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ABSTRACT
Network traffic modeling generally views traffic as a super-
position of flows that creates a timeseries of volume counts
(e.g. of bytes or packets). What is omitted from this view
of traffic is the contents of packets. Packet contents (e.g.
header fields) contain considerable information that can be
useful in many applications such as change and anomaly de-
tection, and router performance evaluation. The goal of this
paper is to draw attention to the problem of modeling traffic
with respect to the contents of packets. In this regard, we
identify a new phenomenon: long range mutual information
(LRMI), which means that the dependence of the contents of
a pair of packets decays as a power of the lag between them.
We demonstrate that although LRMI is hard to measure,
and hard to model using the mathematical tools at hand, its
effects are easy to identify in real traffic, and it may have a
considerable impact on a number of applications. We believe
that work in modeling this phenomenon will open doors to
new kinds of traffic models, and new advances in a number
of applications.

1. INTRODUCTION
Considerable effort has gone into characterizing and mod-

eling network traffic. The vast majority of traffic modeling
has been concerned with measures of traffic volume: the
number of packets or bytes passing over a link. The result-
ing models of traffic volume are valuable for a variety of
tasks, most notably performance evaluation of network ele-
ments. In the process of developing traffic volume models a
number of important properties have been identified, includ-
ing the observation that traffic volume measures generally
show long-range dependence [6].

However, measures of traffic volume are not the only im-
portant property of traffic. A more detailed view of traffic
might consider the information inside of packets, such as the
values present in packet header fields. When thinking about
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the sequence of packet headers seen on a link, a natural ab-
straction is to treat them as a sequence of symbols drawn
from a particular alphabet. That is, at a very basic level
information carried in each packet is interpretable simply as
a symbol.

This suggests treating a packet sequence as being emit-
ted by a source that can be characterized by the sequence
of symbols it generates. Models that capture the proper-
ties of packet header values would be useful for evaluating
network elements that operate on headers, such as routers.
Such models could also find use in characterizing “normal”
packet header properties and thereby forming the basis of
new traffic anomaly detection methods.

The goal of this paper is to draw attention to traffic mod-
eling based on symbolic view of traffic. Although this is in
some sense a natural view of traffic, relatively little work has
been done to characterize traffic at this level. In this paper
we help to fill this gap by studying the properties of network
traffic when treated as a symbol sequence. In particular we
study the sequence of headers found in traffic flowing over a
single link.

The definition of what constitutes a symbol must be care-
fully chosen, in accord with the purpose of the model. It is
desirable that the definition results in a manageable number
of symbols, and yet be linked to the object under study. In
this paper, we focus on a symbol definition which is derived
from the packet header fields and is constant within a flow.

In this context we find and characterize a new phe-
nomenon which we call long range mutual information. In-
formally, this property states that the dependence of sym-
bols of two packets does not drop off sharply with the lag
between them. The most important reason for packet sym-
bols to show dependence is the fact that the sequence of
symbols is the interleaving of symbols from a set of flows,
and that symbols from the same flow can be the same from
packet to packet.

Our first contribution is to show that that direct measure-
ment of long range mutual information is quite difficult in
typical traffic, because it requires a very large number of
samples.

Secondly, we show the strong effects that LRMI has on
the distribution of symbols seen in a collection of consecu-
tive packets. This occurs because, although the mutual in-
formation between any two packets is quite small, the slow
decline of mutual information over time means that its ag-
gregate effect over a window of many packets is quite large.

In order to assess the effects of LRMI on the distribu-
tion of symbols seen in a window, we apply transformations



on the sequence of symbols and compare the resulting his-
tograms. We show that long range mutual information has
implications for, among other things, statistical anomaly de-
tection methods based on the application of Sanov’s Theo-
rem to the distribution of header field values seen within a
window of packets. Ideally we would like to obtain analyti-
cal relationships between the strength of long range mutual
information, and the large deviation properties of the sam-
pled histograms. However, as we explain in the body of the
paper, current mathematical tools are insufficient for this
purpose.

