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ABSTRACT
The ability to discover network organization, whether in the
form of explicit topology reconstruction or as embeddings
that approximate topological distance, is a valuable tool. To
date, network discovery has been based on active measure-
ments. However, it is feasible to envision passive discovery of
network topology and distance, simply by monitoring packet
traffic. Unfortunately, the lack of explicit control over the
choices of which endpoints are measured means that pas-
sive network discovery must deal with the problem of miss-
ing information. We consider one such example, namely
reconstructing embeddings and some network structure in-
formation from unwanted network traffic captured at a set
of honeypots. We develop a number of algorithms for re-
construction of missing measurements. Our algorithms use
insights derived from the known topology of the Internet as
well as local imputation techniques from approximation the-
ory. We characterize the degree to which missing informa-
tion can be reconstructed and show that a limited but useful
amount of reconstruction is possible, allowing the recovery
of network embeddings and some topological relationships
from passively collected data.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring
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1. INTRODUCTION
Discovering network topology is useful for many purposes.

Knowledge of the interconnection pattern of routers can be
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used to improve replica placement, overlay configuration,
troubleshooting, model construction, and routing analysis,
among other activities. However topology measurement has
classically been approached using active techniques. Most
topology measurement uses traceroute or one of its vari-
ants to actively probe intermediate nodes along the path
from a probe source to a destination. Active probing has
strengths and weaknesses. One strength with respect to
topology measurement is that it allows some control over
the choice of paths that are measured. A weakness of active
measurement, especially for topology discovery, is the sig-
nificant traffic load on the measured paths. In fact, research
has focused on the question of how to reduce the traffic load
placed on networks by active measurement [6].

A number of advances in Internet measurement mean that
it is now conceivable to capture information about Internet
topology in a passive manner. First of all, honeypots and
other passive traffic collectors can obtain large quantities of
traffic at low expense. Furthermore, it is possible to infer
the number of hops between a sender and receiver using
only information in a packet header. Using the technique
described in [11], one can infer the number of hops between
the honeypot monitor and the host. This inference is made
based on the fact that (i) there are only a few initial TTL
values used in popular operating systems (e.g., 64 for most
UNIX variants, 128 for most Microsoft variants and 255 for
several others), and (ii) typical hop counts for end-to-end
paths are far less than the differences between the standard
TTL values. Thus, hop count can be inferred by rounding
the TTL up to the next highest initial TTL value and then
subtracting the initial TTL.

Putting together passive traffic collection with hop count
inference provides a rich source of topology-related infor-
mation about the Internet. However there are a number of
hurdles to be cleared before such information can be reliably
converted into an actual topology. A key hurdle arises from
the intrinsic nature of passive traffic measurement. When
hop count data is collected passively there is little control
over which paths are measured, and so invariably some data
is missing. For example, our collection setup is based on
the use of honeypots. Honeypots monitor routed but oth-
erwise unused address space, so all traffic directed to these
monitors is unwanted and almost always malicious. When
a single source sends traffic to multiple honeypots, we can
obtain useful information. Consider a set of N honeypots. If
packets from a source S1 are observed at all N honeypots, we
obtain an N -dimensional vector of hop counts. Such a vec-
tor can be useful for constructing a network embedding that



provides information about topological“closeness.” However
if another source S2 is observed at only N − 1 honeypots,
we obtain a hop count vector with a missing component. A
direct embedding of this vector in the same space as that
of S1 is problematic. It would be useful to be able to infer
or replace the missing hop count data so as to place both
nodes in the same N dimensional space.

In this paper we address two key questions that need an-
swers before this kind of passive topology measurement can
be considered practical. First, how can we infer or replace
missing hop count data? And second, given a large col-
lection of hop count data, how can we extract topological
information about the structure of the Internet?

Our results provide initial, albeit partial answers to each
of these questions. First, we describe and evaluate methods
whereby missing hop count information can be replaced. To
solve this we adopt an interpolation approach. We develop a
distance metric based on an understanding of Internet topol-
ogy, and we show that it performs better than traditional
distance metrics as the basis for interpolating hop counts.

Second, we show how our distance metric can be used to
infer a partial topology. In particular, we are able to infer
the fact that certain nodes share a common router along the
paths to all measurement points. This allows us to cluster
nodes topologically. Although conclusive validation is diffi-
cult, we show evidence that this clustering corresponds to
real topological information about the Internet.

