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ABSTRACT
In information networks where users send messages to one an-

other, the issue of information overload naturally arises: which are
the most important messages? In this paper we study the problem
of understanding the importance of messages in Twitter. We ap-
proach this problem in two stages. First, we perform an extensive
characterization of a very large Twitter dataset which includes all
users, social relations, and messages posted from the beginning of
the service up to August 2009. We show evidence that informa-
tion overload is present: users sometimes have to search through
hundreds of messages to find those that are interesting to reply or
retweet. We then identify factors that influence user response or
retweet probability: previous responses to the same tweeter, the
tweeter’s sending rate, the age and some basic text elements of the
tweet. In our second stage, we show that some of these factors
can be used to improve the presentation order of tweets to the user.
First, by inspecting user activity over time, we construct a simple
on-off model of user behavior that allows us to infer when a user
is actively using Twitter. Then, we explore two methods from ma-
chine learning for ranking tweets: a Naive Bayes predictor and a
Support Vector Machine classifier. We show that it is possible to
reorder tweets to increase the fraction of replied or retweeted mes-
sages appearing in the first p positions of the list by as much as
50-60%.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and behavioral sciences

Miscellaneous; H.3.5 [Online Information Services]: Web-based
services

General Terms
Human Factors, Measurement

Keywords
Social Networks, Twitter, timeline
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1. INTRODUCTION
Twitter has become a vast network, hosting an immense flow

of information passing among its users. According to [1], Twitter
users now send more than 140 million messages (tweets) per day,
meaning that Twitter carries a billion messages every 8 days. As
a consequence, a flood of information swamps Twitter users. For
instance, according to [7], active users can easily receive more than
1000 tweets a day. It is difficult or impossible for a user to keep up
with this amount of tweets. However, many tweets are irrelevant,
superfluous, or too difficult to understand without context. For ex-
ample, the recent study presented in [2] estimates that only 36%
of the Twitter’s feed are worth reading. Clearly, users can benefit
from tools that help them sort the “wheat from the chaff.”

To do so, a starting point is to understand how users consume
messages and interact with other users in the network. Research
on Twitter is newer than on e-mail and Web so we know less about
the behavior of users in this information network. A fundamen-
tal set of questions then is the following: how do users manage
the incoming flood of messages in Twitter? How do users value
incoming messages, as evidenced by their generation of message
responses (replies and retweets)? What factors affect whether users
reply to or retweet messages? Answers to these questions can help
us reason about management strategies to distinguish important or
interesting messages.

Our approach to answering these questions begins with an ex-
tensive characterization of the behavior of Twitter users. To un-
derstand user behavior, we looked at a very large dataset, consist-
ing of all tweets exchanged among Twitter users over more than
two years. Our focus is on understanding and improving the time-
line of tweets presented to the user. When users log in to Twitter,
they typically see a chronological stream of tweets as sent by all of
their sources. Users interact with this tweet-stream by replying to
tweets, or resending tweets (retweeting). The tweets a user reply
to or retweet thus can provide indication of a sense of importance
or interestingness the user ascribes to the specific tweet. Hence we
reconstructed the timeline for a numbers of subsets of users and ex-
amined questions related to the reply and retweet behavior of users.

Our first set of findings consists of characterizations of reply
and retweet behavior. From the outset it is clear that information
overload is a common experience of Twitter users; we show that
users sometimes have to search through hundreds of messages to
find those that are important. We then identify features that influ-
ence user response or retweet probability: previous responses to
the same tweeter, the tweeter’s sending rate, the age of the tweet,
the size of the text message and the presence of mentions, hash-
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tags or URLs. We show that these features are correlated with the
likelihood that a user will reply to or retweet a tweet.

These findings not only unveil unique aspects of user behavior
and their interactions in Twitter, but they also motivate us to pro-
pose an approach to improve a user’s interaction with Twitter by
reordering the presentation of tweets in a user’s timeline. This
prompts our second set of findings: by inspecting user activity over
time, we construct a simple on-off model of user behavior that al-
lows us to infer when a user is actively using Twitter. Then we
investigate the feasibility of applying machine learning methods to
rank tweets in a user’s timeline in a manner that brings the most
important tweets to the top of the timeline. We take two different
approaches: a Naive Bayes predictor that combines the empirically
observed conditional response probabilities, and a Support Vector
Machine classifier. These methods do not make use of the con-
tents of tweets, and so are lightweight enough for implementation
in Twitter clients. Using trace-driven simulation we show that em-
ploying only three content-independent features, it is possible to
reorder tweets to increase the fraction of replied or retweeted mes-
sages appearing in the first p positions of the list by as much as
50-60%. These results indicate that our methodology can originate
an interesting alternative interface to present tweets instead of the
usual reverse chronological order.

The remaining of this work is organized as follows. Section 2
describes related work. In Section 3 we present our dataset. Section
4 discusses characteristics associated with response rates in Twitter.
In Section 5 we show machine learning based approaches to reorder
the common Twitter timeline, and Section 6 provides an evaluation
of these algorithms. Finally, Section 7 summarizes the paper and
presents the main findings of this work.