The remainder of the paper is organized as follows. In Sec-
tion 2 we introduce LRMI, by means of an analytical model,
and demonstrate the difficulty of directly measuring LRMI.
In Section 3 we show evidence of the presence of LRMI in
network traffic, and how LRMI affects the distribution of
symbols in a trace. In Section 4 we place our results in the
context of prior work. Finally in Section 5 we conclude and
present directions for future work.

2. A NEW KIND OF LONG MEMORY
Turning to a symbolic view of network traffic requires the

selection of a mapping function that transforms each packet
to a symbol. We deffer the discussion of different mappings
for the future, and assume for the purposes of this section
that such function exists and maps each packet to a symbol
from an alphabet X.

In this context, we are interested in characterizing the
memory structure between packets at different lags. A nat-
ural way of quantifying this dependence is by measuring the
mutual information. We first define what mutual informa-
tion is, and extend this definition to network traffic. Then,
we develop an analytical model of mutual information and
use it to show how hard it is to directly measure mutual
information in real traces.

2.1 Mutual Information of Random Variables
The amount of information contained in a random variable

X, with distribution p(x) can be measured by the Shannon
Entropy, defined as

H(X) = −
X

x∈X

p(x) log p(x)

Similarly, the joint entropy measures the information of a
pair of random variables X and Y ∼ p(x, y), and is given by

H(X, Y ) = −
X

x∈X ,y∈Y

p(x, y) log p(x, y)

If the variable Y was totally dependent on X, then p(x, y)
would collapse to being simply p(x), and H(X,Y ) would be
equal to H(X). On the other hand, if X and Y were totally
independent, p(x, y), would be equal to the product of the
marginals for X and Y , p(x)p(y), and H(X, Y ) would be
equal to H(X) + H(Y )[1].

The mutual information of X and Y captures the de-
pendence between X and Y with a number in the range
[0, H(X)] (from independence to total dependence). Mutual
information is symmetric, and is defined as

I(X; Y ) =
X

x∈X , y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

2.2 Auto Mutual Information
One can define auto mutual information at lag l for a

stationary discrete-valued stochastic process X1, X2, . . . , Xn

as the mutual information between random variables Xi and
Xi+l.

I(Xi; Xi+l) =
X

xi∈X

X

xi+l∈X

P (xi, xi+l) log
P (xi, xi+l)

P (xi)P (xi+l)

Since the process is stationary, I(Xi; Xi+l) is independent
of i and so we can simply refer to the mutual information at
lag l, as I(l).

At the heart of the calculation of auto mutual information,
lies the estimation of the joint distribution of symbols at dif-
ferent lags. We first develop an analytical model to compute
mutual information and then show evidence of how hard it
is to measure it directly in real traces.

2.3 A Simple Model of Symbolic Traffic
How does mutual information vary as a function of l? For

a nth-order Markovian process, where each symbol depends
only on the n previous ones, we expect the mutual infor-
mation to decline exponentially fast as a function of l when
l > n. However, this is not necessarily the case for network
traffic.

To analyze the relationship between I(l) and l we model
network traffic as follows. We consider a model where m
concurrent flows generate symbols over an alphabet X. The
symbol sequence emitted is the (random) interleaving of the
symbols associated with the packets of each flow.

There are a total of Km × X
m states, where K is the

maximum flow size allowed. Each state has associated with
it a tuple (R,S), where

R = (R1, . . . , Ri, . . . , Rm) , Ri ∈ [1, K] is the number of
remaining packets of flow i, K is the maximum flow
size; and

S = (S1, . . . , Si, . . . , Sm) , Si ∈ X is the symbol assigned
to flow i.

The transition probabilities are given by:

{(R1, . . . , Ri, . . . , Rm), → {(R1, . . . , Ri − 1, . . . , Rm),
(S1, . . . , Si, . . . , Sm)}n (S1, . . . , Si, . . . , Sm)}n+1

if Ri > 1 w.p. (1/m)

{(R1, . . . , Ri, . . . , Rm), → {(R1, . . . , k, . . . , Rm),
(S1, . . . , Si, . . . , Sm)}n (S1, . . . , s, . . . , Sm)}n+1

if Ri = 1 w.p. κ(k)φ(s)(1/m)

where κ(k) is the probability that any given flow contains k
packets and φ(s) probability that any given flow has symbol
s. On each transition the process emits symbol Si.

