STRING database (version 11) [12], comprising 18,886 nodes and
977,789 edges after applying a “medium” score cut-off of 400
and mapping to UniProt IDs. We used the interaction relia-
bilities provided by STRING as edge weights; we divided each
value in STRING by 1,000 to scale them between 0 and 1. An
edge in this network may be derived from experimental data or
computational analysis. Thus, an edge may represent either di-
rect physical binding or indirect functional interaction. Of the
332 viral interactors, 328 were present in this network; REEP6
(Q96HR9), PPIL3 (Q9H2H8), RAB18 (Q9NP72), and FKBP7 (Q9Y680)
were missing.

We also computed results for protein-protein interaction
(PPI) networks from 2 other sources: the BioGRID database [13],
and the high-quality “HI-union” network published by Luck
et al. [14]. For BioGRID, we considered 2 versions: (i) all PPIs
(including protein complex membership) and (ii) only direct
PPIs from yeast 2-hybrid (Y2H) screens. For each of these
networks, we did not use edge weights and restricted the
nodes and edges to those in the largest connected com-
ponent. See Table 1 for statistics of the network size and
density.

Drug-protein interactions
We downloaded interactions among drugs and proteins from the
DrugBank database (version 5.1.6) [15]. This dataset contained
16,503 drug-protein target pairs among 5,665 drugs and 2,891 tar-
get proteins. Limiting the targets to those in the STRING network
reduced the number of drugs and targets to 5,589 and 2,769, re-
spectively.

SARS-CoV-2–human A549 AP-MS interactome
We obtained 882 human proteins determined to interact with
SARS-CoV-2 proteins by affinity purification followed by mass
spectrometry analysis (AP-MS) [16]. This dataset was generated
in A549 lung carcinoma cells transduced with lentivirus vectors
expressing HA-tagged SARS-CoV-2 proteins. The authors used
affinity purification with anti-HA antibodies to isolate stable
complexes of human proteins bound to SARS-CoV-2 proteins.
Subsequently, they identified and quantified the purified pro-
teins by mass spectrometry.

SARS-CoV-2–human HEK293 AP-MS interactome
We obtained a set of 225 human proteins determined to inter-
act with SARS-CoV-2 by AP-MS [17]. This dataset was generated
by analyzing HEK293 embryonic kidney cells transfected with
plasmid vectors expressing FLAG-tagged SARS-CoV-2 proteins.
Affinity purification with anti-FLAG antibodies was used to iso-
late stable complexes of human proteins bound to SARS-CoV-2
proteins, and the purified proteins were identified and quanti-
fied by mass spectrometry.
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Figure 1: Overview of methodology. Algorithms and software for network propagation and provenance analysis take as input experimentally determined host-pathogen
protein interactions and a human protein interaction network. Evaluation includes cross-validation, functional enrichment, and literature-based examination of
promising protein targets and drugs.

Table 1: Network statistics.

Network Nodes Edges
Edge

weights Density
No. SARS-CoV-2
interactors (/333)

No. neighbors
of sources

STRING (400) 18,886 977,789 Y 5.5 × 10−3 329 12,480
BioGRID 16,595 488,787 N 3.6 × 10−3 333 9,178
BioGRID-Y2H 12,582 87,801 N 1.1 × 10−3 271 2,891
HI-union 9,053 64,193 N 1.6 × 10−3 168 2,031

For STRING, the weight cut-off applied is in parentheses. The column titled “No. SARS-CoV-2 interactors (/333)” shows the number of sources that were in the network.

The “No. neighbors of sources” column shows the number of neighbors of the human proteins that interact with SARS-CoV-2 proteins (i.e., sources) in the given
network.

SARS-CoV-2–human BioID interactome
We obtained a set of 2,241 human proteins determined to in-
teract transiently or weakly with SARS-CoV-2 proteins by us-
ing proximity-dependent biotinylation (BioID) [18]. This dataset
was generated by analyzing A549 lung carcinoma cells trans-
duced with lentivirus vectors expressing SARS-CoV-2 pro-
teins fused with a bacterial biotin ligase. The addition of
biotin resulted in the biotinylation of host proteins in the
proximity of SARS-CoV-2 proteins. Biotinylated proteins were
purified and then identified and quantified by mass spec-
trometry. Compared to interactomes identified by AP-MS,
BioID is more capable of identifying weaker interactions in
poorly soluble intracellular locations such as membranes and
organelles.

Differential protein abundance in SARS-CoV-2–infected iAT2 cells
We obtained a set of 5,665 human proteins determined to have
differential abundance in response to SARS-CoV-2 infection [19].
This dataset was generated by infecting induced pluripotent
stem cell–derived alveolar epithelial Type 2 cells (iAT2) with
SARS-CoV-2 and measuring protein abundance by quantita-
tive mass spectrometry at 1, 3, 6, and 24 hours after infec-
tion. The authors compared protein abundance in infected iAT2
cells with that of the uninfected iAT2 controls to obtain dif-
ferentially expressed proteins. In our analysis, we used the set
of proteins with differential expression (false discovery rate
[FDR] P < 0.05) at any of the times 1, 3, 6, and 24 hours after
infection.

