
Detection and Identification of Network Anomalies
Using Sketch Subspaces

Xin Li
∗

Fang Bian
∗

Mark Crovella
†

Christophe Diot
‡

Ramesh Govindan
∗

Gianluca Iannaccone
§

Anukool Lakhina
†

ABSTRACT
Network anomaly detection using dimensionality reduction
techniques has received much recent attention in the liter-
ature. For example, previous work has aggregated netflow
records into origin-destination (OD) flows, yielding a much
smaller set of dimensions which can then be mined to un-
cover anomalies. However, this approach can only identify
which OD flow is anomalous, not the particular IP flow(s)
responsible for the anomaly. In this paper we show how one
can use random aggregations of IP flows (i.e., sketches) to
enable more precise identification of the underlying causes
of anomalies. We show how to combine traffic sketches with
a subspace method to (1) detect anomalies with high accu-
racy and (2) identify the IP flows(s) that are responsible for
the anomaly. Our method has detection rates comparable
to previous methods and detects many more anomalies than
prior work, taking us a step closer towards a robust on-line
system for anomaly detection and identification.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

General Terms
Management, Security

∗Computer Science Department, University of Southern
California, Los Angeles, CA 90089, USA. Email: {xinli,
bian, ramesh}@usc.edu
†Computer Science Department, Boston University, Boston,
MA 02215, USA. Email: {crovella, anukool}@cs.bu.edu
‡Thomson Paris Research Lab, 46 Quai A. Le
Gallo, 92648 Boulogne Cedex, France. Email:
christophe.diot@thomson.net
§Intel Research, 15 JJ Thomson Avenue, Cambridge CB3
0FD, UK. Email: gianluca.iannaccone@intel.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’06, October 25–27, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-561-4/06/0010 ...$5.00.

Keywords
Defeat, Anomaly Detection, Sketch, Subspace Method

1. INTRODUCTION
Networks today increasingly see unusual traffic patterns.

These traffic patterns arise from network abuse such as DDoS,
port scans, and worms as well as from legitimate activity
such as transient changes in customer demand, flash crowds,
or occasional high-volume flows. These traffic anomalies are
often difficult to detect at a single link and require scrutiny
of the entire network [7].

Operators seeking to understand and manage their net-
works are increasingly looking at the details of network-wide
traffic patterns using tools such as netflow. A central prob-
lem in this approach is dealing with the high dimensional-
ity of traffic measurements. In particular, IP flows (flows
indexed by 5-tuples) reside in a space of nearly 2100 dimen-
sions; characterizing “normal” traffic using this representa-
tion is intractable.

The recent research literature has proposed more tractable
techniques for anomaly detection and classification [8, 7, 6,
12]. These proposals rely on a common approach to data
analysis: they apply dimensionality reduction techniques
such as sketches [12, 6] or principal components [7, 8] to the
aggregate network traffic. Dimensionality reduction enables
computationally efficient methods for identifying outliers (or
anomalies) in the data set.

Most relevant to our work is that of [8], which addresses
this problem by aggregating netflow into origin-destination
(OD) flows, yielding a much smaller set of dimensions which
can then be mined (using, for example, the subspace method)
to uncover anomalies. However, this approach can only iden-
tify which OD flow is anomalous; the particular IP flow(s)
responsible for the anomaly cannot be identified without
manual examination.

In this paper, we show how one can use random aggrega-
tions of IP flows (sketches) to enable more precise identifica-
tion of the underlying causes of anomalies. Our technique,
called Defeat, is based on the novel insight that sketching
the global traffic preserves the normal variation of flow traffic
(the normal subspace), and most of the residual subspace.
Defeat builds multiple sketches of feature entropies of the
global traffic, then applies the subspace method of [8] to each
of the sketches. Since each sketch randomly shuffles anoma-
lies across different sketch entries, approximate agreement
among sketches can be used to robustly detect anomalies.
Accordingly, Defeat applies a voting procedure to the detec-
tion results from each of the sketches, which increases the

detection rate while reducing false alarms. Sketch entries
are keyed using flow source or destination IP addresses, or
combinations thereof; these keys are used to identify the
IP-flows responsible for the anomaly.