Given this model, we compute the mutual information
between emitted symbols that are separated by lag l. A
complete derivation of the formula of mutual information at
lag l for this model is given in Appendix A.

The question we ask is how mutual information declines
with lag. To answer this, we show results in Figure 1. The
figure presents numerical results of mutual information as
a function of lag for cases with |X | = {16, 64}, and multi-
plexing level m = {200, 3000}.

We consider a variety of different distributions of flow
lengths κ(·). The distributions corresponding to empirically
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Figure 1: Numerical evaluation of Mutual Information, using Normal approximation of the Binomial

observed traffic are the heavy-tailed Zipf distributions (i.e.,
the discrete Pareto distributions). As mentioned in Sec-
tion 4, there is considerable empirical evidence for this dis-
tribution as a good model of flow lengths. For comparison
purposes we also show a range of Geometric distributions
(discrete exponential) and a single Uniform distribution.

The figure shows that distributions like the light-tailed
Geometric and Uniform show a sharp decline in mutual in-
formation past a given lag threshold. This threshold corre-
sponds roughly to the product of the multiplexing level and
the mean flow size.

In contrast, for the more realistic (heavy-tailed) flow
length distributions, mutual information declines slowly and
does not exhibit any particular threshold. This slow decline
is analogous to the polynomial decline of auto-correlation in
a long-range dependent process, and so we refer to it as long
range mutual information (LRMI).

2.4 LRMI is not LRD
A stochastic process with the property of long range de-

pendence can be characterized by an auto-correlation func-
tion that decays as a power of the lag. Therefore, even
though the absolute values of the auto-correlation function
may be small at large lags, their sum diverges. The conse-
quences are important in many settings; for a study of the
effects of LRD in queue performance, see [4].

Long range mutual information is also a property of a
stochastic process with dependencies among random vari-
ables at large lags. However LRMI and LRD are not the
same phenomenon.

LRMI does not imply LRD. Given a network traffic
trace that has LRMI and LRD, it could be passed
through a traffic shaper to remove LRD, but the se-
quence of symbols would be unchanged, and therefore,
LRMI would be preserved.

LRD does not imply LRMI. Depending on the defini-
tion of symbol used, a network traffic trace with LRD
may have no mutual information at all (for example,
when using the check-sum field of IP headers); or it
may be fully dependent (for example, when using the
IP version field).

The presence of LRMI may have implications in many
aspects that are open to investigation. In general, LRMI
implies that a histogram of symbols measured over any win-
dow in a trace will show more variability then predicted by
a Markov model.

2.5 Estimating LRMI in Real Traffic
To measure the presence of long range mutual information

in real traffic, the straightforward approach would be to es-
timate the joint probability function of symbols at each lag
l. However, in this section we argue that such an approach
presents considerable difficulties.

The model used in the previous section provides a helpful
framework for understanding the problem. In that model,
two symbols are independent if they arise from different
flows. This makes the explicit assumption that the effect of
higher level structure (e.g. sessions) is negligible. Thus the
joint probability distribution to be estimated is concerned
with two values: the joint probability of two symbols that
are different and the joint probability of two symbols that
are the same.

In the former case, we are concerned with

P (xi, xi+l | xi 6= xi+l)

and in the latter case we are concerned with

P (xi, xi+l |xi = xi+l).

Accurate estimation of the mutual information at lag l
requires accurate estimation of both these quantities, and
in particular, accurate estimation of the difference between
these two quantities. This is because different symbols come
from different flows and so are necessarily independent, but
when two symbols are the same they may have come from
the same flow and so are dependent. It is this latter depen-
dence that induces mutual information.