Differential gene expression in upper airway samples in SARS-CoV-
2–infected patients
We obtained 3 sets of human proteins determined to have
differential gene expression in cells infected with respiratory
viruses [20]. To generate this dataset, the authors used metage-
nomic RNA-seq to identify and quantify both human and vi-
ral RNA expression in upper airway samples collected from pa-
tients with acute respiratory illness. They compared the gene
expression values between samples that contained SARS-CoV-
2 and uninfected samples to obtain differentially expressed
genes. They also identified additional viral infections includ-
ing SARS-CoV, human rhinovirus, influenza, human metapneu-
movirus, respiratory syncytial virus, and parainfluenza virus in
patient samples. Comparing SARS-CoV-2 infections with other
viral infections and other viral infections with uninfected sam-
ples yielded 2 additional sets of differentially expressed genes.
In our analysis, we used the genes with differential expression
(FDR P < 0.05) in these 3 sets, obtaining (i) 1,383 genes from
SARS-CoV-2–infected cells compared with uninfected samples,
(ii) 7,338 genes from SARS-CoV-2–infected cells compared with
other viral infections, and (iii) 5,779 genes from other viral infec-
tions compared with uninfected samples.

From each of these interactome and differential expression
datasets, we removed human proteins used as positive exam-
ples in our analysis and the proteins that were not present in
the STRING network. This step resulted in 2,080, 807, and 212
proteins, respectively, from the interactome datasets and 5,447,
1,293, 6,940, and 5,472 proteins, respectively, from the differen-
tial expression datasets. We used the Fisher exact test to esti-
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mate the statistical significance of the overlap between the re-
maining proteins and our top-ranking proteins.

Analyses

Various network propagation methods have been successfully
used in diverse applications in systems biology [21]. In particu-
lar, we model network propagation using the regularized Lapla-
cian (RL) [22]. As we describe in the Methods section, RL has the
benefit of 2 mutually reinforcing interpretations. On one hand,
it can be understood as an optimal labeling of network nodes,
when some node labels are known a priori. On the other hand, it
can be seen as the result of diffusion, i.e., a continuous-time ran-
dom walk, on the network. Under this second interpretation, we
derived a novel mathematical formula for the expected length of
the path traversed in the network by the random walker, which
we then used to characterize our top-ranking proteins.

Prioritization of potential SARS-CoV-2 interactors

Our underlying hypothesis was that network propagation via
methods such as the RL yields a reasonable mechanism for pre-
dicting SARS-CoV-2 interactors. Therefore, we applied RL to the
set of positive examples to rank the remaining proteins in the
STRING network. We also ranked these proteins using multi-
ple other network propagation methods and off-the-shelf classi-
fiers [23–26]. We used a stratified sampling approach to estimate
the statistical significance of the resulting node scores (see “Sta-
tistical Significance of Node Scores” in the Supplementary Meth-
ods). The sampling accounted for the possibility that if many
sources have high degree, then scores may tend to be large over-
all in the network. Henceforth, for every method, we only con-
sidered proteins in the network that had P < 0.05.

To decide which methods to select for subsequent analyses,
we compared them using 5-fold cross validation (“Comparison
of Cross-Validation Results” in the Supplementary Results and
Supplementary Fig. S1). RL, random walk with restarts (RWR)
[23], and deepNF [26] had the highest values of area under the
precision-recall curve (AUPRC) followed by SVM and logistic re-
gression. RL achieved marginally worse values of AUPRC than
RWR and deepNF. We selected 1 network propagation method
(RL) and 1 supervised classifier (SVM) for the following reasons.
We preferred RL over deepNF because the provenance-tracing
method we developed for RL enabled its results to be more eas-
ily interpreted than those for deepNF. Because RL and RWR pro-
duced highly similar predictions with a very high Spearman
correlation for the ranking of all proteins (“Overlap among al-
gorithms” in the Supplementary Results and Supplementary
Fig. S2), we selected RL as representative of the 2 methods. We
chose SVM among the 2 off-the-shelf classifiers because it also
had very good performance in cross-validation. We considered
the top 332 predictions of RL and SVM that were statistically sig-
nificant at P < 0.05 (“List of RL and SVM predictions, P-values,
and top-2 contributors” [27]), which we refer to as “top-ranking
proteins” below.

Three recent publications or preprints have independently
discovered physical interactions between SARS-CoV-2 and hu-
man proteins [16–18]. These datasets differed in the type of host
cell in which the viral proteins were expressed and the exper-
imental methods used to determine whether 2 proteins inter-
acted (“Datasets”). The top-ranking proteins for both RL and
SVM had significant overlaps with each of the 2 new datasets,
while the results for Local were not statistically significant (P >

0.01) (Fig. 2A). We observed an especially striking overlap with

the “proximity interactome” [18]. Approximately one-third of
the 332 and 1,000 top-ranking proteins computed by RL were
present in this dataset of 2,080 interactions (P = 8.2 × 10−24 and
3.9 × 10−74, respectively).