We have evaluated Defeat on a week-long trace of flow
records from the Géant and Abilene backbones, the same
data sets analyzed in [8]. We find that Defeat is able to
accurately pinpoint flows responsible for an anomaly. In ad-
dition, it has a detection rate comparable to [8] and catches
many more anomalies than the method of [8]. We evaluate
Defeat’s performance under different sketch sizes, numbers
of sketches, and subspace sizes. This examination gives us
some insight into why the method works well, by showing
that random projections appear to preserve properties of
traffic data that are important for the effectiveness of the
subspace method.

Defeat’s use of multiple sketches takes us closer to an im-
portant goal: a robust on-line system for detection and iden-
tification of network anomalies. Computing the sketches,
and applying the subspace method on them, are inherently
parallelizable tasks and can be distributed across network
elements, enabling robustness to failure and reducing com-
putation and communication hotspots. Voting on the sketch
results enables a higher detection rate and a lower false
alarm rate. Finally, multiple sketches enable the automated
identification of the IP-flows responsible for an anomaly. We
intend to explore on-line anomaly detection and identifica-
tion in future work.

2. DEFEAT
Defeat, like [8], is concerned with detection of network

anomalies that are visible as unusual distributions of traffic
features. A traffic feature is an entry in a packet header
field; in this work we concentrate on source address (SIP),
destination address (DIP), source port (SP), and destination
port (DP). We use the entropy of the empirical distribution
of each feature to detect unusual traffic patterns. We work
with netflow traces, which are records of IP flows; for our
purposes, each IP flow is a record consisting of T = 〈F, P, T 〉
which denote the fact that a flow with 5-tuple F was present
during the timebin T , and the flow consisted of P packets.

Like [8], we seek to detect time points at which unusual
traffic feature distributions arise. However, Defeat attempts
to go beyond previous work by also identifying which IP
flow or flows are responsible for the anomaly.

To do so, we use sketches. There are many slightly dif-
ferent definitions of sketches, but the general notion is that
of a random projection or aggregation of a high dimensional
object into a smaller set of dimensions. The sense we mean
here is random aggregation of IP flows.

Specifically, given a netflow record 〈F, P, T 〉, a sketch of
size s is constructed as follows. Select a hash function h(·)
which maps tuple values F to numbers in 1, ..., s (typical
sketch sizes range from s = 32 to s = 1024). Then aggre-
gate all IP flows which hash to the same value. The result
is s ‘sketch flows’ which can be used as input to anomaly
detection algorithms.

The intuition behind random aggregation of IP flows is
as follows. The mapping of IP flows to OD flows is just
one particular mapping. If we instead randomly aggregate
IP flows, there are two beneficial results: first, anomalies
which are hidden under some aggregations will be exposed
under other aggregations, leading to a higher detection rate.

Second, detections that only occur under a small subset of
aggregations, but not under most aggregations, are likely to
be false alarms and can be discarded. We demonstrate the
effectiveness of these ideas later in the paper.

The second benefit of using sketches is that we can use
multiple sketches in combination to identify anomalous IP
flows. The general idea follows the multistage filters of [2],
although with significant differences. Assume some collec-
tion of IP flows X. Construct m different sketches S1(X),
· · · , Sm(X) by using m different hash functions h1(·), · · · ,
hm(·). Assume that we have detected an anomaly, and for
each sketch we have determined the bin or bins which con-
tain the offending IP flows. That is, in sketch S1(X), we
know that bin f1 contains the offending IP flow, and so on.
Then we can identify the IP flow with high probability by
testing each tuple F , and observing whether hi(F) = fi,
for all i = 1, ..., m. Under suitable conditions on the hash
functions h1(·), · · · , hm(·), we can be confident that the IP
flow(s) meeting this condition are likely to be responsible
for the anomaly.

2.1 Defeat in Detail
Based on the general background presented in the last

section, we now present the Defeat approach in detail.
Our setting is a network with N access points (ingress

routers or PoPs) R1, . . . , RN , which we will generically call
routers. Time is divided into discrete intervals or time bins.
We use a time bin size of 5 minutes, which is consistent with
prior work in the anomaly detection literature. In the rest
of this section, we describe the algorithm as applied to a
single time bin.