2. RELATED WORK
User behavior characterization is fundamental to the understand-

ing and engineering of efficient information networks. Next, we
survey studies that are focused on analyzing user characteristics
and interactions among users.

There has been a number of studies that provide an overview
of Twitter and its users. In [19], the authors present a detailed
characterization of Twitter. They gathered three datasets (cover-
ing nearly 100,000 users) and identified distinct classes of Twitter
users and their behaviors, geographic growth patterns and current
size of the network. The work in [17] studies linked structures of
social networks and argue the structures do not reveal actual inter-
actions among people. Scarcity of attention and the daily rhythms
of life and work drive interaction patterns in social and information
networks. This study of social interactions within Twitter reveals
that the driver of usage is different from the declared network of
friends (i.e., followings). The authors of [18] present a character-
ization of the Twitter phenomena and study topological and geo-
graphical properties of the information network. They show people
use messages to talk about their daily activities and to seek or share
information. They also analyze user interactions at a community
level.

Several authors present data-driven analysis and measured pat-
terns of communications as well as information spreading across
social network links. Kwak et al. [20] provides an in-depth charac-
terization of different aspects of Twitter. In particular, they found
a non-power-law for follower distribution, a short effective diame-
ter, and low reciprocity. These characteristics contrast with known
characteristics of human social networks. A prominent model of
human behavior related to the amount of information one can pro-
cess was presented in [5]. Their approach is based on a queuing
model with a priority discipline and assumes that every individ-

ual prioritizes different activities and executes the corresponding
task with the highest priority. With this assumption, this model
shows that the waiting time of tasks follows a power-law distribu-
tion. In [11] the authors study the reasons that make a conversation
to be interesting or what prompts a user to participate in the discus-
sion on a social network. They conjecture that people participate
in conversations when they find the conversation theme interesting
or when they see comments by people they know or when they ob-
serve an engaging dialogue between two or more people. The refer-
ence then introduces the concept of interestingness. They also pro-
pose a mathematical framework to measure the interestingness of
textual conversations about a certain video on YouTube. They col-
lect commentaries on YouTube videos and show that their method
to measure interestingness of a conversation provides a better as-
sessment than traditional methods, based on the number of com-
ments, number of new participants, etc.

Bernstein et al. [7] presents an approach to group tweets, by
identifying a topic a tweet belongs to. Finally, there has been recent
efforts on identifying influential users in Twitter [4, 9, 25]. One of
the possible use of these efforts is to sort upcoming tweets accord-
ing to sender’s influence score. However, current influence metrics
are susceptible to be fooled by spammers [6], bots [8] and social
capitalists [14] and do not capture the temporal dynamics of Twit-
ter. One important observation from [9] is that highly influential
users are not necessarily the most followed users, meaning that
aspects of the Twitter topology are not sufficient to capture one’s
influence. Regarding the attention that users pay in their Twitter’s
timeline, a recent effort [13] used eye-tracking techniques to mea-
sured which tweets has more user’s attention. Among their find-
ings, they show evidence that reply patterns reflect attention inter-
est. They also show that only tweets above a relatively high thresh-
old in terms of attention and interest are considered for retweets.

Compared to this body of work, our work take different direc-
tions as our interest is mainly on the study of user interactions in
Twitter. We also are interested at finding better mechanisms to or-
ganize incoming streams of tweets. To this end, we measure and
model user behavior aiming at capturing how interesting a tweet
can be for a user and how to use these informations in a simple pro-
cess in order to reorganize timelines. To keep the procedure simple,
we decided do not look at the tweet’s content because, in general,
topic identification is CPU intensive (not desirable for handheld
devices). Moreover, studies of interactions on Twitter are gener-
ally more focused on retweets, for example [24], and here we also
present an extensive study for replies, which are an important type
of interaction, but less explored in the literature.

3. TWITTER DATASET
Our dataset contains extensive data from a previous measure-

ment study that included a complete snapshot of the Twitter net-
work and the complete history of tweets posted by all users from
2006 to July 2009 [9]. Our dataset contains 54,981,152 user ac-
counts connected to each other by 1,963,263,821 social links. Our
dataset also contains all tweets ever posted by the collected users,
which consists of 1,755,925,520 tweets. For detailed characteris-
tics of this dataset we refer the user to [9, 23].

This dataset is very suitable for the purpose on this work as it
contains all tweets exchanged among all users over a long period
of time as well as the social links among users. From the tweets in
our dataset we can identify two special types of messages that a user
can post: replies and retweets. A reply occurs when a user replies
other tweet posted by other user. A retweet refers to the practice of
copying a tweet of someone and post it with a personal comment
(optional). In our dataset each reply has the IDs of the tweet and
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Figure 1: (a) Waiting time and (b) timeline position distributions for replies and retweets.

user that were replied. In the case of retweets, on the other hand, we
do not have such information, since this type of message was done
through a user’s convention. In this convention the users used the
pattern RT @user_namewith the content of the original message
plus a comment, where user_name is a name that is uniquely
assigned to each Twitter user. We used this information to identify
the origin (user and tweet) of each retweet in the dataset. Moreover,
a tweet can have two kinds of elements embedded: mentions and
hashtags. A mention is a citation of another user and a hashtag is a
way to mark keywords in a tweet. These elements are respectively
used through the patterns @user_name and #keyword.