The corresponding publication used BioID with the fast-
acting miniTurbo enzyme [18], a technique that is useful for dis-
covering viral-host protein interactions that take place at intra-
cellular membranes and poorly soluble organelles, which are
difficult to profile using classical biochemical purification ap-
proaches used in the other publications [11,16,17]. Thus, our top-
ranking proteins may be members of biological processes that
occur in such locations in the cell. These 3 independent datasets
provide strong support for our predictions. Our top-ranking pro-
teins that do not overlap with these resources may interact with
viral proteins indirectly and thus would not be captured by as-
says that test for direct protein-protein interactions.

We additionally tested the overlap between our top predic-
tions and independent experimental datasets identifying differ-
ential expression of proteins in response to SARS-CoV-2 infec-
tion [19]. As in the previous analysis, we observed that the re-
sults for Local were not statistically significant (P > 0.01), while
both RL and SVM had significant overlaps with differential pro-
tein abundance in SARS-CoV-2–infected cells compared with un-
infected cells [19] (Fig. 2A). Approximately half of the 332 and
1,000 top-ranking proteins computed by RL were present in this
dataset of 5,447 differentially expressed proteins (P = 3.9 × 10−14

and 9 × 10−62, respectively). This high overlap may indicate that
these proteins are involved with changes in host protein expres-
sion occurring in SARS-CoV-2–infected cells, via either direct or
indirect virus-host protein interactions.

In contrast, when we analyzed gene expression measure-
ments in response to SARS-CoV-2 infection [20], we did not ob-
serve a significant overlap between our top-ranking proteins and
differentially expressed genes (Supplementary Fig. S8). This re-
sult may be attributed to a difference in cell types used for mea-
suring gene expression data, including cells not directly infected
by the virus. Moreover, the lack of edges connecting transcrip-
tion factors to target genes in the PPI network we used may limit
the size of the overlap between interactors predicted by RL and
SVM with differentially expressed genes.

We tested for enrichment of Gene Ontology (GO) biological
processes (Benjamini-Hochberg–corrected P ≤ 0.01) among the
top-ranking proteins from RL and from SVM, as well as in the
interactors of SARS-CoV-2 (“Functional Enrichment” in the Sup-
plementary Methods). Our top-ranking proteins were enriched
in 5 broad categories of GO biological processes: organelle or-
ganization, transcription and translation, respiration, endoplas-
mic reticulum (ER) stress, and post-translational modifications
(Fig. 2B, Supplementary Fig. S5, and “Enrichment results for RL,
SVM, and viral interactors” [27]). We examine the relevance of
these processes to the viral life cycle in more detail in “Discus-
sion” and in “Enriched Biological Processes” in the Supplemen-
tary Results.

Tracing the provenance of top-ranking proteins

We can interpret the RL in terms of a continuous-time random
walk over the network, which is governed by the internal pa-
rameter α. We are interested in the node reached by the walker
after a random time that depends on α. The expected number of
transitions made by the walker increases with the parameter α

(“Analytical Perspective on the RL and Expected Path Length” in
the Supplementary Methods). Hence for larger values of α, the
“influence” of the sources is diffused more broadly across the
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Figure 2: Network propagation results. (A) Heat map showing the FDR-adjusted P-value from the hypergeometric test for the overlap between the top-ranking predic-
tions of RL, SVM, and Local and 3 new experimental datasets of SARS-CoV-2–human protein interactions [16–18] and 1 dataset of differentially expressed (DE) proteins
after SARS-CoV-2 infection [19]. Each cell displays the FDR-adjusted P-value and the number of overlapping proteins in parentheses. A gray cell indicates P > 0.01. (B)

Heat map summarizing GO biological process terms enriched in top-ranking proteins from RL and SVM and human interactors of SARS-CoV-2 proteins (indicated as
“Kr”). We manually grouped the terms into broader categories shown in boldface. A gray cell indicates P > 0.01. We examine the relevance of these biological processes
to SARS-CoV-2 and COVID-19 in “Enriched Biological Processes” in the Supplementary Results and in “Discussion.” adj: adjusted; GPI: glycosylphosphatidylinositol;

SSU-rRNA: short subunit ribosomal RNA; tRNA: transfer RNA.

network. To test how this spreading of influence affects our re-
sults, we varied α over 4 orders of magnitude from 0.01 to 100 and
performed 2 analyses. First and most importantly, for each top-
ranking protein computed by the RL, we developed a systematic
procedure to determine the provenance of its score, i.e., which
SARS-CoV-2 interactors made the greatest contributions to this
score. For our second analysis, we developed a new methodol-
ogy to select a value of α. We were motivated to do so because we
could not use the common practice of choosing the parameter’s
value on the basis of maximization of cross-validation perfor-
mance: the AUROC, AUPRC, and precision at 0.3 recall of the RL
varied very little with α (Supplementary Fig. S3).