Because of the assumption of independence of flows, the
joint probability at lag l of two symbols which are different
is given by the product of the symbol distribution φ(x) of
the two symbols

P (xi, xi+l |xi 6= xi+l) = φ(xi)φ(xi+l) (1)

and the joint probability of two symbols at lag l that are the
same depends on the probability p(l) that the two symbols
belong to the same flow

P (xi, xi+l |xi = xi+l) = φ(xi)p(l) + φ(xi)
2(1− p(l)) (2)

p(l) is given by the following equation, of which a derivation
is provided in Appendix A

p(l) =
1

mEκ

X

∀k

κ(k)

k−1
X

i=1

“

1−
l−1
X

j=k−i

Bl−1, 1
M

(j)
”



M = 9000 M = 15000
l 1.5 1.9 1.5 1.9
2 1.044e9 1.678e9 1.739e9 2.796e9
8 1.044e9 1.678e9 1.740e9 2.797e9

32 1.045e9 1.680e9 1.740e9 2.799e9

Table 1: Minimum number of samples to estimate

mutual information. Four settings shown: multi-

plexing M = {9000, 15000}, and Zipf parameter α =
{1.5, 1.9}.

In the case when φ(x) ∼ Uniform, the difference between
(2) and (1) is

p(l)(φ(xi)− φ(xi)
2)

which is in general quite small. Note that p(l) is upper
bounded by 1/m. Thus accurate estimation of mutual in-
formation becomes more difficult at higher levels of traffic
aggregation.

Compounding the difficulty is that there are |X | symbols
for which this difference must be measured, and that some
number k observations are needed for numerical accuracy.
Thus we have an instance of the coupon collecting problem,
and we expect that we need to observe a sequence of length
approximately k ∗ |X | log(k ∗ |X |)/p(l) to witness k such
events for each symbol.

In Table 1 we show typical values of the sequence lengths
needed to accurately estimate mutual information for a
range of lags, and multiplexing levels, and for alphabets
of size 64. The figures show that the number of samples
needed is quite large even for moderate multiplexing levels,
and that the number of samples grows with increasing levels
of multiplexing.

As a confirmation of the difficulty of measuring mutual in-
formation directly, we have explored the possibility of train-
ing both Markov models and Hidden Markov Models to cap-
ture the dependence structure in real traffic. These efforts
have been ineffective due to the characteristics of the prob-
lem presented in this section: low mutual information at any
given lag combined with the high order of the model needed.

3. THE IMPORTANCE OF LRMI
The preceding subsections would suggest that since mu-

tual information in traffic is generally quite small, that it is
insignificant. However, this is most definitely not the case.

In order to understand why, it is important to keep in
mind that although mutual information is small, it declines
very slowly as well.

We illustrate this phenomenon by examining the distribu-
tion of symbols observed in windows of 20, 000 packets from
real traffic. We use 24-hr unsampled and non-anonymized
packet traces from the WIDE backbone [7]. We divide the
trace into 4-hr intervals. Each interval has a volume of ap-
proximately 20GBytes and 40 million packets. We chose an
interval of 4 hours because statistics such as the multiplex-
ing level and the number of packets per minute were stable
over this period (see Figure 2), and because in such a long
period there usually are more than 2, 000 window samples.

As mapping function, we use the AS number1 of the desti-

1Multi-homed addresses were resolved by choosing the
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Figure 2: Timeseries of packet counts per minute.

Timeseries of byte counts and multiplexing level also

show similar stability characteristics.

nation IP address. (We have also used the AS number of the
source IP address and obtained similar results.) The result is
a sequence of AS numbers for a period of 4 hours. We com-
pute the empirical histogram of AS numbers of the entire
trace to use as the reference distribution in the rest of the
experiment. We believe this distribution to be an approxi-
mation of the typical distribution of symbols induced by the
normal usage of the network. To rule out the interference
of non-stationarity effects in our observations, we repeated
these experiments breaking the entire trace into intervals of
1-hour as well, and found that the results of 1-hour traces
were consistent with each other and with the 4-hour trace.

In order to measure the deviation of each window to the
reference distribution, we compute the Küllback-Leibler dis-
tance between the histogram of a window p(x) and the ref-
erence distribution q(x), obtained from the entire sequence.
The KL distance is defined as

D(p||q) =
X

x∈X

p(x) log
p(x)

q(x)

Sanov’s Theorem shows that the probability of observ-
ing a histogram p(x) in a window of i.i.d. samples from a
reference distribution q(x) declines exponentially in the KL
distance [2]

Prob[D(p||q) > x] ∝ 2−nx

That is, Sanov’s Theorem establishes KL distance as the
natural metric for measuring the variability of histograms.