4. CHARACTERIZING INTERACTIONS
Our first set of results consists of a characterization study of the

behavior of Twitter users. This section presents those results as a
foundation for our proposed timeline ordering algorithms, which
are presented later.

4.1 Notation and sampling setup
We start by introducing notations and definitions. We use U to

denote the set of all Twitter users in the dataset. For each i ∈ U ,
the total of messages sent by i is Ti, and the j-th message sent
by i is mj,i. We denote by Mi = [m1,i, . . . ,mTi,i] the list of all
messages posted by i in chronological order, andMV =

⋃
j∈V Mj

(also in chronological order) the list of all messages sent by the
set of users V . The set of all users followed by user i is denoted
Outi, and the set of all users followed by any user in set V ⊂ U is
OutV =

⋃
j∈V Outj . For any user i, the list of messages sent by

users in Outi, presented in reverse chronological order, is user i’s
timeline, denoted by TLi.

Many of our characterizations are based on user’s timelines. Un-
fortunately it was not feasible to construct timelines for all users
in the dataset (the dataset size has almost 1 TB). Instead we took
random samples from U , and built timelines for those users.

Sampling users gave us another advantage. Because the level of
user activity varies dramatically from user to user, it is important
to consider users with different activity levels separately. Thus, we
took four samples, each one comprising 2000 users. These sam-
ples, denoted by S1, S2, S3 and S4 were sampled at random from
those users that posted more than 2, 10, 100, and 1000 messages
respectively. As it will be seen below, users belonging to different
sets often show quite different characteristics. When a result is not
associated with one of those specific samples, it refers to the entire
dataset (all users in U ).

After this step we extracted from the dataset the users that are

followed by users in each of the four samples (OutSk ) as well as
their tweets (MOutSk

). In this way we were able to build all time-
lines, TLi, ∀ i ∈ Sk. Finally, we also extracted the message sets
MSk from the data for k = 1, ..., 4.

4.2 Waiting Times
We start our characterization study by looking at evidence that

Twitter users experience information overload. We do so by ex-
amining the duration between when a tweet arrives in the user’s
timeline and when it is replied to or retweeted.

Figure 1(a) shows the Complementary Cumulative Distribution
Function (CCDF) for the time that a tweet waits to be replied or
retweeted, across all replies and retweets in the dataset. We can
see that almost all messages wait more than 100 seconds until they
are replied or retweeted and that approximately 90% can wait up
to 1000 seconds. Figure 1(b) shows the distribution of the position
in the user’s timeline of replies and retweets for sample S1. This
figure shows that sometimes users must search far back in their
timeline to find a tweet that they wish to retweet or reply to. For
example, 10% of the retweets are made to tweets that are more than
800 positions back in the user’s timeline.

This motivates efforts to change the presentation order of the
user’s tweets in such way that messages will wait less time before
being replied or retweeted.

Figure 1(a) shows other important points. First, it shows that af-
ter one day, the behavior of waiting times for replies and retweets
becomes different. This shows that message replies tend to oc-
cur more quickly than retweets — suggesting that users are more
likely to share old information than to reply to old messages. This
is confirmed by Figure 1(b) which shows that users do not search
as far back in their timelines for tweets to reply to as they do for
retweets. Second, this figure suggests a general change in user be-
havior around the timescale of one day. Finally, we can note that
both curves from Figure 1(a) drop off sharply near 108 seconds.
This corresponds to the age of the Twitter system at the time that
the dataset was collected.

4.3 Tweet Age
Having motivated a search for better ordering of tweets, we turn

to features that may help in assessing their importance. The first
feature we consider is the age of a tweet. In particular, we ask: are
newer messages more likely to be replied or retweeted?

To answer this question we return to the question of where in
the user’s timeline each replied (retweeted) message was found. In
other words, for j = 1, . . . , Ti, if mj,i is a reply (retweet) we
looked for the message it replies to (retweets) in TLi. We do this
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Figure 2: Characterizations of attributes related with the likelihood of interaction with tweets in the user’s timeline.

with respect to the state of TLi at the moment thatmj,i was posted,
and note the position of the message (with the newest message as-
signed position 0, etc.). We compute this quantity for each user
i ∈ Sk, k = 1, ..., 4.

Figures 2(a) and 2(b) present the Cumulative Distribution Func-
tion (CDF) of the position in the timeline of replied and retweeted
messages. The distributions show that newer messages are much
more likely to generate responses than older messages. For exam-
ple, it can be seen that 14% of replies are in position 0 in S1. This
fraction decreases to 12%, 10% and 5% for S2, S3 and S4, respec-
tively. Moreover, 84% (81%, 80%, 77%) of all replies happen in
the top 50 for S1 (S2, S3, S4).