For provenance tracing, we took advantage of the fact that
the score computed by the RL for each protein in the network is
a linear combination of contributions from source proteins (see
Methods). Therefore, for each protein u in the network, we sorted
the source proteins by their relative contributions to the score of
u (“Provenance tracing matrix” [27]). Figure 3A–D provides illus-
trative examples of the practical usefulness of provenance trac-
ing. We used a value of α = 3.4 to obtain these results. We present
our method for selecting α at the end of this section.

In Fig. 3A, we display the top 332 ranking proteins computed
by the RL that are annotated to the enriched GO term “protein
folding in endoplasmic reticulum.” For each such protein, we
also show all the sources that interact with it, as well as the viral
proteins that in turn interact with the sources. This network is

complex and difficult to understand. In contrast, in Fig. 3B, we
connect each top-ranking protein only to the 2 source proteins
that contribute the most to its score. This simplified network
considerably facilitates the interpretation and rationalization of
the RL’s predictions. Figures 3C and D are similar in nature and
correspond to the enriched term “cilium assembly.” We return
to the biological insights present in these networks in the Dis-
cussion.

Next, we considered the effect of α on the amount of diffu-
sion in the network. When α was very small, e.g., 0.01, we ex-
pected the highest contributing sources to be direct neighbors
of top-ranking proteins. As α increased, and the random walker
traversed longer paths in the network, we expected more of the
highest contributors to not be directly connected by an edge to
top-ranking proteins. Contrary to our expectations, we found
that for every value of α and for every top-ranking protein u (till
a rank of 1,000), the source protein with the highest contribution
to u’s score was always a neighbor of u. Even when we consid-
ered the second and third highest contributors, we found that
they were >1 edge away for as few as 2% of the top-ranking pro-
teins for α = 0.01. This number increased only to 25% for α =
100.

The STRING network includes both direct, physical and indi-
rect, functional PPIs. Therefore, we sought to see whether this
trend in the provenance analysis held for networks with only
physical interactions corresponding to direct binding and indi-
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Figure 3: Provenance-tracing results and illustrative examples of networks. (A) Network of the top 332 ranking proteins for RL (green nodes) that are annotated to the
enriched term “protein folding in ER.” For each top-ranking protein, we display its connections with all neighboring SARS-CoV-2 interactors. (B) The same network
as in (A) except that we display only the top 2 contributing SARS-CoV-2 interactors for each top-ranking protein. (C) Network of the top 332 ranking proteins for RL

(green nodes) that are annotated to the enriched term “cilium assembly.” (D) The same network as in (C) except that we display only the top 2 contributing SARS-CoV-2
interactors for each top-ranking protein. In all 4 network visualizations, the number below the name of a green protein is its rank as computed by the RL. Proteins
discussed in the text are highlighted with a red border. In (A and C), we removed STRING edges with weight <700 to simplify the visualization. We retained this
restriction in (B and D) as well to maintain consistency between the visualized networks. In (C and D), we removed drugs that promote clotting. (E) Distribution of

effective diffusion for the top 332 ranking proteins for different values of α. (F) The same distribution as (E) except comparing different networks with α = 4.0. In every
boxplot, the box spans the interval between the 1st and 3rd quartiles, with whiskers extending to at most 1.5 times the interquartile range.

rect protein complex membership. We repeated the analyses up
to this point on 3 other PPI networks: BioGRID, BioGRID-Y2H, and
HI-union (see Methods). For BioGRID, the results were compara-
ble to those for STRING. The highest contributor was always a
neighbor, except for α ≥ 10, where up to 3% of nodes received
most of their score from a source >1 edge away. The second
and third highest contributor was >1 step away for as few as

8% of top-ranking nodes for α = 0.01, and up to 41% for α = 100.
For BioGRID-Y2H and HI-union, which are smaller, sparser net-
works with only direct PPIs, only 300–400 nodes had scores that
were statistically significant at the 0.05 level. The highest con-
tributing source was >1 step away for as many as 10–30% of the
top-ranking nodes, even for α = 10. For the second highest con-
tributor, this percentage increased to >50% for α = 0.01 itself.
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To further characterize the contribution of non-neighboring
sources, we defined the “effective diffusion” to a protein u as the
fraction of its score s(u) that arose from the non-direct neigh-
bors of u that were also SARS-CoV-2 interactors. As expected, the
effective diffusion to the top-ranking proteins increased with α

with values close to zero for α = 0.01 and a median of 0.88 for α

= 100 (Fig. 3E). We concluded that the neighbors of the sources
received non-trivial contributions to their RL scores from indi-
rectly connected sources only for values of α = 1 and higher.

We repeated these experiments for BioGRID, BioGRID-Y2H,
and HI-union (see Fig. 3F and Supplementary Fig. S9). BioGRID
maintained fairly similar results to STRING. On the other hand,
for the other 2 networks, their effective diffusion values were
quite a bit smaller (difference from STRING ∼0.2 on average).
Taken together, these results suggest that in the sparser net-
works (BioGRID-Y2H and HI-union), a top-ranking protein has
fewer sources as direct neighbors than in the denser networks
(STRING and BioGRID) but a larger proportion of its score arises
from these adjacent sources.