In the leftmost plot of Figure 3, we show the distribu-
tion of KL distance for the original sequence, and for trans-
formations of the original sequence. Each transformation
consists of scrambling the symbols from a number n of ad-
jacent windows. Clearly, the smallest possible value for n
is 2, since scrambling the symbols within a single window
will not change its histogram. After the sequence has been
transformed in this way, we compute again the distribution
of KL distance for each window of 20, 000 packets. We also
include the distribution of KL distance for an i.i.d. sequence
with the same reference distribution q(x). It is evident from
these curves that for small values of n, the difference in the
distribution of KL distance to the original case is also small.
It is only when almost the entire trace is scrambled that we
get close to the i.i.d. case. This is a simple way to observe
the presence of LRMI in the sequence of symbols.

We also show in Figure 3 two horizontal cuts of the previ-

ous curve, at 90th and 99th-percentiles for two more traces.
These cuts show the logarithmic decline of KL distance with
the decrease in the correlation in the sequence of packets.

smallest AS number.
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Figure 3: Evidence of Long Range Mutual Information

These figures illustrate the importance of accurately cap-
turing LRMI when modeling real traffic. For instance, a
simple anomaly detection method would be to plot the dis-
tribution of KL distance for anomaly free traffic, and then
chose a false alarm rate, say 1%, to set a threshold for detect-
ing anomalies. Inspecting these figures it is clear that models
that ignore mutual information, despite its small values at
any given lag, give highly inaccurate results for real traffic.

4. RELATED WORK
The seminal papers of [4] and [8] have demonstrated the

presence of LRD in network traffic and its effects on perfor-
mance of network elements. In this paper we introduce the
concept of LRMI. Both LRD and LRMI have origins in the
heavy tailed nature of distributions involved in each domain.
Whereas LRD is concerned with the temporal distribution
of volume counts, LRMI is concerned with the spatial dis-
tribution of volume counts. The consequences of one and
the other are different as well, since they expose the high
variability of traffic in time or space. For instance, a router
that performs table look ups based on destination IP ad-
dress prefixes may be more concerned with the variability in
space than in time.

We have illustrated the importance of LRMI in anomaly
detection and change detection (without presenting a full-
blown method). We point the interested reader to [3] and
[5] for practical frameworks that use KL distance for change
and anomaly detection in settings like the one we consider
here.

5. CONCLUSIONS
In this paper we have investigated the nature of depen-

dence in packet traffic when the traffic is viewed as a se-
quence of symbols. This is an area that has not been ex-
tensively explored, but can yield insights useful in synthetic
traffic generation and statistical anomaly detection.

We have shown that the mutual information between
packet headers tends to decline slowly over time, in a man-
ner analogous to the slow decline of correlation in long-range
dependent processes. For this reason, we use the term long
range mutual information to describe the dependence struc-
ture between packets. We show that long range mutual in-
formation has a very strong effect on the distribution of sym-
bols seen in a given window, and yet in real traffic it is rather
difficult to measure directly.

We have demonstrated the presence of LRMI in real
traces. In particular, we showed the effect of LRMI on the

distribution of KL distance of histograms over windows of
fixed length. The distribution of KL distance of network
traffic is significantly different from what is expected of i.i.d.
sequences. Furthermore, we show that scrambling adjacent
windows is not enough to eliminate the effect of LRMI. Only
when almost the entire sequence of millions of symbols is
randomly reorganized that the resulting histograms become
approximately uncorrelated.
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APPENDIX

A. DERIVATION OF MUTUAL INFORMA-
TION FORMULA

In this section, we derive the formula of mutual informa-
tion at lag l for the sequence of symbols generated by the



model described in Section 2.
Remember that mutual information at lag l for a sequence

drawn from alphabet X, is defined as

I(Xi; Xi+l) =
X

xi∈X

X

xi+l∈X

φ(xi, xi+l) log
φ(xi, xi+l)

φ(xi)φ(xi+l)

φ(x) is the symbol distribution, which supposedly is
known already. For the uniform case φ(x) = 1/|X |. Thus
the only unknown part in the equation above is the joint
distribution of symbols at lag l.