The same phenomenon is found for retweets. The figure shows
that 68% (68%, 64%, 58%) of all retweets are in the top 50 for
S1 (S2, S3, S4). Moreover, both figures show that more active
users have a higher probability of replying or retweeting messages
at higher (older) positions, indicating that users who send more
tweets also spend more time reading and interacting with their re-
ceived messages.

To complement this result we decided to compute the probability
that a user i will reply (retweet) a tweet m given it is in position p
of his/her timeline. If m is in the position p, then i had the chance
to interact withm when it was in the positions 0, . . . , p−1 and has
now the chance to interact with it in the position p. In this way, we

computed the fraction of tweets replied or retweeted in a specific
position p from all tweets that could be replied (retweeted) in this
position. Figure 3 presents the probability for replies, retweets and
for both of them as a function of p for sample S1. In these three
cases we can see two different shapes for the curves, one in the be-
ginning (for p ≤ 10) and other in the tail (p > 10) and that in both
cases a linear function can be a good approximation (in logarithmic
scale). The parameters of the fitted curves were obtained through a
linear regression. This same behavior of two shapes was observed
in all other samples.

4.4 Prior Interaction
The next feature we consider is whether the tweet sender has

previously sent a tweet that was retweeted or replied to. Thus we
ask: are previously replied (retweeted) users more likely to have
their tweets replied to (retweeted) again? To answer this question
we proceed as follows: For each user i ∈ Sk (k = 1, . . . , 4) and
for each message m ∈ TLi we compute the conditional probabil-
ity that m will be replied (retweeted) given that the sender of m
was replied (retweeted) by i before. We also compute the same
probability given the complementary event.

For example, to compute the probability that i replies to a user
given that i has replied to that user before, we count two events for
each message that i has received: A, the number of times that i
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Figure 4: Probability of (a) Reply, (b) Retweet and (c) Reply or Retweet a tweet given that it was sent by a user with sending rate r.

replies to a message that comes from a previously-replied-to user,
and B, the number of times that a received message comes from
a previously-replied-to user. We then estimate the corresponding
probability as A

B
.

Figures 2(c) and 2(d) show the CDF of the conditional prob-
abilities computed for all users of the sample1 S3. The figures
show that for replies (retweets), the probability distribution of a
reply (retweet) rate increases (shifts to the right) when the sender
has been replied-to (retweeted) before. The figure shows that for
retweets, this shift is approximately by a factor of 5. In other words,
in general, a user is 5 times more likely to retweet a sender that the
user has retweeted before, than if the sender has not been retweeted
before.

4.5 Sender Rate
The third feature we examine is the activity level of the sender –

how prolific the sender is in sending tweets. In this section we seek
to answer the question: Do more active users have a higher chance
to be replied (retweeted)?

To answer this question, we find for each user i ∈ Sk (k =
1, . . . , 4) the users that i follows, j ∈ Outi. For each such j, we
compare their sending rate with the fraction of their sent messages

1We do not present the figures for all four groups due to space
restrictions.

that were replied (retweeted) by i. We define the sending rate of
user j as Tj divided by the time between the first and last messages
posted by user j. It is important to remark that this variable consid-
ers at once the number of tweets of a user and the interval of time
that the user is active in the network.

Figure 2(e) shows a scatter plot of these variables for an exam-
ple user i. Each point corresponds to a user j ∈ Outi. Users who
were never replied to by i are omitted due to the log scale. The
figure shows that the higher the sending rate of the user, the lower
the reply probability. Moreover, this figure shows a strong linear
correlation in log scale. To verify if this relationship holds across
all users, we repeated this procedure for each i ∈ Sk and com-
puted the linear correlation between these two variables (sending
rate and reply probability) in log scale. Figure 2(f) shows the re-
sults for replies and retweets for sample S2. It can be seen that for
replies (retweets) almost 80% (90%) of all users have a correlation
coefficient smaller than -0.5, while only 10% (9%) have a positive
correlation. Thus, we find that almost all users are more likely to
reply or retweet a sender if his/her sending rate is low.

In order to understand better this matter we also computed the
probability that a user i will reply (retweet) a tweet m given that it
was posted by a user with a sending rate of tweets r. To this end, for
all users i ∈ Sk we computed the fraction of replies (retweets) to
users with sending rate of r over the total number of received tweets
that came from senders with this same sending rate. As this is a
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Figure 5: Characterization of the importance of the tweet size in the likelihood of interaction with tweets in the user’s timeline.

continuous variable, we aggregated their values in logarithmic bins
and grouped bins to ensure that each bin had at least one hundred
of replies (retweets). Figure 4 presents probabilities in function of
r and the fitted curve for sample S1. Clearly this figure maintains
the conclusions obtained with Figure 2(f).