These results motivated us to test a different method for se-
lecting an appropriate value of α for downstream analysis. As
mentioned earlier, we mathematically derived a new expression
for the expected value of the path length of the random walker
(“Analytical Perspective on the RL and Expected Path Length” in
the Supplementary Methods). To our knowledge, no such for-
mula is known for the interpretation of the RL as a continuous-
time Markov chain. This value depended on α, the topology of
the network, and which proteins interacted with SARS-CoV-2.
We computed the expected path length for different values of α

(Supplementary Table S1). Independently, we computed the dis-
tribution of path lengths in the network from SARS-CoV-2 in-
teractors to every other protein (Supplementary Fig. S10). The
median number of edges in these paths was 3. Therefore, we
set the value of α = 3.4 for which the expected path length of
the random walker was 3.04 (Supplementary Table S1). The me-
dian effective diffusion for this value of α was ∼0.3. We used this
value of α to generate the results presented in this work.

Discussion

The COVID-19 pandemic and its medical and economic impact
have created an urgent challenge for biomedical researchers to
understand infection mechanisms used by SARS-CoV-2 and to
develop therapeutics against the disease [28]. A manifestation
of this community response is the first protein-protein inter-
actome associated with the SARS-CoV-2–human interface [11].
This set of human proteins reported to interact with SARS-CoV-
2 is likely to have both false-positive and false-negative results
due to the properties of the proteomic screening pipeline used.

In this work, we sought to further extend the results of
this study to significantly expand the resources available to the
COVID-19 community by producing an extended set of puta-
tive SARS-CoV-2 interactors. Comparison of our results with in-
dependently generated SARS-CoV-2–human protein interaction
networks [16–18] provides substantial experimental support for
our predictions. We note that complementary efforts are based
on protein structures [29], observational studies of treatments
being administered to patients [30], shortest paths in protein
networks [31], propagation in protein networks with predicted
SARS-CoV-2 interactors [32], and exploratory analyses of virus-
host-drug networks [33].

A notable new feature of our methodology is tracing the
provenance of each of our predictions back to the most infor-

mative experimental sources [10]. In principle, the RL computes
scores by integrating over all paths in the network. We were sur-
prised to see that the top-contributing sources were invariably
direct neighbors of the top-ranking predictions in the STRING
network. A partial explanation for this trend may be the fact
that as many as 5,331 proteins in the STRING network were di-
rect neighbors of ≥1 source protein, even when we considered
only interactions with weight ≥0.9 (the STRING database deems
edges with such weights to be of “very high quality”). Thus, the
structure of the STRING network and central location of sources
within it may cause the RL both to give high ranks only to direct
neighbors of sources and to channel propagation primarily along
these direct connections. We stress that using only the interac-
tions between sources and their neighbors in the network does
not result in high-quality predictions, as evidenced by the rela-
tively poor cross-validation performance of the Local algorithm.
Thus, the integration of multiple paths by the RL plays a key role
in prioritizing which neighbors of the sources are more likely to
be potential interactors of SARS-CoV-2 proteins than others.

COVID-19 research has focused disproportionately on a small
set of human proteins [34]. Our research has the potential to
expand the repertoire of host proteins that are studied in the
context of COVID-19 and thereby open new directions of study
of the disease. The cellular processes in which our top-ranking
proteins participate suggest how the virus may infect human
cells. We discuss 2 illustrative examples of the type of insights
provided by our approach, highlighting several proteins targeted
by drugs that are already in clinical trials for COVID-19. We re-
mind the reader that we computed functions enriched in the
top-ranking proteins, performed the provenance analysis inde-
pendently, and then integrated the results in the protein net-
works we visualized.

The role of endoplasmic reticulum stress, HSPA5, and
anti-clotting drugs

Our analysis points to a connection among interactors of SARS-
CoV-2, proteins involved in ER stress, and anti-clotting drugs
(Fig. 3A and B). The GO biological process “protein folding in en-
doplasmic reticulum” was enriched in the top-ranking proteins
(P = 4.32 × 10−9 for RL and 0.28 for interactors of SARS-CoV-2).
HSPA5, also referred to as glucose regulated protein (GRP78) or
immunoglobulin binding protein (BiP) in the literature, is evo-
lutionarily conserved from prokaryotes to humans [35]. It has
a repertoire of functions associated with ER stress response.
HSPA5 is usually localized in the ER. When the ER is stressed,
HSPA5 can translocate to the cell surface, the nucleus, and mi-
tochondria [36,37]. On the cell surface, HSPA5 plays a multi-
functional role in cell proliferation, cell viability, apoptosis, and
regulation of innate and adaptive immunity [37,38].