Defeat uses m hash functions h1(·), . . . , hm(·). We use a
4-universal family of hash functions [10] to approximate a
k-universal family of hash functions. For k-universal hash
functions, the probability that two different keys both hash
to the same value for each of k hash functions is exponen-
tially small in k.

All sketches have the same size s, which is a tunable pa-
rameter; we explore the effects of varying s in Section 3.

In practice we do not hash the IP flow 5-tuple directly, but
rather a function of it which we call the hash key. In our
work, we use the first 21 bits of the source address concate-
nated to the first 21 bits of the destination address as the
hash key. This tends to place IP flows that have ‘nearby’
sources and destinations into the same hash bucket. We
note that other choices may be useful – for example, source
and destination ports, or different address prefix lengths; we
examine some of these choices in Section 3.

In the following we assume functions SourceAddress(·),
DestAddress(·), HashKey(·), etc., which extract the relevant
parts of a IP flow’s 5-tuple.

The Defeat algorithm proceeds in the following steps:

1. Compute Local Sketches. Each router Ri, i = 1, ..., N

collects the netflow records of the traffic entering the net-
work at that point. Using these it forms m sketches for each
of the four flow features (SIP, DIP, SP, and DP). That is,
each node constructs 4 × m sketches.

As in [8], we use entropy to measure anomalous distribu-
tions. To enable this, router Ri maintains 4×m histogram-
sketches, m sketches for each of SIP, DIP, SP, and DP. Each
histogram-sketch has s entries. For each j, j = 1, ..., m, flow
T = 〈F, P, T 〉 is hashed to k = hj(HashKey(F)), then a

record 〈SourceAddress(F), P 〉 is added to the SIP histogram-
sketch j, entry k. The corresponding records are also added
to the DIP, SP, and DP histogram-sketches. Thus for each
router Ri there are histogram-sketches Hi,f,j , f ∈ {SIP, DIP,
SP, DP}, j = 1, ..., m.

2. Compute Global Sketches. In the second step, the lo-
cal histogram-sketches are summed to form global sketches.
That is, for each f and j, we merge Hi,f,j , i = 1, ..., N to
form Hf,j .

For each timebin T , the histogram contained in sketch
Hf,j can be treated as an empirical distribution. We then
compute the entropy of this distribution. The result is a t×s

data matrix Xf,j which is suitable for input to the subspace
method. There is one such matrix for each combination of
feature and hash function.

3. Detect Anomalies. In the next step of the algo-
rithm, the multiway subspace method [8] is applied to each
Xf,j , j = 1, ..., m. For each hash function j, the method
potentially registers a anomaly detection.

The subspace method works by separating the high di-
mensional space of traffic measurements (in our case, s-
dimensional) into two subspaces which capture normal and
anomalous variation, respectively. The key to the success
of our method in this step is the empirical observation that
random flow aggregation does not significantly disrupt the
variation in traffic properties that falls in the normal sub-
space. We will discuss this observation in Section 3.

The outcome of this step is, conceptually, a bit vector
b whose j-th bit is 1 if the subspace method detected an
anomaly in the current time bin using hash function j, and
0 otherwise. As mentioned above, this bit vector b can be
used to filter false alarms and increase confidence in true
detections. To do so, we use voting approaches: we signal a
detection if n out of m bits are set in b, 1 ≤ n ≤ m.

The choice of n is another tunable parameter. Choosing n

equal to m is not necessarily the best choice. It can lead to
a low false alarm rate, since if all m sketches agreed on the
existence of an anomaly, it is highly likely that an anomaly
actually exists. However, this strategy can result in missed
alarms; since a sketch is a random projection of the global
traffic, one or more sketches might fail to signal a detection,
even when a true anomaly exists. We examine this trade-off
in Section 3.

4. Identify Anomalies. Once an anomaly is detected
via voting, the final step is to identify the IP flows(s) that
contribute to the anomaly. The first task in doing this is
to identify the sketch entries in each Xj that are anoma-
lous; we use the greedy identification heuristic described in
[8] to determine the anomalous sketch entries in each Xj .
We then determine the set of keys that were mapped to
the anomalous sketch entries. These keys are obtined from
Hf,j , j = 1, ..., m.