4.6 Message features
In this section we investigate the influence of intrinsic charac-

teristics of Twitter messages on the interaction among users, repre-
sented by replies and retweets. We do not look into the semantic
content of tweets. Rather, we analyze the size of tweets, the pres-
ence of hashtags, mentions, and embedded links (i.e., URLs). In
order to do that we look at such characteristics in all tweets of our
data set, i.e. we do not use samples. We considered three separate
datasets: i) Replied tweets; ii) Retweeted tweets; and iii) All tweets.

Table 1 displays the fraction of tweets with hashtags, mentions
and URLs in these three datasets. On one hand, we see that tweets
with hashtags and URLs are more likely to be retweeted. On the
other hand, we observe that the same behavior does not hold for
tweets with mentions, once only 25% of the retweeted messages
contain a specific mention. The characteristics of the Replied dataset
are exactly the opposite, the most of the replied tweets (i.e., 55%)
contain mentions. Only a small fraction of the replied tweets have
hashtags or URLs.

Table 1: Fraction of tweets with hashtags, mentions and URLs.
Replied Retweeted All

Hashtag 0.04 0.16 0.05
Mention 0.55 0.25 0.36
URL 0.10 0.51 0.22

Does size matter for retweets or replies? Tweets can be up to 140
characters in length. Our findings show that retweeted messages
have a positive relationship to sizes considerably smaller than 140
characters. Figures 5(a) and 5(b) show the Probability distribution
(i.e. PDF) and the Cumulative distribution (i.e., CDF) curves of
tweet sizes for the three datasets considered above. The first ob-
servation is that we find in the dataset some tweets with more 140
characters. There were only few cases and we conjecture that the
reason is some interface failure in the beginning of the service.

By examining figures 5(a) and 5(b) we notice that the PDF and
CDF curves for the Replied and All datasets are similar, which
means the size characteristics of replied tweets do not differ from

the rest of the tweets. However, the Retweeted set shows strong
differences when compared to the rest of the tweets. Figure 5(a)
shows no specific peak near 140 for retweets. Instead it exhibits
a plateau ranging from 50 to 120 characters. Shorter tweets were
retweeted much more often than longer tweets. One possible ex-
planation is that shorter tweets leave followers with more room add
names or personal comments they want to make. In other words,
short tweets make possible the participation of different users in the
retweeting process.

5. REORDERING THE TIMELINE
The previous section showed that Twitter users can spend a long

time searching through tweets in their timelines until they find one
interesting enough to reply to or retweet. It also showed some char-
acteristics that indicate which type of tweets are most interesting to
users. Motivated by these results, in this section we present two al-
gorithms to reorganize the Twitter timeline. The goal is to present
the most interesting tweets for a user first.

Although we presented seven characteristics related to the inter-
action rate on Twitter, we use only three in our methodology: tweet
age, sending rate of the sender and prior interactions. We proceed
in this way once our goal is to have a general methodology, good
for replies and retweets and as we saw the text features which we
studied are not good for both at the same time. Moreover, the au-
thors of [2] showed through a qualitative study that the “bad” use
of some textual elements can make tweets “boring” in the user’s
opinion.

The two approaches we describe in this section are instances of
the general procedure described in Algorithm 1. The main idea is
to recognize that users can be in two different states regarding their
interaction with Twitter: online (or ON), when they are paying at-
tention in their timelines; and offline (or OFF), otherwise. When
a user is in the ON state, the user is viewing all the tweets that
have been received during the user’s last OFF session, as well as
tweets received while in the ON state. Based on this typical user’s
behavior we perform the timeline reorganization upon occurrence
of either of two events: i) every change of state from OFF to ON
(Line 2); and ii) every tweet arrival (Line 5). After the reorgani-
zation process the revised timeline TL′ is presented to the users
instead the old one (TL).

The instances of this algorithm are obtained with two different
versions of the procedure Reorganize. Both are based in machine
learning techniques used to compute score for tweets based on their
characteristics discussed in the last section. These techniques are
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Algorithm 1: General Timeline Reorganization
Data: user u and Tweets of u received in the last OFF

session
1 TL← Set of all Tweets received in the last OFF session
2 TL′ ← Reorganize(TL)
3 foreach Tweet m received in the current ON session do
4 TL← TL ∪ {m}
5 TL′ ← Reorganize(TL)
6 end

the Naive Bayes predictor (NB) and a Support Vector Machine clas-
sifier (SVM) and will be presented in Sections 5.2 and 5.3 respec-
tively. After this step of computing scores, the tweets are sorted
in such way those that are more likely to interact with will be pre-
sented first.

One important characteristic of our methodology is that it con-
siders the change of score that tweets can have over the time, once
the Reorganize procedure can be performed several times during
an ON session. In such way, a tweet which is interesting now may
not be in the future. In practical terms, it can be very expensive to
reorder the timeline every time that a new tweet arrives. In order
to avoid this problem the second type of event can be replaced by
some time out mechanism or the arrival of at least l > 0 tweets in
the timeline.