2. RELATED WORK
Internet structure and topology have been widely stud-

ied over the years (e.g., [1, 3, 9, 18]). Prior studies of router
level topologies have been conducted exclusively on data sets
derived from active probe-based measurements. For exam-
ple, a well known project using active data collection for
topology measurement is Skitter [4]. While the end goals
of our work are similar to past efforts on topology analy-
sis, our methodology differs since it is based only on passive
measurements at honeypots.

Related to Internet topology is the notion of Internet dis-
tance. Most often, distance estimation focuses on minimum
packet latency and is important to end-to-end performance
evaluation. However Internet distance estimation can also
be concerned with geography, congestion, or routing. Early
work on infrastructure support to estimate Internet distance
from partial measurements can be found in [7, 8]. Another
related idea is IP geolocation i.e., finding the geographic lo-
cation of an Internet host [10, 12]. In our work we focus
on topology measurement which can give insight into other
kinds of Internet distance.

Another aspect of our work concerns the use of hop count
vectors as a kind of network embedding or coordinate sys-
tem. Network embeddings have been most often proposed as
mechanisms for latency estimation [14, 19, 5]. The basic idea
is to use latency measurements between a set of landmark
nodes to create an embedding in a high dimensional space.
Hosts can then use estimates of their latency to points in
the coordinate space to predict the latency to those hosts in
the Internet. The challenges in creating coordinate systems
are in making them scalable, robust and accurate. While
some reports have identified difficulties with some of the ba-
sic assumptions of some coordinate systems [21] more recent
work has shown them to perform quite well in practice [13].
More recently, coordinate systems have been proposed as a

Num. Honeypots Num. Sources

2 8680
3 4051
4 2816
5 2156
6 1570
7 1583
8 1574
9 55
10 4

Table 1: Counts of occurrences of common unique
source IP addresses in multiple honeypots

mechanism for topological inference as well, which is how
we use them in this work. In this case latency estimation
is replaced by estimation of the hop count between nodes.
One study taking this approach is [17], in which a hyper-
bolic embedding is used to embed nodes using hop counts
as distance.

Our work also contributes to the large and growing liter-
ature analyzing data gathered in network honeypots [2, 16,
15]. Honeypots do not solicit traffic; however low interaction
sensors such as those used to collect data for our study will
respond to incoming connection requests in order to distin-
guish spoofed addresses. In this way they are not completely
passive. However, monitors of large address segments can re-
ceive millions of connections per day from systems all over
the world and therefore offer a unique and valuable per-
spective [20]. Our work is based on data collected over
a 24 hour period starting at 00:00 on December 22, 2006
from 15 topologically diverse honeypot sensors. These sen-
sors are located in 11 distinct /8 prefixes that are managed
by 10 different organizations. The segments of IP address
space monitored by the honeypots varied in size from /25 to
/21, along with one /16. Over 37,000,000 total packets were
collected and evaluated in our study. The packets do not
contain spoofed source IP addresses since they were the re-
sponses to SYN/ACKs from the honeynet [2]. Details of the
data set can be found in Table 2. In order to preserve the
integrity of the honeypots, we cannot disclose their locations
in IPv4 address space.

The specific data provided by each honeypot was the
source IP address and TTL extracted from the header of
each packet. As already described, we can infer the num-
ber of hops between the source IP address and the honeypot
using the packet’s TTL value. Of particular interest and im-
portance in our evaluation are the occurrences of the same
source IP address in multiple honeypots. We found that
93.5% of the unique IP addresses in our data set appear in
only one of the honeypots. This is most likely due to the
diverse locations of the sensors coupled with the fact that
different instances of malware limit their scans to smaller
segments of address space. Nevertheless, this left us with
over 22,000 unique IP addresses from which we conducted
our analysis. Details of the instances of multiple occurrences
of unique IP addresses are listed in Table 1 (note that there
were virtually no addresses seen in more than 10 monitors).