HSPA5 has been proposed as a universal target for human
diseases [39]. It has increasingly well-documented essential in-
teractions and activities during viral infections. In particular, the
role of HSPA5 in viral entry and pathogenesis has been widely
investigated. SARS-CoV infection has been shown to lead to ER
stress and the up-regulation of HSPA5 [40,41]. The S protein of
SARS-CoV can induce transcriptional activation of HSPA5 [41].
This protein can serve as a point of attachment for both MERS-
CoV and bat coronavirus (bCoV HKU9) [42]. Both Zika virus and
Japanese encephalitis virus use HSPA5 to prevent apoptosis and
to help in viral replication [43]. A recent molecular docking study
has predicted HSPA5 as a potential receptor for the SARS-CoV S
protein [44]. The observed expression in vitro of HSPA5 in air-
way epithelial cells suggests that it may serve as an additional
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receptor for SARS-CoV-2 in these cells [45]. On the basis of our
network-based analysis and support in the literature, we hy-
pothesize that HSPA5 may serve as a co-receptor, a point of viral
attachment, or aid in viral entry of SARS-CoV-2.

Blood hypercoagulability is reported to be common among
patients with COVID-19 [46]. Top-ranking proteins HSPA5 and
CANX act as chaperones for pro-coagulant proteins such as Fac-
tor V and Factor VIII. Once Factor VIII is secreted, it binds to an-
other pro-coagulant protein, von Willebrand factor (vWF), to pre-
vent degradation of clots [47]. Although Factor V, Factor VIII, and
vWF are not among the top-ranking proteins and thus do not ap-
pear in Fig. 3A and B, this network is suggestive of mechanisms
that SARS-CoV-2 may use to cause abnormal blood coagulation.

Anti-coagulant drugs that interact with HSPA5 or CANX in-
clude tenecteplase, a third-generation plasminogen-activating
enzyme, and the investigational drug lanoteplase, which is a
serine protease that binds to fibrin, leading to the formation
of plasmin [48], an enzyme that breaks clots. Lanoteplase is a
second-generation derivative of alteplase and a third-generation
derivative of recombinant plasminogen. It is notable that there
are clinical trials for tenecteplase (NCT04558125, NCT04505592)
and alteplase (NCT04357730, NCT04640194) to test their effec-
tiveness in treating COVID-19. Aspirin, also present in Fig. 3A
and B, binds to and inhibits the ATPase activity of HSPA5 [49].
Aspirin is currently involved in 16 clinical trials, with one test-
ing the effects of aspirin at various levels of COVID-19 severity
(NCT04365309) and another testing whether early treatment of
patients with COVID-19 with aspirin and vitamin D can inhibit
the production of blood clots and decrease rates of hospitaliza-
tion (NCT04363840).

Cilium assembly and tubulin-modulating drugs

GO biological processes related to cilia were significantly en-
riched in the top-ranking RL and SVM predictions. An exam-
ple is “cilium assembly” (P = 6.84 × 10−26 for RL vs 0.31 in the
human interactors of SARS-CoV-2). Many proteins annotated to
this term belong to the tubulin family, which are components of
microtubules. The SARS-CoV-2 M protein binds to 2 γ -tubulins
(TUBGCP2 and TUBGCP3), which interact with several α- and β-
tubulins among the top 332 predictions (Fig. 3C and D). Micro-
tubules are polymers that provide shape and structure to eu-
karyotic cells and are necessary in cell transport and cell divi-
sion, among other functions [50]. The α- and β-tubulins com-
pose microtubule filaments, while γ -tubulins connect them to
the microtubule organizing center.

Viruses commonly utilize microtubules for cellular entry,
intra-cellular trafficking, and exit from cells [51]. For instance,
the S protein of human α-coronavirus interacts with tubulin α

and β chains [52], suggesting that tubulin may be involved in the
transport and localization of the S protein and its assembly into
virions [52]. Relevant to SARS-CoV-2, microtubules are the pri-
mary structural component of cilia, which line epithelial cells in
the respiratory tract and are responsible for the transport of mu-
cus out of cells [53]. The ACE2 receptor that SARS-CoV-2 uses to
enter cells appears to be expressed primarily on the cilia of res-
piratory tract epithelial cells [54,55], further implicating micro-
tubules in viral infection. The combination of high expression
levels of ACE2 and the presence of cilia may also explain the de-
tection of the virus in multiple organs [56] and the deleterious
effect of COVID-19 on the renal, gastroinstestinal, and olfactory
systems [57]. The drugs that target Tubulin proteins (Fig. 3C and
D) are mostly anti-mitotic agents, which are being investigated
as anti-cancer therapeutics. It is notable that 26 ongoing clinical

trials are testing the effectiveness of colchicine against COVID-
19.

Our work also sets the stage for follow-up analyses on SARS-
CoV-2. Integrating new datasets of SARS-CoV-2–human protein
interactions [16–18] and human proteins whose deletion inhibits
viral replication [58, 59] with other omics data using our meth-
ods and with orthogonal analysis techniques promises to pre-
dict more biologically meaningful networks and processes af-
fected by the virus. In particular, single-cell RNA-seq data of-
fer many opportunities to examine cellular heterogeneity and
context-specific interactions.