Since our dataset does not allow us to know when each user was
ON or OFF we decided to use a simple model to infer this user’s
behavior. This model is presented in the next section.

5.1 ON-OFF Model
In this section we present a simple model to describe the inter-

action between Twitter and its users. As described in the last sec-
tion, each user can be ON or OFF. In our model, an ON session
is defined as the interval of time during which the user is actively
engaged in posting tweets to Twitter, in such way, that the time be-
tween two consecutive messages posted does not exceed a preset
threshold TOFF . In the remaining of the time we say that the user
is in an OFF session. We observe that our definition of user inter-
action session does not include passive activities, such as reading
messages.

Since the dataset does not explicitly identify the delimiters of a
given session, the number of sessions in the Twitter dataset depends
on our choice of the TOFF parameter. Following the procedure pre-
sented in [21] we varied this timeout value TOFF and counted the
total number of sessions. A value extremely small (e.g. 1 minute)
could result in a high volume of sessions. As the value of TOFF
increases, the number of sessions is reduced continuously until sta-
bilizing. Following this procedure we considered only users with
more than a thousand of tweets. We did in this way because users
with few tweets could increase the variance of the total number of
sessions, leading to a non precise estimate of TOFF . The result
of this measurement showed that the number of sessions stabilizes
when TOFF is near to 104 seconds, which represents almost three
hours.

Compared to previous efforts, which characterize sessions in tra-
ditional Web sites [3, 22], the timeout values obtained are much
longer compared to the 10-45 minutes usually observed. The most
intuitive reasons for this behavior are the longer time period that
users take on Twitter, keeping a track of real time events all the
time. This high value of TOFF is also supported by Figure 6,
which presents the Complementary Cumulative Distribution Func-
tion (CCDF) of the inter-event (we consider an event any tweet

posted) time of all users in our dataset. In this figure we can see
that 70% of all inter-event times are smaller than 104 seconds.

Inter−event Time (s)

C
C

D
F

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

1
0

−
9

1
0

−
7

1
0

−
5

1
0

−
3

1
0

−
1
1

minuteminute hourhour dayday monthmonth yearyear

Figure 6: CCDF for inter-event time for all tweets in the
dataset. Above the horizontal line we have 70% of the observa-
tions.

It is important to remark that this model is an heuristic to infer
when users are ON or OFF. We adopted this strategy due to our
dataset limitations. In a real situation, if there is better information
about the user’s state, it should be used.

5.2 Naive Bayes approach
This section aims at presenting how we use the Naive Bayes pre-

dictor [15] to assign scores to tweets in the procedure Reorganize
of the Algorithm 1. We represent this score through a probability
measure for each tweet, which gives the probability that a user will
interact with that tweet given a set of its attributes. As previously
said we consider three attributes:

• Age(m), the age of the tweet m represented by its position
in the timeline (the newest one has Age(m) = 0, the next
Age(m) = 1 and so on);

• SR(m), the average sending rate of tweets of the users that
has sent m; and

• I(m), a binary indicator which can be 1 if the user has inter-
acted with the sender of m before and 0 otherwise.

In this way, for each tweet m, its score, denoted by P (m), is
defined as follows:

P (m) = P (Interact with m| Age(m) = p, SR(m) = r, I(m) = b).

Under the naive assumption we consider the independence among
the events Age(m) = p, SR(m) = r and I(m) = b, which leads
us to:

P (m) = P (Interact with m| Age(m) = p)

× P (Interact with m| SR(m) = r)

× P (Interact with m| I(m) = b).

We present next how we estimated each one of these probabilities
in the next three sections.

5.2.1 Age score
In Section 4 we presented the probability of replying (retweet-

ing) a message m given Age(m) = p in Figure 3. Motivated by
this figure we decided to use the following model:

P (Interact with m | Age(m) = p) =

{
β1pα1 , p ≤ 10

β2pα2 , p > 10.
(1)
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It is important to remark that during the fitting process, in all
cases the R2 of the linear regression were greater than 0.81, for
retweets, and 0.95 in the other cases.

5.2.2 Sending Rate Score
Proceeding as in the previous section and motivated by Figure 4

we assume for the sending rate probability the following model:

P (Interact with m | SR(m) = r) = βrα. (2)

The R2 of the fitted curves in all cases are greater than 0.8, for
retweets, and 0.94 in the other cases.

5.2.3 Interaction Score
Once I(m) is a binary variable we decided to use the following

model for this score:

P (Interact with m | I(m) = b) =

{
γ1, b = 1

γ2, b = 0,
(3)

where 0 ≤ γ1, γ2 ≤ 1.
In order to estimate these parameters, for all u in a subset of U

we proceed in the following way: for each arrival in his/her timeline
we compute the fraction of tweets m, that were replied (retweeted)
and had I(m) = b over all received tweets with I(m) = b.