Node Total Pkts. Uniq. IPs Mean Hops Hop Variance

1 22,586,386 217,505 13.16 87.48
2 10,533,700 9,554 7.95 54.00
3 100,689 8,431 12.11 59.59
4 4,446 738 11.45 253.29
5 25,062 474 12.07 53.65
6 128,158 6,423 6.87 58.85
7 110,621 11,942 17.23 81.13
8 49,253 6,456 15.49 105.33
9 42,226 6,534 14.31 115.00
10 45,334 6,223 13.93 94.70
11 75,522 8,645 12.45 124.12
12 523,907 8,714 9.82 96.54
13 1,955,100 6,195 19.24 71.68
14 332,986 5,364 8.16 75.44
15 917,894 107,632 12.79 41.18

Table 2: Details of honeypot data sets used in our study. All data was collected over a one day period on
December 22, 2006.

3. NETWORK EMBEDDING FROM
INCOMPLETE DATA

The main idea of our approach is to use the honeypots
as landmarks and passively collected hop counts from IP
sources to the honeypots as distance measures. Ideally, each
IP source is observed at each of the M honeypots, yielding
an M -dimensional vector of hop counts from the IP source to
the honeypots. The M -dimensional hop count vector places
or embeds the IP source in an M -dimensional space. This
is an instance of the so-called network embedding problem,
discussed in the introduction. Using dimensionality reduc-
tion techniques (e.g., principle component analysis) it may
be possible to reduce the M -dimensional embedding space
to a lower dimensional space (see [19] for a discussion of
such techniques in the context of network embedding based
on latency measurements).

Mathematically, the dataset can be considered as the
set of hop counts between a set of sources indexed by set
IS = [1, 2, ..., S]T and a set of measurement (honeypot)

nodes indexed by set IM = [1, 2, ..., M ]T . If the data is com-
plete, this implies that we have knowledge of every hop count
hi,j , such that hi,j = the number of routers between source
Si and measurement node (honeypot) Mj , for all i ∈ IS and
j ∈ IM . For ease of notation, we will state the vector of hop
counts as hi = [hi,1, hi,2, ..., hi,M ]T .

The major challenge associated with the use of honeypots
is that, in general, each IP source is not observed at each
of the honeypots. Thus, rather than obtaining a complete
M -dimensional hop count vector for each IP source, typ-
ically only a subset of the honeypots observe each source
(see Equation 1, 2). Moreover, different IP sources are ob-
served by different subsets of the honeypots, making direct
distance comparisons between IP sources impossible in most
cases. The problem at hand can be viewed as a missing data
problem.

hj = [hj,1, hj,2, . . . , hj,i−1, hj,i, . . . , hj,M ]T (1)

h′j = [hj,1,−, . . . , hj,i−1,−, . . . , hj,M ]T (2)

Missing data problems are routinely encountered in statisti-
cal inference problems, and a rich set of theories and tools

have been developed to address them. At the heart of most
of these is a data interpolation or imputation, wherein the
missing data are estimated from the observations. In our
problem, the missing data are missing hop counts between
IP sources and honeypots. Once these missing data have
been imputed, the completed dataset can be analyzed using
standard network embedding techniques.

4. DATA IMPUTATION
In this section we propose and discuss several approaches

to the missing data imputation problem. First we discuss
fairly standard approaches such as imputation using the
mean value and imputation based on `p-norm nearest neigh-
bors. Then we propose a novel imputation scheme based on
a network-centric uniformity measure motivated by topolog-
ical considerations. Our experimental analysis in Section 5
indicates that the uniformity measure is more effective than
conventional imputation strategies.

4.1 Mean Imputation
The most straightforward, albeit rather crude, estimator

for the missing hop counts is the mean value of the observed
data. That is, we compute the average hop count to a certain
honeypot (over all IP sources observed at that honeypot),
and use this average for all IP sources that were not observed
by the honeypot. Suppose that hop count value hk,j is miss-
ing, we first need to find the indices for IP sources that have
known hop values for measurement node j. Defining source
index subset as Ij = {i : hi,j is known}. Suppose that hop
count value hk,j is missing, we then compute the estimated
value:

dhk,j =
1

|Ij |
X
i∈Ij

hi,j

4.2 `p Imputation
Another method of estimating missing hop data would be

to find the set of IP sources closest to Sk in the `p norm
sense and then compute the average hop count using only
the closest IP sources (rather than all the sources, as in
the mean imputation above). Recall that the `p norm be-



tween two M vectors h and g is defined as ‖h − g‖p =“PM
j=1(h(j)− g(j))p

”1/p

(with ‖h − g‖∞ = max |h− g|).
Again, supposing that hop count value hk,j is missing, we
first define source index subset I`p as the set of indices of
sources that are closest to Sk in the `p norm sense (as a
subset of the set of indices (Ij) for sources that have known
values for measurement node j). This is mathematically
defined as

I`p = {i : argmin
i∈Ij

(‖hi − hk‖p)}.