Potential Implications

The approach that we advocate here is inspired by the gen-
eral framework of producing explanations for machine learning
methods [60]. This area of “explanations” of predictions is re-
ceiving strong interest because of deep learning. While the idea
has previously been studied in graphical models [61], most ma-
chine learning methods are not fully interpretable by the fairly
strict definition of Kasif and Roberts [10]: tracing each predic-
tion to the experimental evidence that supports it. This notion
of explanation is a special but particularly important case for
computational genomics and systems biology.

Causal perturbations [61] provide a general approach for pro-
ducing explanations of this type for virtually any predictive
model. Consider a model with experimental evidence that a
gene g performs a function f. We perturb the variable associated
with the gene, e.g., we change the probability Pr(g performs f ) =
1 to Pr(g performs f ) = 0. We then compute the change in prob-
ability of every other variable in the model due to this perturba-
tion in order to assess the importance of this particular gene-
function pair.

For network propagation, this idea yields the special case dis-
cussed in this work that is amenable to very efficient computa-
tion. Our strategy for tracing provenance extends to any algo-
rithm that makes predictions using a linear combination of evi-
dence such as logistic regression and GeneMania [62]. In partic-
ular, it is applicable to the large number of random-walk–based
methods that have been developed for predicting disease genes
or annotations to GO terms [63–66].

An important future line of research will be to develop
provenance-tracing techniques for other classes of network-
based methods such as Markov random fields (MRFs) [67,68] and
min-cut–based methods [6,69]. For MRFs, we can apply the gen-
eral perturbation-based method described above. For min-cut–
based methods, it is possible to recalculate the cut for any single
change in experimental data using dynamic data structures [70].
Thus, the provenance-tracing approach that we advocate here
has many natural follow-ups that we expect to be studied by the
community in the future.

It remains to be seen whether the trends we observed on the
contributions from direct neighbors generalize to these methods
and to annotations of terms in the GO or the Human Phenotype
Ontology terms. In general, it is quite likely that sources that
are not direct neighbors may make substantial contributions to
scores. In these cases, new algorithmic developments may be
required to trace the paths by which the sources spread their
influence to a given node.

Our work provides significant new data and software re-
sources to the COVID-19 community. Three properties of our
results facilitate their use by experimentalists who are seek-
ing to obtain new insights into the pathogenesis of this disease.
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First, the prioritized list of predicted interactors of SARS-CoV-2
(“List of RL and SVM predictions, P-values, and top-2 contrib-
utors” [27]) contains druggable targets that may be promising
to study further. Second, our provenance analysis provides the
rationale underlying each prediction by directly linking to the
relevant experimental input. Third, the viral-human protein in-
teraction networks corresponding to enriched GO terms (Fig. 3
and Supplementary Fig. S6) are available for visualization and
download on GraphSpace [71]. Examination of these networks
provides further context for the predictions.

We conclude by noting that our methodology is general pur-
pose and easy to generalize to a new virus. The software requires
a dataset of host proteins that interact with the virus and an
interaction network among the host proteins themselves. The
virus-host network may be determined experimentally [11]. If
such a dataset is not available, a user can predict the network
computationally from the sequence of the viral genes and inter-
action networks for phylogenetically similar viruses [72]. Sub-
sequently, a user can apply network propagation to predict ad-
ditional human proteins and biological processes that may be
targeted by the virus.

Methods
Algorithms

To facilitate the complete reproducibility of our results, we now
describe the RL algorithm that we use for label propagation and
prediction. We present the other methods that we use (Gen-
eMANIA, SinkSource, RWR, Local, deepNF, the Support Vector
Machine, and logistic Regression) and implementation details
in “Other Algorithms” in the Supplementary Methods. We are
given a weighted, undirected network G = (V, E, w), where each
node in V is a human protein, each edge (u, v) represents an in-
teraction between proteins u and v, and w: E → (0, 1] is a function
specifying the weight of each edge in E. Informally, the weight of
an edge indicates our confidence in the experimental data sup-
porting the corresponding protein-protein interaction. We are
also given a set P ∈ V of positive examples consisting of the hu-
man proteins that interact with SARS-CoV-2 proteins [11]. Each
node in G is a human protein and each edge represents a physi-
cal or functional interaction between 2 proteins. We seek to com-
pute a score vector 	s ∈ Rn, where n is the number of nodes in G.
For every node v, the score s(v) in this vector indicates our confi-
dence that node v either physically interacts with or is function-
ally linked to a SARS-CoV-2 protein.

Regularized Laplacian [22]
Given a parameter α > 0, we compute 	s using the following steps:

(1) Define a label vector 	y over the nodes in G where y(u) = 1 if
node u is in P and y(u) = 0, otherwise.

(2) Define W ∈ Rn×n as the adjacency matrix of G with edge
weights, i.e., the entry in row u and column v of W equals
wuv if (u, v) is an edge in G and 0, otherwise.