5.3 Support Vector Machine Approach
Support Vector Machine (SVM) is a set of useful methods widely

used in data classification to recognize patterns. The most common
version of SVM is a binary supervised classifier that maps a vector
of attributes in two classes. In this paper we used this SVM version,
more specifically the presented in [16], to implement the Reorga-
nize procedure of the Algorithm 1. The idea is composed of two
steps. First, we consider the same attributes used in the previous
section in order to classify the tweets of the timeline in interesting
(most likely to interact with) and non interesting. In others words,
for each tweet m in the user’s timeline we use SVM to map the
vector [Age(m), SR(m), I(m)] in 1 (interesting) or 0 (non inter-
esting).

Second, we present for the user all tweets classified as 1, in re-
verse chronological order, and after, all classified as 0, also in re-
verse chronological order. It is important to remark that as the at-
tributes of a tweet can change over the time, the same can happen
with its class. Details about the training phase of this classifier are
presented in Section 6.1.

6. EXPERIMENTS
In this section we present the results of the proposed algorithms.

First we show the evaluation methodology and then we present the
performance of the algorithms. After, we show the impact of pa-
rameter TOFF , of our ON/OFF model, in the results and finally, we
discuss the difference in the performance of the algorithm when we
apply it for users’ classes with different activities’ patterns.

6.1 Evaluation Methodology
In order to evaluate whether the proposed algorithms are ef-

fective we performed a trace-driven simulation to figure out what
would happen if the tweets were presented according to our method-
ology instead of the reverse chronological order (in the official
Twitter interface). The necessary steps for this simulation are pre-
sented in Algorithm 2 and explained below.

For each user u, we split all his/her tweets in ON and OFF ses-
sions according to Section 5.1 (Line 1). After that, for each tweet
which is an interaction of u (an interaction here can be a reply or

Algorithm 2: Simulation Procedure
Data: User u, Mu, TLu, Outu

1 Split Mu in two lists, one for ON sessions (onu) and other
for OFF sessions (offu)

2 foreach session s ∈ onu do
3 t1 ← time when s begins
4 t2 ← time when the last OFF session in offu that

precedes s begins
5 TL← list of tweets in TLu posted after t1 and before

t2
6 IT ← list of Interaction Tweets in s
7 foreach m ∈ IT do
8 Update TL with messages posted before m
9 TL′ ← Reorganize(TL)

10 Search the origin of m in TL′

11 Return the position of the origin of m in TL′

12 end
13 end

retweet) we look for the original tweet (the replied or retweeted
one) in the timeline of u. However, we look only in the most recent
tweets, those received since the beginning of the last OFF session
up to the time of the actual interaction (Lines 5 and 8). Before this
search (Line 10), we perform one of the reorganizations algorithms
described in Section 5 (Line 9). If the replied (retweeted) tweet is
found in the timeline, its position is returned. It is important remark
that not necessarily the tweet will be found in the timeline because
it can be a reply or retweet of a non-followed user.

With this procedure we can compare our methodology with the
normal Twitter timeline. It is only necessary compute the fraction
of replied or retweeted tweets in the first p positions of the timeline
when the reorganization method (Line 9) is one of the Section 5 or
the simple chronological order.

In order to have a good estimate of these values it is important
to perform this simulations for a large number of users. The ideal
scenario would be repeating it for all users in U . However, due to
the computational cost, we need to use a sample. We extracted a
random sample S from U with 10,000 users. In this sample we
have 2.25 million tweets, of which 540 thousand are replies and 62
thousand retweets. Associated with this sample we have approx-
imately 500,000 followed users whose were responsible for over
200 million received tweets.

Since we are working with samples, it is important guarantee that
we have enough observations to have statistical confidence in the
results. So we must be sure that the number of replies and retweets
aforementioned are greater than a minimum threshold. According
to Cochran [12] an approximation for a pessimist value in this case,
with 95% of confidence and absolute error smaller than 0.005, is
38,416, showing that our sample is representative1.

After this step we divided this sample in five subsamples with
2000 users each and performed a cross validation procedure with
them. We retained one subsample for training and used the others to
test the machine learning algorithms. We performed this procedure
5 times. In each one, we used a different sample for training and the
remaining for tests. For each test phase we computed the fraction
of replies and retweets in the top-p position of the timeline for p =
1, p = 5 and p = 10. Finally, we averaged each one of these

1The same argument can be used for the samples in Section 4. But,
using 90% of confidence and an absolute error smaller than 0.01,
which are still reasonable.
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Figure 7: Fraction of Replies/Retweets in the first p positions of the timeline. Errors bars are 95% confidence intervals.

quantities using the results of all combinations of training and test
subsamples.

Each machine learning algorithm has different training method-
ologies. For the NB, the training phase consists basically in es-
timating the parameters for the probabilities models presented in
Section 5.2. For the SVM classifier we extracted a labeled trace
of tweets and their attributes used for the classification. To per-
form this, we analysed our dataset and for each reply (retweet) we
noted the data related to the replied (retweeted) tweet and selected
other in the user’s timeline randomly that were not replied neither
retweeted. After that we used this trace to train the classifier. For
each sample we trained the classifier with information of replies,
retweets and a third composed of the union of both. It is important
remark that for the SVM classifier we used the library Libsvm [10]
as base for simulations. In the training phase we used a tool avail-
able in that library to find the best parameters for the model.