Given the set of IP sources in the complete data set closest
to Sk in the `p norm sense (I`p), the imputed values are
computed as follows:

dhk,j =
1˛̨
I`p

˛̨ X
i∈I`p

hi,j

While we only report the results of experiments with the
`1 and `∞ norms, the same methodology can be applied for
the `2 norm. Results from imputation experiments with the
`2 norm were nearly identical to the `1 norm, which is why
they are omitted in Section 5.

4.3 Network-centric Imputation
One problem with both the mean imputation and the `p

imputation methods are that neither methodology takes ad-
vantage of the topology of the network. From [3], we can
state that the network structure will resemble the network in
Figure 1-(left). Each source IP address will enter the densely
connected network core through a border router. Given this
structure of the network, we can divide the total hop count
values into the number of routers from the IP source to the
core, and the number of routers from the core border node
to the measurement node. We define the variables {xi =
the number of routers along the path from source Si and
the core}, and {wi,j = the hop between the core border
node of source i and Mj}. We state the hop count values:
hi,j = xi + wi,j are the given number of routers between
source Si and measurement node Mj . Now consider the sit-

Figure 1: (Left) Example Network Topology,
(Right) Example network w/ shared border node

uation where two sources (Si, Sj) are connected at the same

border node (see Figure 1-(right)). Given that these two IP
sources will share a path through the core to each measure-
ment node, we can state that wi,k = wj,k for all measure-
ment nodes Mk. Therefore, hi,k −hj,k = xi− xj = C for all
measurement nodes Mk, where C is some constant integer.
We now develop a measure that exploits this property of two
sources that have the same entry point into the core.

4.3.1 Uniformity Measure Imputation
Consider some subset of the indices of measurement nodes

(IM(D) ⊆ IM ). We can then define the uniformity mea-
sure of two sources (Si, Sj) on the measurement node subset
IM(D) as:

∆i,j

`IM(D)

´
= max

k∈IM(D)
(hi,k − hj,k)

− min
k∈IM(D)

(hi,k − hj,k)

Proposition 1. If hi,k = hj,k + C for all k ∈ IM and some
constant integer C then ∆i,j(IM ) = 0

Proof. If hi,k = hj,k + C, then max
k∈IM

(hi,k − hj,k) = C

and min
k∈IM

(hi,k − hj,k) = C. Then by definition, ∆i,j(IM ) =

C − C = 0

Therefore, by Proposition 1, if two sources have hop counts
that consistently differ by an integer constant across all mea-
surement nodes, then the uniformity measure between the
two sources will be zero. We can use this as an insight into
the potential topology of the network, as a uniformity mea-
sure of zero is a necessary (but not sufficient) condition for
two sources sharing a border node at the entrance to the
network core.

Now consider a source Sk missing hop count data to
a subset of the measurement nodes, indexed by subset
IM(unknown), and with known hop count data to measure-
ment node subset IM(known). We first need to find the sub-
set of IP sources :

IS(known) = {i : hi,j is known, for allj ∈ IM(known)}
We then find the subset of source indices representing
sources with the smallest uniformity measure with respect
to source Sk and the known measurement node hop counts
values:

IS(uni) = {i : argmin
i∈IS(known)

`
∆i,j

`IM(known)

´´}

Then calculate the average difference between the known
hop counts for IP source Sk and known hop counts for the
uniformity-close subset of IP sources indexed by IS(uni):

bC =
1˛̨

IM(known)

˛̨ ˛̨
IS(uni)

˛̨

·
X

i∈IS(uni)

X
j∈IM(known)

(hi,j − hk,j)

We can then estimate all unknown hop counts hk,j for source
Sk:

dhk,j =

0
@ 1˛̨
IS(uni)