The intersection of the key sets over all hash functions j,
which has raised the alarms, identifies the keys of the IP
flows that caused the anomaly (with high likelihood). This
step is the essence of Defeat’s identification procedure, and
relies on the properties of k-universal hash functions, as de-
scribed above. Finally, we output all IP flows whose 5-tuples
match the chosen hash keys.

2.2 Related Work
Most of the early research in anomaly detection has fo-

cused on finding unusual changes in the overall traffic vol-
ume (i.e., byte and packet counts). Several schemes pro-
posed in the literature are derived from classical time series
forecasting and outlier analysis methods and applied to the
detection of anomalies or faults in networks [3, 4, 5, 11].
More recently, these approaches have been extended to op-
erate on flow measurements using wavelets [1] or Kalman
filters [9]. A more recent thread of research has focused on
methods that reduce the dimensionality of the original data
set before applying classical change detection techniques [6,
12, 7].

An alternative method to dimensionality reduction has
been discussed in [7]. Principal component analysis (PCA)
is used in that work to separate the high-dimensional space
occupied by a set of network traffic measurements into two
disjoint subspaces corresponding to normal and anomalous
network conditions. The main advantage of this approach is
that it exploits correlations across links to detect network-
wide anomalies. In [8], the authors extend this work by
using PCA to detect anomalies in the sample entropy of the
distribution of specific traffic features. Defeat is most closely
related to [8], but differs in one extremely important respect:
its ability to automatically drill-down to the IP-flows respon-
sible for an anomaly. It also differs in several other respects.
In Defeat, the dimensionality of the lower-dimensional ob-
ject can be varied, and this can affect the detection rate, as
we show below. Moreover, Defeat permits more flexible ag-
gregation of flows than merely into O-D flows, and does not
require additional information (routing tables and topology
information) to compute these aggregates.

3. EVALUATION
In this section, we evaluate the performance of Defeat,

and explore its parameter space. All our evaluations use the
same data sets as in [8], the sampled netflow records from
the Abilene backbone (December 15, 2003 to December, 21
2003), and from the Géant/Dante backbone (November 22,
2004 to November 28, 2004).

Justification. We begin by empirically demonstrating that
random flow aggregation using sketches does not signifi-
cantly disrupt the variation in traffic properties that falls
into the normal subspace. Figures 1 plots the cumulative
distribution of traffic variance as a function of the number
of principal components (a scree plot [7]). We see that the
scree plots obtained from random flow aggregation using
three different hash functions is qualitatively similar to that
obtained by aggregating the total traffic into O-D flows.

In addition, different random aggregates have qualitatively
similar normal traffic characteristics. As Figure 2 shows, the
first four eigenflows from two different sketches look similar;
we have empirically verified this for all the hash functions
used in this paper, but omit those graphs for brevity. This
observation implies that the subspace method can be inde-
pendently applied to the sketches; thus, this subspace com-
putation in Defeat is inherently parallelizable, enabling a
distributed implementation of Defeat.

Detection Performance. We now compare the perfor-
mance of Defeat with that of [8]. For this, we choose the
Defeat parameters shown in Table 1. We justify the choice

50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1
Abilene, Sketch Size=121

Hash−1
Hash−6
Hash−11
OD−flow

200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

Principal components

C
D

F
 o

f v
ar

ia
nc

e
ca

pt
ur

ed

Dante, Sketch Size=484

Hash−1
Hash−6
Hash−11
OD−flow

Figure 1: The scree plot of
sketches and O-D flows. Sketch
sizes are equal to the O-D flow
numbers.

0 500 1000 1500 2000
−0.06

−0.04

−0.02

0

0.02

0.04
Eigenflow−1, Hash−1

0 500 1000 1500 2000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Eigenflow−2, Hash−1

0 500 1000 1500 2000
−0.06

−0.04

−0.02

0

0.02

0.04
Eigenflow−1, Hash−6

Time−bin
0 500 1000 1500 2000

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Eigenflow−2, Hash−6

Time−bin

0 500 1000 1500 2000
−0.05

0

0.05

0.1

0.15
Eigenflow−3, Hash−1

0 500 1000 1500 2000
−0.1

−0.05

0

0.05

0.1
Eigenflow−4, Hash−1

0 500 1000 1500 2000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04
Eigenflow−3, Hash−6

Time−bin
0 500 1000 1500 2000

−0.1

−0.05

0

0.05

0.1
Eigenflow−4, Hash−6

Time−bin

Figure 2: The first 4 eigenflows of the different sketches of Dante
traffic. Sketch size is 484, equal to the O-D flow number.