6.2 Algorithm Evaluation
In this section we present the results obtained with the algorithms

proposed in Section 5. Figure 7 presents the fraction of replies and
retweets that are related with the first p tweets in the user time-
line. These results were obtained when we trained the algorithms
with information of replies and retweets. We proceeded in this way
because this combination gave the best results.

We can see that both, NB and SVM algorithms improved sig-
nificantly the fraction of replied tweets in the first positions of the
timeline. Moreover, we have that NB and SVM have almost the
same results (statistically equivalent).

In general, with this strategy we have good results in terms of
presenting the most important tweets first for both types of interac-
tion, where improvements of more than 50%, 20% and 10% for p
equals to 1, 5 and 10 respectively were achieved.

6.3 TOFF parameter Impact
All results presented in the previous section use the parameter

TOFF equals to 104s in the ON/OFF model presented in Section
5.1. But, is this value the most appropriate for all kind of Twitter
users and situations? To answer this question we conducted one
experiment where we varied TOFF for sixteen different values in
the range 103s to 105s. In this experiment we trained the algo-
rithms with one sub sample (also used in previous section) with
information of replies and retweets together and tested (executed
the simulation procedure) in other one.

Table 2 shows the results of this experiment. To have a better

visualization we present only the minimum and maximum frac-
tions among the sixteen values. We can see that for both algorithms
(NB and SVM) the variation (difference between the maximum and
minimum) is small, indicating that we can choose different values
for TOFF without a significant impact on the results.

Table 2: Fractions of replies and retweets for different TOFF .
SVM NB

p Min. Max. Min. Max.
1 0.21 0.22 0.18 0.20

Reply 5 0.50 0.54 0.47 0.51
10 0.62 0.67 0.61 0.65
1 0.07 0.08 0.07 0.08

Retweet 5 0.23 0.28 0.23 0.27
10 0.32 0.38 0.34 0.39

6.4 Active and Passive users
The objective of this section is to show that our algorithm is ro-

bust to work in classes of users with different patterns of activity.
To that end, we conducted the same simulation procedure presented
in last sections in two different classes of U : the first one is com-
posed of active users, those that spend more time ON, and the sec-
ond one of passive users, who spend less time ON. To divide these
classes we defined the variableRON (u) as the fraction of time that
user u is ON between his/her first and last tweets. After that we
computed RON (u) for all users in U and considered the 20% of
the users with the higher RON (u) as the active class and the re-
maining as the passive class.

We extracted a sample with 2000 users of each class, and used
them in the simulation in order to investigate how our algorithms
work in both cases. It is important to observe that we trained the
algorithms with the same trace obtained of one subsample used in
Section 6.2.

Figure 8 shows the results of this experiment. It is important
remark that the same conclusions hold for replies, but we do not
present the related figures due to space restriction. The fist interest-
ing point is that passive users tend to interact more with messages
in the top of the timeline than active users. This is possible ex-
plained by the fact that active users spend more time ON and in
this way, they spend more time looking at their timelines and inter-
acting with tweets far from the top. Passive users tend to have more
contact with tweets in top.

The second point is that improvements were achieved for both
classes, especially for active users, where NB and SVM gave good
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Figure 8: Fraction of retweets in the first p positions of the time-
line for active and passive classes.
results. For the passive class, NB and SVM also worked well, ex-
cept for SVM when p = 10 in this last case.

7. CONCLUSIONS
In this paper we addressed the problem of understanding how

users in Twitter interact with their timelines. Through an extensive
characterization study we showed the importance of this problem
and presented a set of relevant characteristics to deal with it. We
showed that in general users prefer to interact with newer tweets,
with users that they had previously interacted and with users with a
lower sending rate (those that do dot fullfill their timelines). More-
over, we showed that some basic textual characteristics such as,
message size and the presence of hashtags, mentions and URLs af-
fect interactions patterns, but in a different way, when we consider
replies or retweets.

Motivated by these characterizations we proposed an algorithm
to change the presentation order of the Twitter’s timeline. Our
methodology is based on two machine learning techniques, which
showed significant improvements through a trace-driven simula-
tion. Our main contribution is achieved when we used information
of replies and retweets to train the classifiers. In this case we had
good rates of replies and retweets in the top-p positions of the time-
line. Moreover, training the algorithms with information of a ran-
dom sample over all users, we showed that our methodology was
capable of working well for users in classes with distinct patterns
of activity, showing the robustness of our method.

This is an important contribution once it represents another op-
tion of interface for the Twitter users, which can be specially inter-
esting for mobile devices with a small screen. In addition, it is im-
portant remark that we used three simple attributes which are easy
to compute. This fact makes our approach even more interesting
for theses devices once, in general, they have energy and memory
constraints. In fact, we are currently building a Twitter client for
iOS that implements our tweet-ordering algorithms, which we will
distribute as open-source.
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