˛̨ X
i∈IS(uni)

hi,j

1
A− bC



5. EXPERIMENTAL RESULTS
The efficacy of the data imputation methods for missing

data estimation was assessed as follows. Using the data ac-
quisition methodology described in Section 2, we identified a
set of over 1500 IP sources that have recorded hop counts to
the same 8 distinct honeypots. Thus, this dataset provides
a “complete” 8-dimensional dataset. From this dataset we
can synthetically generate missing data examples by knock-
ing out (eliminating) certain hop count measurements. For
example, knocking out k < 8 of the hop counts in a given
hop count vector mimics the case in which k of the 8 hon-
eypots did not observe the corresponding IP source. After
generating synthetic missing data examples, we can apply
the imputation methods and measure their effectiveness at
“filling-in” the missing hop-counts in various ways (to be
explained below). Using 10-fold cross-validation, in which
1/10 of the complete data is used to generate missing data
examples and the remaining 9/10 is used for imputation of
the missing hop counts, we can assess the performance of
the methods.

5.1 Mean Squared Error Analysis
First we consider the mean squared error of the imputed

values, estimated using the cross-validation procedure. As
one can observe from the graph in Figure 2-(left), the unifor-
mity imputation technique performs on par with the best `p

imputation technique. The poor performance of the mean
technique shows that both the uniformity and `p imputation
techniques are performing relatively well at estimating the
missing data in up to six of the eight dimensions.

5.2 Nearest Neighbor Analysis
A second measure of the effectiveness of the data impu-

tation techniques, which captures the degree to which the
imputed data preserves network structure/topology, is to
compare the 5 Nearest Neighbors for a source Sk given com-
plete data, with the 5 Nearest Neighbors for source Sk after
deliberately eliminated hop counts were imputed. In ad-
dition to the imputation methodology described above, we
also consider the 5 Nearest Neighbors based on only the re-
maining dimensions without imputation of the missing data
(marked as partial in the graph/table). As one can observe
from Figure 2-(center), the imputation method based on the
uniformity measure performs better than the other imputa-
tion methods except when all but one of the dimensions are
missing. This results shows that the uniformity measure will
recover the structure/topology of the network better than all
other methods tested.

5.3 IP Cluster Analysis
The final analysis performed on the dataset looked at

clusters of IP sources in the network using the hop count
data (using all eight measurement node hop counts from
the dataset). As stated previously, the uniformity measure
will be zero for any two IP sources that share the same core
border router, therefore the clustering procedure for the uni-
formity measure grouped together sources with uniformity
measure values of zero for intra-cluster IP sources. For the
purpose of comparison, cluster sets need to be created using
the imputation methods. For the `p-norm, two sources were
considered in the same cluster if the `p-norm for the hop
count difference between two intra-cluster IP sources was
less than a parameter τ (where τ > 0). In the experiments,

τ = 1 so that the total number of clusters for each metric is
roughly the same.

To verify the effectiveness of the clustering procedures,
the five largest clusters were considered for each imputation
method with respect to the entire 8-dimensional dataset.
The IP addresses relating to the clusters were examined and
the most frequently occurring /8, /16 and /24 addresses
were found. As a measure of the topological relevance of
the clusters, we then examined how often these dominant
IP address subspaces occur in each cluster. The results in
Figure 2-(right)) show that the uniformity measure clusters
slightly more IP addresses in the /8 subspace with respect to
the `1 and `∞ metrics. Meanwhile, for the /16 subspace, the
uniformity measure clusters a significantly larger number of
addresses located in the dominant /16 subspace as compared
to the `1 and `∞ metrics.

6. CONCLUSIONS
In this paper we take initial steps toward the possibility

of discovering network topology in a passive manner. By
taking passively collected traffic from honeypots and infer-
ring the hop count from the honeypot to the source for each
packet, we obtain raw data that hold topological informa-
tion. Extracting useful topology from the raw data entails
addressing two issues: how to replace missing measurements,
and how to infer topology from a collection of complete mea-
surements. We develop a network-informed distance metric
for these problems, and show that it outperforms traditional
distance metrics. As a result we are able to identify, from
passive measurements alone, clusters of nodes that are likely
to be sharing a common router on their paths to multiple
honeypots. While our initial results are encouraging, there
are more challenges ahead before network topology can be
fully discovered in a passive manner, if indeed it ever can.
In particular, it is an open question whether the set of hop
counts alone contains enough information to recover detailed
topological information. We leave this question for future
work.
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