Parameters Values

Timebin size 5 min
Sketch size (s) 121 (Abilene), 484 (Dante)

Hash func number (m) 11
Normal space size (pdim) 10
Key source/21 + dest/21

Table 1: Parameters for evaluating detection per-
formance.

Abilene Dante

Lakhina et al.’s [8] 90 161
Defeat’s additional 14 192
Defeat’s missed 32 25

Table 2: Detection performance compared with [8]’s
result on the same data sets.

of most parameters later, but note that our choice of sketch
size (s) matches the number of O-D flows in Abilene and
Dante.

We are interested in two measures of comparison. Addi-
tional detections are those reported by all of our hash func-
tions, but not by [8]. Missed detections are those reported
by [8], but not by any of our hash functions.

Additional Detections. Table 2 shows that Defeat detects
nearly 200 more anomalies in the Dante data set than [8].
We manually examined Defeat’s additional detections for
both data sets, and verified that every one of them was an
identifiable anomaly and not a false alarm. Table 3 classi-
fies these additional detections by anomaly type. We noticed
that there were two kinds of additional detections: anoma-
lies not picked out by [8] at all, and long-lasting anomalies
that [8] picked out in some time bins and not in others.
Why is Defeat able to detect many more anomalies? While

Abilene Dante

alpha flow 14 124
DoS or DDoS 0 32
port scan 0 15

Table 3: Defeat additional detections.

Abilene Dante

Not an anomaly 6 6
Caught with different keys 15 11
Couldn’t catch 11 8

Table 4: Defeat missed detections.

we don’t have a rigorous explanation for this, we believe
that since Defeat computes many different random aggre-
gates of the traffic, it is able to catch anomalies that are
hidden within the

Additional Detections. Table 2 shows that Defeat detects
nearly 200 more anomalies in the Dante data set than [8].
We manually examined Defeat’s additional detections for
both data sets, and verified that every one of them was an
identifiable anomaly and not a false alarm. Table 3 classi-
fies these additional detections by anomaly type. We noticed
that there were two kinds of additional detections: anoma-
lies not picked out by [8] at all, and long-lasting anomalies
that [8] picked out in some time bins and not in others.
Why is Defeat able to detect many more anomalies? While
we don’t have a rigorous explanation for this, we believe that
since Defeat computes many different random aggregates of
the traffic, it is able to catch anomalies that are hidden
within the single OD flow aggregate computed by [8].

Missed detections. We also manually examined each of
the missed detections, and classified them as shown in Ta-
ble 4. First, six of the missed detections for each network
are not anomalies; [8] has incorrectly identified them to be
anomalies. Second, 15 anomalies in Abilene and 11 in Dante
were caught by changing Defeat’s key definition to either use
only a prefix of the source address or a prefix of the destina-
tion address. Recall that Defeat’s algorithm allows flexible
key definitions, and consider a network scan where a sin-
gle source probes a very large number of destinations. Our
default key (a concatenation of source and destination IP
prefixes) would map these network flows into different buck-
ets. When Defeat uses only source IP prefix as the key, the
entire network scan would hash to a single sketch bucket,
increasing its likelihood of detection. Finally, 11 anomalies
in Abilene and 8 in Dante were not caught by any of our
hash functions with any key definition. We have analyzed

each one of these, and believe that most of these are not
anomalies. For example, 2 detections from Abilene and 3
detections from Dante appeared to be traffic from servers to
clients on different ports. Another 4 from Dante are small
point-to-point flows transferring fewer than 100 small pack-
ets, and 5 from Abilene that are frequently recurring Samba
over IP flows that do not appear anomalous. This leaves us
with 4 and 1 true missed detections for Abilene and Dante
respectively. The 4 in Abilene belong to two anomalies, a
flash crowd and an alpha flow. The 1 in Dante is an alpha
flow.