(3) Define D as a diagonal matrix with Duu = ∑
vwuv, for every

node u in G.
(4) Compute the Rn×n matrix W̃ = D−1/2WD−1/2, which denotes

the normalized network.
(5) Compute the Laplacian of G as L̃ = D̃ − W̃, where we define

D̃ to be a diagonal matrix with D̃uu = ∑
v w̃uv .

(6) Compute the vector 	s = (I + α L̃ )−1 	y.

The RL was introduced by Zhou and Schölkopf [73]. Since
then, several variations of this method have been published.

The version we use is identical to the strategy used by Fouss
et al. [22]. We provide the intuition behind the resulting RL ma-
trix (i.e., (I + α L̃ )−1) and discuss its properties in “Analytical Per-
spective on the RL and Expected Path Length” in the Supplemen-
tary Methods. In particular, we derive an expression for the ex-
pected path length of the continuous-time Markov chain corre-
sponding to the RL. As far as we know, this mathematical anal-
ysis has not previously been published.

Tracing the provenance of prediction scores

Let K denote the RL matrix (I + α L̃ )−1. We remind the reader that
the RL algorithm ranks proteins on the basis of diffusion scores
that associate a node u in the network with a diffusion score s(u),
where s(u) = ∑

v ∈ PKuv, where v ranges over the set P of all SARS-
CoV-2 interactors. For every protein u, we sorted the proteins in
P in decreasing order of the values of Kuv, where v ranged over
P. In this manner, we ranked the experimentally determined
interactors in decreasing order of their contributions to each
node’s diffusion score. This analysis is important for tracing the
provenance of computational predictions to their experimental
sources [10].

Availability of Source Code and Requirements
� Project name: SARS-CoV-2-network-analysis
� Project home page: https://github.com/Murali-group/SARS

-CoV-2-network-analysis
� Operating system(s): Platform independent (tested and ap-

plied on Linux and Mac OS)
� Programming language: Python
� Other requirements: See https://github.com/Murali-group/

SARS-CoV-2-network-analysis/blob/master/requirements.t
xt

� License: GNU General Public License v3
� biotools id: biotools:sars-cov-2-network-analysis
� RRID:SCR 021811

Data Availability

We used publicly available datasets for our analysis. We down-
loaded these data from the respective publications or websites.
A snapshot of the software used for this analysis and the follow-
ing supplementary files are available at the GigaScience GigaDB
database [27].

Additional Files

List of RL and SVM predictions, P-values, and top-2 contributors:
The prediction rank and P-value computed by RL and SVM
for each human protein on the STRING network, the list of
drugs that target the protein (when this information is avail-
able in DrugBank), and the top-2 contributing SARS-CoV-2 in-
teractors and corresponding SARS-CoV-2 protein. For the last
piece of information, we also included the fraction of score
contributed by each of the top-2 SARS-CoV-2 interactors.

Enrichment results for RL, SVM and viral interactors: Enrich-
ment results for RL, SVM and the viral interactors on GO bio-
logical processes.

Provenance-tracing matrix: Provenance-tracing matrix of con-
tributions to the network propagation score from each SARS-
CoV-2 interactor to every top-ranking protein.
Supplementary Methods.
Supplementary Figure S1. Cross validation results.

http://graphspace.org/graphs/?query=tags:2021-sarscov2-network-analysis
https://github.com/Murali-group/SARS-CoV-2-network-analysis
https://github.com/Murali-group/SARS-CoV-2-network-analysis/blob/master/requirements.txt
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Supplementary Figure S2. Similarity of predictions between
every pair of methods.
Supplementary Figure S3. Parameter search results.
Supplementary Figure S4. P-values of node scores for RL and
SVM.
Supplementary Figure S5. Overview of connections between
SARS-CoV-2 interactors and the GO biological process terms
enriched in the top-ranking proteins
Supplementary Figure S6. Networks of the top-ranking pro-
teins for RL annotated to enriched terms.
Supplementary Figure S7. Results of simplification of en-
riched terms.
Supplementary Figure S8. Overlap of the top-ranking predic-
tions of RL, SVM, and Local with an experimental differen-
tially expressed gene dataset.
Supplementary Figure S9. Distributions of effective diffusion.
Supplementary Figure S10. Distribution of path lengths from
SARS-CoV-2 interactors to every other protein in the STRING
network.
Supplementary Table S1. Variation of expected path length
with α.

Abbreviations

AP-MS: affinity purification followed by mass spectrometry
analysis; ATP: adenosine triphosphate; AUPRC: area under the
precision-recall curve; AUROC: area under the receiver-operator
characteristic curve; bCoV: bat coronavirus; COVID-19: novel
coronavirus disease 2019; BioID: proximity-dependent biotiny-
lation; BiP: immunoglobulin binding protein; ER: endoplasmic
reticulum; FDR: false discovery rate; GM: GeneMania; GPL: Gen-
eral Public License; GO: Gene Ontology; GRP: glucose regulated
protein; HIV-1: human immunodeficiency virus 1; HSV-1: her-
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