Let f(Xi) denote the flow associated with the random
variable Xi, and denote by Sl the event f(Xi) = f(Xi+l),
and by p(l), its probability. Using a total probability argu-
ment, we can write the joint probability as

φ(xi, xi+l) = φ(xi, xi+l|Sl)p(l)

+ φ(xi, xi+l|¬Sl)(1− p(l))

= φ(xi, xi+l|Sl)p(l)

+ φ(xi)φ(xi+l)(1− p(l))

= δ(xi, xi+l)φ(xi)p(l)

+ φ(xi)φ(xi+l)(1− p(l))

where in step 2, we use the fact that if two packets belong to
different flows, then the distribution of symbols is indepen-
dent, by construction of our model; and in step 3, notice that
the joint distribution of symbols from the same flow is zero,
if the symbols are different, since a flow must have the same
symbol in all packets, and φ(x) otherwise, since the choice of
the second symbol is totally dependent on that of the first.
Thus we use the delta function, defined as δ(x, y) = 1, if
x = y; and 0 otherwise, as a result of this analysis.

In order to compute p(l), we need to define two new events.
First denote by (Xi ← k) the event of a random packet Xi

being associate with a flow of size k. The probability of such
event can be calculated by

P [Xi ← k] =
kκ(k)

P

∀j
jκ(j)

=
kκ(k)

Eκ

where κ(·) is the flow size probability distribution function,
and Eκ, its mean. Imagine that there are F flows in a se-
quence, then sort all the packets in the sequence by flow,
and then, sort all the flows by size. There are kFκ(k) pack-
ets which belong to a flow of size k, in a total of

P

∀j
jFκ(j)

packets.
Second let ord(Xi) be the order of Xi in the sequence of

packets of flow f(Xi), the probability that a random packet
has ord(Xi) = {1, . . . , k}, where k is the size of its flow is
1/k.

Now we are going to use the total probability argument
twice, first conditioning on all events (Xi ← k), and then,
on all possible orders of a packet within a flow, to derive the

formula for p(l).

p(l) =
X

∀k

P [Sl|Xi ← k]P [Xi ← k]

=
X

∀k

P [Sl|Xi ← k]
kκ(k)

Eκ

=
X

∀k

k−1
X

i=1

P [Sl|ord(Xi) = i, Xi ← k]
1

k

kκ(k)

Eκ

=
1

mEκ

X

∀k

κ(k)

k−1
X

i=1

“

1−
l−1
X

j=k−i

Bl−1, 1
M

(j)
”

In the last step, we use the Binomial distribution (Bn,r(i) =
`

n

i

´

ri(1 − r)n−i) to capture the fact that two packets with
lag l will belong to the same flow only if the remaining (k−i)
packets of the flow are not consumed in (l− 1) steps or less,
and a packet from the same flow is selected with probability
1/m, where m is the number of active flows, which is fixed
in our model.

Finally, putting all this together, we can derive a formula
for mutual information.

I(Xi, Xi+l) =
X

∀xi,xi+l

(

δ(xi, xi+l)φ(xi)p(l)

+ φ(xi)φ(xi+l)
h

1− p(l)
i

)

log

(

δ(xi, xi+l)

φ(xi+l)
p(l)

+
h

1− p(l)
i

)

This formula is computationally expensive, since it has to
evaluate l2 binomial sums. Therefore we present another
formulation of p(l) using the normal approximation of the
binomial distribution.

p(l) =
Eκ − 1

mEκ

− (l − 1)F c
κ(l − 1)

m2Eκ

−

−
l−1
X

i=2

"

“

erf(
l− 0.5− µ√

2σ
)−erf(

i−1.5−µ√
2σ

)
”

×
“Fκ(l−1)−Fκ(i−1)

2mEκ

”

#

where Fκ is the cumulative flow size distribution function,
and F c

κ is its complement; and erf is the Normal cumulative
distribution function, with mean µ = l−1

m
and variance σ2 =

(l−1)(m−1)

m2 .