IP-flow Identification. One of Defeat’s advantages is that
it can automatically identify IP flows that were responsible
for the anomalies in a given time bin. Table 5 shows a small,
randomly chosen, set of IP flows that Defeat identified, us-
ing the algorithm described in Section 2. In this table, we
have omitted a detailed listing of the anomalous IP flows, for
brevity. We have manually verified these anomalies. Unlike
Defeat, [8] can only automatically identify the time bin dur-
ing which an anomaly was detected, and the OD flows con-
taining the anomaly or anomalies (a single OD flow might
contain more than one anomaly, but that method cannot
infer this).

3.1 Exploring the Parameter Space
Defeat has several parameters which can affect its detec-

tion perfomance. We now consider the effect of varying these
parameters.

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

of PCs in normal space

P
r

of
 m

is
se

d
de

te
ct

io
ns

Abilene, s=121, 1 ≤ m ≤ 11

Src/21+Dst/21
Src/21
Dst/21

Figure 3: The probability of missed detections as
a function of the normal space size for the Abilene
data set.

Normal Space Size. How many principal components
should be used to construct the normal subspace? One way
to answer this question is to examine (by plotting graphs
similar to Figure 2) the eigenflows generated by each sketch
corresponding to the principal components (PCs) in order,
and determine that component at which the eigenflows start
to differ substantially. We have observed, using this method-
ology, that around 10-20 PCs define the normal subspace for
both data sets. Another approach is to examine how De-

feat’s performance varies, vis-a-vis [8], with changing num-
bers of PCs. Figure 3 and 4 show that across different key
definitions and for both data sets, Defeat’s missed detections
are lowest when the normal subspace has 10-20 PCs. For this

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

of PCs in normal space

P
r

of
 m

is
se

d
de

te
ct

io
ns

Dante, s=484, 1 ≤ m ≤ 11

Src/21+Dst/21
Src/21
Dst/21

Figure 4: The probability of missed detections as a
function of the normal space size for the Dante data
set.

reason, we chose 10 PCs in our evaluations; this choice is
consistent with that of [8]. As an aside, notice that missed
detection rates increase dramatically when fewer than 10
PCs are used; intuitively, this choice shifts higher volume
normal traffic into the residual space, making it harder to
detect anomalies.

In what follows, we use 10 PCs. Furthermore, we have
omitted, for space reasons, the Abilene data set. However,
all our observations below hold for Abilene as well.

Sketch Size. Figure 5 plots Defeat performance as a func-
tion of sketch size. Each curve represents a different sketch
size, and different data points represent different votes from
11 different hash functions: the point on the top right of a
curve represents a detection by at least one hash function
(union) and the point on the bottom left represents detec-
tions by all hash functions.

Large sketch sizes decrease the missed detection rates and
increase the addtional detection rates. Since, as we show
above, the additional detections are likely to be true anoma-
lies, larger sketch sizes perform better than smaller ones.
For our data sets, sketch size 1024 is a good choice since
the probability of detections (1 - missed detection rate) is
greater than 90% for both data sets. Our choice of a sketch
size of 484 in our performance comparison was dictated by
the need to make an even comparison with [8]; however, this
figure shows that Defeat can perform better (detect more
anomalies, with fewer false alarms) with a larger sketch size.

Number of Hash Functions. How many hash functions
are sufficient for high detection rates? As Figure 6 shows,
there exists a knee after which increasing of the number of
hash functions does not improve detection rate. For most
sketch sizes, this knee is the same, at 5 or 6 hash functions.
While this needs more extensive data analysis, it is encour-
aging to note that a small number of hash functions suffices
for accurate anomaly detection.

Voting Schemes. Figure 7 plots the detection rates against
the false alarm rates for different numbers of votes. This
figure uses as the definition of true anomalies those found
in our detailed manual inspection, which yields a more ac-
curate (and higher) detection probability and (lower) false

Time Src/21 Dst/21 # of flows Anomaly type

206 137.138.248.0 192.101.160.0 495 peer-to-peer
408 141.85.248.0 64.247.56.0 1 alpha-flow
417 157.181.192.0 209.200.152.0 3548 dos
1049 202.99.240.0 193.2.184.0 2678 ddos
1578 140.113.144.0 192.167.144.0 3102 worm
1664 152.2.64.0 131.111.0.0 9442 portscan

Table 5: Examples of anomalous flows identified by Defeat

0 0.2 0.4 0.6 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1

Pr of additional detections

P
r

of
 d

et
ec

tio
ns

Dante, pdim=10, key=Dst/21

128
256
484
512
1024

Figure 5: The probability of
missed detections vs. the proba-
bility of additional detections for
the Dante data set.

1 2 3 4 5 6 7 8 9 10 11
0.5

0.6

0.7

0.8

0.9

1

of hash functions

D
et

ec
tio

ns
 r

at
e

(u
ni

on
)

Dante, 1 ≤ m ≤ 11, pdim=10, key=Dst/21

128
256
484
512
1024

Figure 6: The detection rate as
function of hash function num-
bers for various sketch sizes for
the Dante data set.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.8

0.85

0.9

0.95

1
Dante, s=484, pdim=10, key=Src/21+Dst/21

Pr of false alarms

P
r

of
 d

et
ec

tio
ns

intersection

10
9

8

7
6

5 4 3

2 union

Figure 7: The detection rates vs.
false alarms rates obtained with
different number of votes for the
Dante data set.

alarm probability than using the set of anomalies reported
in [8]. Notice that intersection alone can capture more than
85% of the anomalies. To improve detection rates, Defeat

can reduce the required number of votes at the expense of
increased false alarm rates. A good rule of thumb seems to
be that requiring m− 2 or more votes (where m is the num-
ber of hash functions). provides good detection rates with
low false alarms.

Key Definitions As we have discussed before, Defeat al-
lows different key definitions, and different keys can unearth
different anomalies (Table 4). This is also evident in Fig-
ure 3, but not in Figure 4. We have not examined the impact
of key definitions more closely, and leave that to future work.

4. CONCLUSION
The Defeat algorithm presented in this paper uses mul-

tiple random traffic projections to robustly detect anoma-
lies. In a week-long trace from the Dante backbone, Defeat

detects nearly 200 more anomalies than prior work while
missing only one. It is, in addition, able to automatically
infer the IP flows responsible for an anomaly, a feature miss-
ing in any previously published work. Defeat brings on-line
anomaly detection and identification within the realm of fea-
sibility, which forms our future work.

5. REFERENCES
[1] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal

analysis of network traffic anomalies. In ACM Internet
Measurement Workshop, Nov. 2002.

[2] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In Proceedings of ACM
SIGCOMM, Pittsburgh, PA, August 2002.

[3] F. Feather, D. Siewiorek, and R. Maxion. Fault
detection in an ethernet network using anomaly
signature matching. In Proceedings of ACM
SIGCOMM, 1993.

[4] C. Hood and C. Ji. Proactive network fault detection.
In Proceedings of IEEE Infocom, Apr. 1997.

[5] I. Katzela and M. Schwartz. Schemes for fault
identification in communication networks. IEEE/ACM
Transactions on Networking, 3(6), Dec. 1995.

[6] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen.
Sketch-based change detection: Methods, evaluation,
and applications. In Proceedings of ACM Internet
Measurement Conference, Oct. 2003.

[7] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In Proceedings of ACM
SIGCOMM, Aug. 2004.

[8] A. Lakhina, M. Crovella, and C. Diot. Mining
anomalies using traffic feature distributions. In
Proceedings of ACM SIGCOMM, Aug. 2005.

[9] A. Soule, K. Salamatian, and N. Taft. Combining
filtering and statistical methods for anomaly detection.
In ACM Internet Measurement Conference, Oct. 2005.

[10] M. Thorup and Y. Zhang. Tabulation based
4-universal hashing with applications to second
moment estimation. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2004.

[11] M. Thottan and C. Ji. Anomaly detection in IP
networks. IEEE Transactions in Signal Processing,
51(8), Aug. 2003.

[12] Y. Zhang et al. Online identification of hierarchical
heavy hitters: Algorithms, evaluation, and
application. In Proceedings of ACM Internet
Measurement Conference, Oct. 2004.

